german / german.py
mstz's picture
Upload german.py
3dbffdf
raw
history blame
13 kB
"""Breast Dataset"""
from typing import List
import datasets
import pandas
VERSION = datasets.Version("1.0.0")
_ORIGINAL_FEATURE_NAMES = [
"checking_account_status",
"account_life_in_months",
"credit_status",
"loan_purpose",
"current_credit",
"current_savings",
"employed_since",
"installment_rate_percentage",
"personal_status_and_sex",
"guarantors",
"years_living_in_current_residence",
"property",
"age",
"installment_plans",
"housing_status",
"nr_credit_accounts_in_bank",
"job_status",
"number_of_people_in_support",
"has_registered_phone_number",
"is_foreign",
"loan_granted",
]
_BASE_FEATURE_NAMES = [
"checking_account_status",
"account_life_in_months",
"credit_status",
"loan_purpose",
"current_credit",
"current_savings",
"employed_since",
"installment_rate_percentage",
"sex",
"marital_status",
"guarantors",
"years_living_in_current_residence",
"age",
"installment_plans",
"housing_status",
"nr_credit_accounts_in_bank",
"job_status",
"number_of_people_in_support"
"has_registered_phone_number",
"is_foreign",
"loan_granted"
]
DESCRIPTION = "Breast dataset for cancer prediction."
_HOMEPAGE = "https://archive.ics.uci.edu/ml/datasets/Statlog+%28German+Credit+Data%29"
_URLS = ("https://archive.ics.uci.edu/ml/datasets/Statlog+%28German+Credit+Data%29")
_CITATION = """
"""
# Dataset info
urls_per_split = {
"train": "https://huggingface.co/datasets/mstz/german/raw/main/german.data",
}
features_types_per_config = {
"encoding": {
"feature": datasets.Value("string"),
"original_value": datasets.Value("string"),
"encoded_value": datasets.Value("int8"),
},
"loan": {
"checking_account_status": datasets.Value("int8"),
"account_life_in_months": datasets.Value("int8"),
"credit_status": datasets.Value("int8"),
"loan_purpose": datasets.Value("string"),
"current_credit": datasets.Value("int8"),
"current_savings": datasets.Value("int8"),
"employed_since": datasets.Value("int8"),
"installment_rate_percentage": datasets.Value("int8"),
"sex": datasets.Value("int8"),
"marital_status": datasets.Value("string"),
"guarantors": datasets.Value("int8"),
"years_living_in_current_residence": datasets.Value("int8"),
"age": datasets.Value("int8"),
"installment_plans": datasets.Value("string"),
"housing_status": datasets.Value("int8"),
"nr_credit_accounts_in_bank": datasets.Value("int8"),
"job_status": datasets.Value("int8"),
"number_of_people_in_support": datasets.Value("int8"),
"has_registered_phone_number": datasets.Value("int8"),
"is_foreign": datasets.Value("int8"),
"loan_granted": datasets.ClassLabel(num_classes=2, names=("no", "yes"))
}
}
features_per_config = {k: datasets.Features(features_types_per_config[k]) for k in features_types_per_config}
class BreastConfig(datasets.BuilderConfig):
def __init__(self, **kwargs):
super(BreastConfig, self).__init__(version=VERSION, **kwargs)
self.features = features_per_config[kwargs["name"]]
class Breast(datasets.GeneratorBasedBuilder):
# dataset versions
DEFAULT_CONFIG = "loan"
BUILDER_CONFIGS = [
BreastConfig(name="encoding",
description="Encoding dictionaries for discrete features."),
BreastConfig(name="loan",
description="Binary classification of loan approval."),
]
def _info(self):
if self.config.name not in features_per_config:
raise ValueError(f"Unknown configuration: {self.config.name}")
info = datasets.DatasetInfo(description=DESCRIPTION, citation=_CITATION, homepage=_HOMEPAGE,
features=features_per_config[self.config.name])
return info
def _split_generators(self, dl_manager: datasets.DownloadManager) -> List[datasets.SplitGenerator]:
downloads = dl_manager.download_and_extract(urls_per_split)
return [
datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"filepath": downloads["train"]}),
]
def _generate_examples(self, filepath: str):
data = pandas.read_csv(filepath, sep=" ", header=None)
data.columns=_ORIGINAL_FEATURE_NAMES
data = self.preprocess(data, config=self.config.name)
for row_id, row in data.iterrows():
data_row = dict(row)
yield row_id, data_row
def preprocess(self, data: pandas.DataFrame, config: str = "cancer") -> pandas.DataFrame:
data.loc[:, "checking_account_status"] = data.checking_account_status.apply(self.encode_checking_account_status)
data.loc[:, "credit_status"] = data.credit_status.apply(self.encode_credit_status)
data.loc[:, "current_savings"] = data.current_savings.apply(self.encode_current_savings)
data.loc[:, "employed_since"] = data.employed_since.apply(self.encode_employed_since)
data.loc[:, "guarantors"] = data.guarantors.apply(self.encode_guarantors)
data.loc[:, "has_registered_phone_number"] = data.has_registered_phone_number.apply(self.encode_has_registered_phone_number)
data.loc[:, "housing_status"] = data.housing_status.apply(self.encode_housing_status)
data.loc[:, "installment_plans"] = data.installment_plans.apply(self.encode_installment_plans)
data.loc[:, "is_foreign"] = data.is_foreign.apply(self.encode_is_foreign)
data.loc[:, "job_status"] = data.job_status.apply(self.encode_job_status)
data.loc[:, "loan_granted"] = data.loan_granted.apply(self.encode_loan_granted)
data.loc[:, "marital_status"] = data.marital_status.apply(self.encode_marital_status)
data.loc[:, "sex"] = data.sex.apply(self.encode_sex)
data.loc[:, "loan_granted"] = data.loan_granted.apply(lambda x: x - 1)
data.drop("personal_status_and_sex", axis="columns", inplace=True)
data = data[_BASE_FEATURE_NAMES]
if config == "loan":
return data
else:
raise ValueError(f"Unknown config: {config}")
def encode_checking_account_status(self, status):
return self.checking_account_status_encode_dic()[status]
def checking_account_status_encode_dic(self):
return {
"A14": 0,
"A11": 1,
"A12": 2,
"A13": 3,
}
def decode_checking_account_status(self, code):
return self.checking_account_status_decode_dic()[code]
def checking_account_status_decode_dic(self):
return {
0: "A14",
1: "A11",
2: "A12",
3: "A13",
}
def encode_credit_status(self, status):
return self.credit_status_encode_dic()[status]
def credit_status_encode_dic(self):
return {
"A30": 0,
"A31": 1,
"A32": 2,
"A33": 3,
"A34": 4,
}
def decode_credit_status(self, code):
return self.credit_status_decode_dic()[code]
def credit_status_decode_dic(self):
return {
0: "A30",
1: "A31",
2: "A32",
3: "A33",
4: "A34",
}
def encode_current_savings(self, status):
return self.current_savings_encode_dic()[status]
def current_savings_encode_dic(self):
return {
"A65": 0,
"A61": 1,
"A62": 2,
"A63": 3,
"A64": 4,
}
def decode_current_savings(self, code):
return self.current_savings_decode_dic()[code]
def current_savings_decode_dic(self):
return {
0: "A65",
1: "A61",
2: "A62",
3: "A63",
4: "A64",
}
def encode_employed_since(self, status):
return self.employed_since_encode_dic()[status]
def employed_since_encode_dic(self):
return {
"A71": 0,
"A72": 1,
"A73": 2,
"A74": 3,
"A75": 4,
}
def decode_employed_since(self, code):
return self.employed_since_decode_dic()[code]
def employed_since_decode_dic(self):
return {
0: "A71",
1: "A72",
2: "A73",
3: "A74",
4: "A75",
}
def encode_sex(self, status):
return self.sex_encode_dic()[status]
def sex_encode_dic(self):
return {
"A91": 0,
"A93": 0,
"A94": 0,
"A92": 1,
"A95": 1,
}
def decode_sex(self, code):
return self.sex_decode_dic()[code]
def sex_decode_dic(self):
return {
0: "A91",
1: "A92",
}
def encode_marital_status(self, status):
return self.marital_status_encode_dic()[status]
def marital_status_encode_dic(self):
return {
"A91": 0,
"A92": 0,
"A93": 1,
"A94": 2,
"A95": 1,
}
def decode_marital_status(self, code):
return self.marital_status_decode_dic()[code]
def marital_status_decode_dic(self):
return {
0: "A91",
1: "A93",
2: "A94",
}
def encode_guarantors(self, status):
return self.guarantors_encode_dic()[status]
def guarantors_encode_dic(self):
return {
"A101": 0,
"A102": 1,
"A103": 2,
}
def decode_guarantors(self, code):
return self.guarantors_decode_dic()[code]
def guarantors_decode_dic(self):
return {
0: "A101",
1: "A102",
2: "A103",
}
def encode_installment_plans(self, status):
return self.installment_plans_encode_dic()[status]
def installment_plans_encode_dic(self):
return {
"A141": 0,
"A142": 1,
"A143": 2,
}
def decode_installment_plans(self, code):
return self.installment_plans_decode_dic()[code]
def installment_plans_decode_dic(self):
return {
0: "A141",
1: "A142",
2: "A143",
}
def encode_housing_status(self, status):
return self.housing_status_encode_dic()[status]
def housing_status_encode_dic(self):
return {
"A153": 0,
"A151": 1,
"A152": 2,
}
def decode_housing_status(self, code):
return self.housing_status_decode_dic()[code]
def housing_status_decode_dic(self):
return {
0: "A153",
1: "A151",
2: "A152",
}
def encode_job_status(self, status):
return self.job_status_encode_dic()[status]
def job_status_encode_dic(self):
return {
"A171": 0,
"A172": 1,
"A173": 2,
"A174": 3,
}
def decode_job_status(self, code):
return self.job_status_decode_dic()[code]
def job_status_decode_dic(self):
return {
0: "A171",
1: "A172",
2: "A173",
3: "A174",
}
def encode_has_registered_phone_number(self, status):
return self.has_registered_phone_number_encode_dic()[status]
def has_registered_phone_number_encode_dic(self):
return {
"A191": 0,
"A192": 1,
}
def decode_has_registered_phone_number(self, code):
return self.has_registered_phone_number_decode_dic()[code]
def has_registered_phone_number_decode_dic(self):
return {
0: "A191",
1: "A192",
}
def encode_is_foreign(self, status):
return self.is_foreign_encode_dic()[status]
def is_foreign_encode_dic(self):
return {
"A191": 0,
"A192": 1,
}
def decode_is_foreign(self, code):
return self.is_foreign_decode_dic()[code]
def is_foreign_decode_dic(self):
return {
0: "A191",
1: "A192",
}
def encode_loan_granted(self, status):
return self.loan_granted_encode_dic()[status]
def loan_granted_encode_dic(self):
return {
"A201": 0,
"A202": 1,
}
def decode_loan_granted(self, code):
return self.loan_granted_decode_dic()[code]
def loan_granted_decode_dic(self):
return {
0: "A201",
1: "A202",
}