from typing import List from functools import partial import datasets import pandas VERSION = datasets.Version("1.0.0") DESCRIPTION = "Contraceptive dataset from the UCI repository." _HOMEPAGE = "https://archive-beta.ics.uci.edu/dataset/30/contraceptive+method+choice" _URLS = ("https://archive-beta.ics.uci.edu/dataset/30/contraceptive+method+choice") _CITATION = """ @misc{misc_contraceptive_method_choice_30, author = {Lim,Tjen-Sien}, title = {{Contraceptive Method Choice}}, year = {1997}, howpublished = {UCI Machine Learning Repository}, note = {{DOI}: \\url{10.24432/C59W2D}} }""" # Dataset info _BASE_FEATURE_NAMES = [ "age_of_wife", "education_level_of_wife", "education_level_of_husband", "number_of_born_children", "is_wife_muslim", "is_wife_a_housekeeper", "job_of_husband", "standard_of_living", "is_media_exposure_negative", "use_contraceptives" ] urls_per_split = { "train": "https://huggingface.co/datasets/mstz/contraceptive/raw/main/cmc.data" } features_types_per_config = { "contraceptive": { "age_of_wife": datasets.Value("int8"), "education_level_of_wife": datasets.Value("int8"), "education_level_of_husband": datasets.Value("int8"), "number_of_born_children": datasets.Value("int8"), "is_wife_muslim": datasets.Value("bool"), "is_wife_a_housekeeper": datasets.Value("bool"), "job_of_husband": datasets.Value("string"), "standard_of_living": datasets.Value("int8"), "is_media_exposure_negative": datasets.Value("bool"), "use_contraceptives": datasets.ClassLabel(num_classes=2, names=("no", "yes")) } } features_per_config = {k: datasets.Features(features_types_per_config[k]) for k in features_types_per_config} _ENCODING_DICS = { "use_contraceptives": { 1: 0, 2: 1, 3: 1 } } class ContraceptiveConfig(datasets.BuilderConfig): def __init__(self, **kwargs): super(ContraceptiveConfig, self).__init__(version=VERSION, **kwargs) self.features = features_per_config[kwargs["name"]] class Contraceptive(datasets.GeneratorBasedBuilder): # dataset versions DEFAULT_CONFIG = "contraceptive" BUILDER_CONFIGS = [ ContraceptiveConfig(name="contraceptive", description="Contraceptive for binary classification.") ] def _info(self): info = datasets.DatasetInfo(description=DESCRIPTION, citation=_CITATION, homepage=_HOMEPAGE, features=features_per_config[self.config.name]) return info def _split_generators(self, dl_manager: datasets.DownloadManager) -> List[datasets.SplitGenerator]: downloads = dl_manager.download_and_extract(urls_per_split) return [ datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"filepath": downloads["train"]}) ] def _generate_examples(self, filepath: str): data = pandas.read_csv(filepath, header=None) data = self.preprocess(data) for row_id, row in data.iterrows(): data_row = dict(row) yield row_id, data_row def preprocess(self, data: pandas.DataFrame, config: str = DEFAULT_CONFIG) -> pandas.DataFrame: data.columns = _BASE_FEATURE_NAMES for feature in _ENCODING_DICS: encoding_function = partial(self.encode, feature) data.loc[:, feature] = data[feature].apply(encoding_function) return data def encode(self, feature, value): if feature in _ENCODING_DICS: return _ENCODING_DICS[feature][value] raise ValueError(f"Unknown feature: {feature}")