"""Breast Dataset""" from typing import List import datasets import pandas VERSION = datasets.Version("1.0.0") _ORIGINAL_FEATURE_NAMES = [ "checking_account_status", "account_life_in_months", "credit_status", "loan_purpose", "current_credit", "current_savings", "employed_since", "installment_rate_percentage", "personal_status_and_sex", "guarantors", "years_living_in_current_residence", "property", "age", "installment_plans", "housing_status", "nr_credit_accounts_in_bank", "job_status", "number_of_people_in_support", "has_registered_phone_number", "is_foreign", "loan_granted", ] _BASE_FEATURE_NAMES = [ "checking_account_status", "account_life_in_months", "credit_status", "loan_purpose", "current_credit", "current_savings", "employed_since", "installment_rate_percentage", "sex", "marital_status", "guarantors", "years_living_in_current_residence", "age", "installment_plans", "housing_status", "nr_credit_accounts_in_bank", "job_status", "number_of_people_in_support" "has_registered_phone_number", "is_foreign", "loan_granted" ] DESCRIPTION = "Breast dataset for cancer prediction." _HOMEPAGE = "https://archive.ics.uci.edu/ml/datasets/Statlog+%28German+Credit+Data%29" _URLS = ("https://archive.ics.uci.edu/ml/datasets/Statlog+%28German+Credit+Data%29") _CITATION = """ """ # Dataset info urls_per_split = { "train": "https://huggingface.co/datasets/mstz/german/raw/main/german.data", } features_types_per_config = { "encoding": { "feature": datasets.Value("string"), "original_value": datasets.Value("string"), "encoded_value": datasets.Value("int8"), }, "loan": { "checking_account_status": datasets.Value("int8"), "account_life_in_months": datasets.Value("int8"), "credit_status": datasets.Value("int8"), "loan_purpose": datasets.Value("string"), "current_credit": datasets.Value("int8"), "current_savings": datasets.Value("int8"), "employed_since": datasets.Value("int8"), "installment_rate_percentage": datasets.Value("int8"), "sex": datasets.Value("int8"), "marital_status": datasets.Value("string"), "guarantors": datasets.Value("int8"), "years_living_in_current_residence": datasets.Value("int8"), "age": datasets.Value("int8"), "installment_plans": datasets.Value("string"), "housing_status": datasets.Value("int8"), "nr_credit_accounts_in_bank": datasets.Value("int8"), "job_status": datasets.Value("int8"), "number_of_people_in_support": datasets.Value("int8"), "has_registered_phone_number": datasets.Value("int8"), "is_foreign": datasets.Value("int8"), "loan_granted": datasets.ClassLabel(num_classes=2, names=("no", "yes")) } } features_per_config = {k: datasets.Features(features_types_per_config[k]) for k in features_types_per_config} class BreastConfig(datasets.BuilderConfig): def __init__(self, **kwargs): super(BreastConfig, self).__init__(version=VERSION, **kwargs) self.features = features_per_config[kwargs["name"]] class Breast(datasets.GeneratorBasedBuilder): # dataset versions DEFAULT_CONFIG = "loan" BUILDER_CONFIGS = [ BreastConfig(name="encoding", description="Encoding dictionaries for discrete features."), BreastConfig(name="loan", description="Binary classification of loan approval."), ] def _info(self): if self.config.name not in features_per_config: raise ValueError(f"Unknown configuration: {self.config.name}") info = datasets.DatasetInfo(description=DESCRIPTION, citation=_CITATION, homepage=_HOMEPAGE, features=features_per_config[self.config.name]) return info def _split_generators(self, dl_manager: datasets.DownloadManager) -> List[datasets.SplitGenerator]: downloads = dl_manager.download_and_extract(urls_per_split) return [ datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"filepath": downloads["train"]}), ] def _generate_examples(self, filepath: str): data = pandas.read_csv(filepath, sep=" ", header=None) data.columns=_ORIGINAL_FEATURE_NAMES data = self.preprocess(data, config=self.config.name) for row_id, row in data.iterrows(): data_row = dict(row) yield row_id, data_row def preprocess(self, data: pandas.DataFrame, config: str = "cancer") -> pandas.DataFrame: data.loc[:, "checking_account_status"] = data.checking_account_status.apply(self.encode_checking_account_status) data.loc[:, "credit_status"] = data.credit_status.apply(self.encode_credit_status) data.loc[:, "current_savings"] = data.current_savings.apply(self.encode_current_savings) data.loc[:, "employed_since"] = data.employed_since.apply(self.encode_employed_since) data.loc[:, "guarantors"] = data.guarantors.apply(self.encode_guarantors) data.loc[:, "has_registered_phone_number"] = data.has_registered_phone_number.apply(self.encode_has_registered_phone_number) data.loc[:, "housing_status"] = data.housing_status.apply(self.encode_housing_status) data.loc[:, "installment_plans"] = data.installment_plans.apply(self.encode_installment_plans) data.loc[:, "is_foreign"] = data.is_foreign.apply(self.encode_is_foreign) data.loc[:, "job_status"] = data.job_status.apply(self.encode_job_status) data.loc[:, "loan_granted"] = data.loan_granted.apply(self.encode_loan_granted) data.loc[:, "marital_status"] = data.marital_status.apply(self.encode_marital_status) data.loc[:, "sex"] = data.sex.apply(self.encode_sex) data.loc[:, "loan_granted"] = data.loan_granted.apply(lambda x: x - 1) data.drop("personal_status_and_sex", axis="columns", inplace=True) data = data[_BASE_FEATURE_NAMES] if config == "loan": return data else: raise ValueError(f"Unknown config: {config}") def encode_checking_account_status(self, status): return self.checking_account_status_encode_dic()[status] def checking_account_status_encode_dic(self): return { "A14": 0, "A11": 1, "A12": 2, "A13": 3, } def decode_checking_account_status(self, code): return self.checking_account_status_decode_dic()[code] def checking_account_status_decode_dic(self): return { 0: "A14", 1: "A11", 2: "A12", 3: "A13", } def encode_credit_status(self, status): return self.credit_status_encode_dic()[status] def credit_status_encode_dic(self): return { "A30": 0, "A31": 1, "A32": 2, "A33": 3, "A34": 4, } def decode_credit_status(self, code): return self.credit_status_decode_dic()[code] def credit_status_decode_dic(self): return { 0: "A30", 1: "A31", 2: "A32", 3: "A33", 4: "A34", } def encode_current_savings(self, status): return self.current_savings_encode_dic()[status] def current_savings_encode_dic(self): return { "A65": 0, "A61": 1, "A62": 2, "A63": 3, "A64": 4, } def decode_current_savings(self, code): return self.current_savings_decode_dic()[code] def current_savings_decode_dic(self): return { 0: "A65", 1: "A61", 2: "A62", 3: "A63", 4: "A64", } def encode_employed_since(self, status): return self.employed_since_encode_dic()[status] def employed_since_encode_dic(self): return { "A71": 0, "A72": 1, "A73": 2, "A74": 3, "A75": 4, } def decode_employed_since(self, code): return self.employed_since_decode_dic()[code] def employed_since_decode_dic(self): return { 0: "A71", 1: "A72", 2: "A73", 3: "A74", 4: "A75", } def encode_sex(self, status): return self.sex_encode_dic()[status] def sex_encode_dic(self): return { "A91": 0, "A93": 0, "A94": 0, "A92": 1, "A95": 1, } def decode_sex(self, code): return self.sex_decode_dic()[code] def sex_decode_dic(self): return { 0: "A91", 1: "A92", } def encode_marital_status(self, status): return self.marital_status_encode_dic()[status] def marital_status_encode_dic(self): return { "A91": 0, "A92": 0, "A93": 1, "A94": 2, "A95": 1, } def decode_marital_status(self, code): return self.marital_status_decode_dic()[code] def marital_status_decode_dic(self): return { 0: "A91", 1: "A93", 2: "A94", } def encode_guarantors(self, status): return self.guarantors_encode_dic()[status] def guarantors_encode_dic(self): return { "A101": 0, "A102": 1, "A103": 2, } def decode_guarantors(self, code): return self.guarantors_decode_dic()[code] def guarantors_decode_dic(self): return { 0: "A101", 1: "A102", 2: "A103", } def encode_installment_plans(self, status): return self.installment_plans_encode_dic()[status] def installment_plans_encode_dic(self): return { "A141": 0, "A142": 1, "A143": 2, } def decode_installment_plans(self, code): return self.installment_plans_decode_dic()[code] def installment_plans_decode_dic(self): return { 0: "A141", 1: "A142", 2: "A143", } def encode_housing_status(self, status): return self.housing_status_encode_dic()[status] def housing_status_encode_dic(self): return { "A153": 0, "A151": 1, "A152": 2, } def decode_housing_status(self, code): return self.housing_status_decode_dic()[code] def housing_status_decode_dic(self): return { 0: "A153", 1: "A151", 2: "A152", } def encode_job_status(self, status): return self.job_status_encode_dic()[status] def job_status_encode_dic(self): return { "A171": 0, "A172": 1, "A173": 2, "A174": 3, } def decode_job_status(self, code): return self.job_status_decode_dic()[code] def job_status_decode_dic(self): return { 0: "A171", 1: "A172", 2: "A173", 3: "A174", } def encode_has_registered_phone_number(self, status): return self.has_registered_phone_number_encode_dic()[status] def has_registered_phone_number_encode_dic(self): return { "A191": 0, "A192": 1, } def decode_has_registered_phone_number(self, code): return self.has_registered_phone_number_decode_dic()[code] def has_registered_phone_number_decode_dic(self): return { 0: "A191", 1: "A192", } def encode_is_foreign(self, status): return self.is_foreign_encode_dic()[status] def is_foreign_encode_dic(self): return { "A191": 0, "A192": 1, } def decode_is_foreign(self, code): return self.is_foreign_decode_dic()[code] def is_foreign_decode_dic(self): return { 0: "A191", 1: "A192", } def encode_loan_granted(self, status): return self.loan_granted_encode_dic()[status] def loan_granted_encode_dic(self): return { "A201": 0, "A202": 1, } def decode_loan_granted(self, code): return self.loan_granted_decode_dic()[code] def loan_granted_decode_dic(self): return { 0: "A201", 1: "A202", }