"""Golf Dataset""" from typing import List from functools import partial import datasets import pandas VERSION = datasets.Version("1.0.0") _ENCODING_DICS = { "toPlay": { "Don't Play": 0, "Play": 1 } } DESCRIPTION = "Golf dataset." _HOMEPAGE = "" _URLS = ("") _CITATION = """""" # Dataset info urls_per_split = { "train": "https://huggingface.co/datasets/mstz/golf/resolve/main/golf.data" } features_types_per_config = { "golf": { "outlook": datasets.Value("string"), "temperature": datasets.Value("int8"), "humidity": datasets.Value("int8"), "windy": datasets.Value("bool"), "goodPlaying": datasets.Value("float64"), "toPlay": datasets.ClassLabel(num_classes=2, names=("no", "yes")) } } features_per_config = {k: datasets.Features(features_types_per_config[k]) for k in features_types_per_config} class GolfConfig(datasets.BuilderConfig): def __init__(self, **kwargs): super(GolfConfig, self).__init__(version=VERSION, **kwargs) self.features = features_per_config[kwargs["name"]] class Golf(datasets.GeneratorBasedBuilder): # dataset versions DEFAULT_CONFIG = "golf" BUILDER_CONFIGS = [ GolfConfig(name="golf", description="Golf for binary classification.") ] def _info(self): info = datasets.DatasetInfo(description=DESCRIPTION, citation=_CITATION, homepage=_HOMEPAGE, features=features_per_config[self.config.name]) return info def _split_generators(self, dl_manager: datasets.DownloadManager) -> List[datasets.SplitGenerator]: downloads = dl_manager.download_and_extract(urls_per_split) return [ datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"filepath": downloads["train"]}), ] def _generate_examples(self, filepath: str): data = pandas.read_csv(filepath) data = self.preprocess(data) for row_id, row in data.iterrows(): data_row = dict(row) yield row_id, data_row def preprocess(self, data: pandas.DataFrame) -> pandas.DataFrame: for feature in _ENCODING_DICS: encoding_function = partial(self.encode, feature) data.loc[:, feature] = data[feature].apply(encoding_function) return data[list(features_types_per_config[self.config.name].keys())] def encode(self, feature, value): if feature in _ENCODING_DICS: return _ENCODING_DICS[feature][value] raise ValueError(f"Unknown feature: {feature}")