|
"""German Dataset""" |
|
|
|
from typing import List |
|
from functools import partial |
|
|
|
import datasets |
|
|
|
import pandas |
|
|
|
|
|
VERSION = datasets.Version("1.0.0") |
|
_ORIGINAL_FEATURE_NAMES = [ |
|
"checking_account_status", |
|
"account_life_in_months", |
|
"credit_status", |
|
"loan_purpose", |
|
"current_credit", |
|
"current_savings", |
|
"employed_since", |
|
"installment_rate_percentage", |
|
"personal_status_and_sex", |
|
"guarantors", |
|
"years_living_in_current_residence", |
|
"property", |
|
"age", |
|
"installment_plans", |
|
"housing_status", |
|
"nr_credit_accounts_in_bank", |
|
"job_status", |
|
"number_of_people_in_support", |
|
"has_registered_phone_number", |
|
"is_foreign", |
|
"loan_granted", |
|
] |
|
_BASE_FEATURE_NAMES = [ |
|
"checking_account_status", |
|
"account_life_in_months", |
|
"credit_status", |
|
"loan_purpose", |
|
"current_credit", |
|
"current_savings", |
|
"employed_since", |
|
"installment_rate_percentage", |
|
"sex", |
|
"marital_status", |
|
"guarantors", |
|
"years_living_in_current_residence", |
|
"age", |
|
"installment_plans", |
|
"housing_status", |
|
"nr_credit_accounts_in_bank", |
|
"job_status", |
|
"number_of_people_in_support", |
|
"has_registered_phone_number", |
|
"is_foreign", |
|
"loan_granted" |
|
] |
|
_ENCODING_DICS = { |
|
"is_foreign": { |
|
"A201": 0, |
|
"A202": 1 |
|
}, |
|
"has_registered_phone_number": { |
|
"A191": 0, |
|
"A192": 1 |
|
}, |
|
"job_status": { |
|
"A171": 0, |
|
"A172": 1, |
|
"A173": 2, |
|
"A174": 3 |
|
}, |
|
"housing_status": { |
|
"A153": 0, |
|
"A151": 1, |
|
"A152": 2 |
|
}, |
|
"installment_plans": { |
|
"A141": 0, |
|
"A142": 1, |
|
"A143": 2 |
|
}, |
|
"guarantors": { |
|
"A101": 0, |
|
"A102": 1, |
|
"A103": 2 |
|
}, |
|
"marital_status": { |
|
"A91": 0, |
|
"A92": 0, |
|
"A93": 1, |
|
"A94": 2, |
|
"A95": 1, |
|
}, |
|
"sex": { |
|
"A91": 0, |
|
"A93": 0, |
|
"A94": 0, |
|
"A92": 1, |
|
"A95": 1, |
|
}, |
|
"employed_since": { |
|
"A71": 0, |
|
"A72": 1, |
|
"A73": 2, |
|
"A74": 3, |
|
"A75": 4, |
|
}, |
|
"current_savings": { |
|
"A65": 0, |
|
"A61": 1, |
|
"A62": 2, |
|
"A63": 3, |
|
"A64": 4, |
|
}, |
|
"credit_status": { |
|
"A30": 0, |
|
"A31": 1, |
|
"A32": 2, |
|
"A33": 3, |
|
"A34": 4, |
|
}, |
|
"checking_account_status": { |
|
"A14": 0, |
|
"A11": 1, |
|
"A12": 2, |
|
"A13": 3, |
|
} |
|
} |
|
|
|
DESCRIPTION = "German dataset for cancer prediction." |
|
_HOMEPAGE = "https://archive.ics.uci.edu/ml/datasets/Statlog+%28German+Credit+Data%29" |
|
_URLS = ("https://archive.ics.uci.edu/ml/datasets/Statlog+%28German+Credit+Data%29") |
|
_CITATION = """""" |
|
|
|
|
|
urls_per_split = { |
|
"train": "https://huggingface.co/datasets/mstz/german/raw/main/german.data", |
|
} |
|
features_types_per_config = { |
|
"encoding": { |
|
"feature": datasets.Value("string"), |
|
"original_value": datasets.Value("string"), |
|
"encoded_value": datasets.Value("int8"), |
|
}, |
|
|
|
"loan": { |
|
"checking_account_status": datasets.Value("int8"), |
|
"account_life_in_months": datasets.Value("int8"), |
|
"credit_status": datasets.Value("int8"), |
|
"loan_purpose": datasets.Value("string"), |
|
"current_credit": datasets.Value("int32"), |
|
"current_savings": datasets.Value("int8"), |
|
"employed_since": datasets.Value("int8"), |
|
"installment_rate_percentage": datasets.Value("int8"), |
|
"is_male": datasets.Value("bool"), |
|
"marital_status": datasets.Value("string"), |
|
"guarantors": datasets.Value("int8"), |
|
"years_living_in_current_residence": datasets.Value("int8"), |
|
"age": datasets.Value("int8"), |
|
"installment_plans": datasets.Value("string"), |
|
"housing_status": datasets.Value("int8"), |
|
"nr_credit_accounts_in_bank": datasets.Value("int8"), |
|
"job_status": datasets.Value("int8"), |
|
"number_of_people_in_support": datasets.Value("int8"), |
|
"has_registered_phone_number": datasets.Value("int8"), |
|
"is_foreign": datasets.Value("bool"), |
|
"loan_granted": datasets.ClassLabel(num_classes=2, names=("no", "yes")) |
|
} |
|
|
|
} |
|
features_per_config = {k: datasets.Features(features_types_per_config[k]) for k in features_types_per_config} |
|
|
|
|
|
class GermanConfig(datasets.BuilderConfig): |
|
def __init__(self, **kwargs): |
|
super(GermanConfig, self).__init__(version=VERSION, **kwargs) |
|
self.features = features_per_config[kwargs["name"]] |
|
|
|
|
|
class German(datasets.GeneratorBasedBuilder): |
|
|
|
DEFAULT_CONFIG = "loan" |
|
BUILDER_CONFIGS = [ |
|
GermanConfig(name="encoding", |
|
description="Encoding dictionaries for discrete features."), |
|
GermanConfig(name="loan", |
|
description="Binary classification of loan approval."), |
|
] |
|
|
|
|
|
def _info(self): |
|
info = datasets.DatasetInfo(description=DESCRIPTION, citation=_CITATION, homepage=_HOMEPAGE, |
|
features=features_per_config[self.config.name]) |
|
|
|
return info |
|
|
|
def _split_generators(self, dl_manager: datasets.DownloadManager) -> List[datasets.SplitGenerator]: |
|
downloads = dl_manager.download_and_extract(urls_per_split) |
|
|
|
return [ |
|
datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"filepath": downloads["train"]}), |
|
] |
|
|
|
def _generate_examples(self, filepath: str): |
|
if self.config.name == "encoding": |
|
data = self.encoding_dics() |
|
|
|
else: |
|
data = pandas.read_csv(filepath, sep=" ", header=None) |
|
data.columns=_ORIGINAL_FEATURE_NAMES |
|
data = self.preprocess(data, config=self.config.name) |
|
|
|
for row_id, row in data.iterrows(): |
|
data_row = dict(row) |
|
|
|
yield row_id, data_row |
|
|
|
def preprocess(self, data: pandas.DataFrame, config: str = "loan") -> pandas.DataFrame: |
|
for feature in _ENCODING_DICS: |
|
if feature not in ["marital_status", "sex"]: |
|
encoding_function = partial(self.encode, feature) |
|
data.loc[:, feature] = data[feature].apply(encoding_function) |
|
|
|
encode_marital_status = partial(self.encode, "marital_status") |
|
encode_sex = partial(self.encode, "sex") |
|
data.loc[:, "marital_status"] = data.personal_status_and_sex.apply(encode_marital_status) |
|
data.loc[:, "sex"] = data.personal_status_and_sex.apply(encode_sex) |
|
data.loc[:, "loan_purpose"] = data.loan_purpose.apply(self.encode_loan_purpose) |
|
data.loc[:, "loan_granted"] = data.loan_granted.apply(lambda x: x - 1) |
|
|
|
data.drop("personal_status_and_sex", axis="columns", inplace=True) |
|
|
|
data = data[_BASE_FEATURE_NAMES] |
|
data = data.rename(columns={"sex": "is_male"}) |
|
data = data.astype({"is_foreign": "bool"}) |
|
data.loc[:, "is_foreign"] = data.is_foreign.apply(bool) |
|
|
|
return data |
|
|
|
def encode(self, feature, value): |
|
if feature in _ENCODING_DICS: |
|
return _ENCODING_DICS[feature][value] |
|
raise ValueError(f"Unknown feature: {feature}") |
|
|
|
def encoding_dics(self): |
|
data = [pandas.DataFrame([(feature, original, encoded) for original, encoded in d.items()]) |
|
for feature, d in _ENCODING_DICS.items()] |
|
data = pandas.concat(data, axis="rows").reset_index() |
|
data.drop("index", axis="columns", inplace=True) |
|
data.columns = ["feature", "original_value", "encoded_value"] |
|
|
|
return data |
|
|
|
def encode_loan_purpose(self, code): |
|
return { |
|
"A40": "new car", |
|
"A41": "used car", |
|
"A42": "furniture/equipment", |
|
"A43": "radio/television", |
|
"A44": "domestic appliances", |
|
"A45": "repairs", |
|
"A46": "education", |
|
"A47": "vacation ", |
|
"A48": "retraining", |
|
"A49": "business", |
|
"A410": "others" |
|
}[code] |
|
|