|
"""Compas Dataset""" |
|
|
|
from typing import List |
|
from functools import partial |
|
import datetime |
|
|
|
import datasets |
|
|
|
import pandas |
|
|
|
|
|
VERSION = datasets.Version("1.0.0") |
|
_ORIGINAL_FEATURE_NAMES = [ |
|
"id", |
|
"name", |
|
"first", |
|
"last", |
|
"compas_screening_date", |
|
"sex", |
|
"dob", |
|
"age", |
|
"age_cat", |
|
"race", |
|
"juv_fel_count", |
|
"decile_score", |
|
"juv_misd_count", |
|
"juv_other_count", |
|
"priors_count", |
|
"days_b_screening_arrest", |
|
"c_jail_in", |
|
"c_jail_out", |
|
"c_case_number", |
|
"c_offense_date", |
|
"c_arrest_date", |
|
"c_days_from_compas", |
|
"c_charge_degree", |
|
"c_charge_desc", |
|
"is_recid", |
|
"r_case_number", |
|
"r_charge_degree", |
|
"r_days_from_arrest", |
|
"r_offense_date", |
|
"r_charge_desc", |
|
"r_jail_in", |
|
"r_jail_out", |
|
"violent_recid", |
|
"is_violent_recid", |
|
"vr_case_number", |
|
"vr_charge_degree", |
|
"vr_offense_date", |
|
"vr_charge_desc", |
|
"type_of_assessment", |
|
"decile_score", |
|
"score_text", |
|
"screening_date", |
|
"v_type_of_assessment", |
|
"v_decile_score", |
|
"v_score_text", |
|
"v_screening_date", |
|
"in_custody", |
|
"out_custody", |
|
"priors_count", |
|
"start", |
|
"end", |
|
"event", |
|
"two_year_recid", |
|
"two_year_recid" |
|
] |
|
_BASE_FEATURE_NAMES = [ |
|
"is_male", |
|
"age", |
|
"race", |
|
"number_of_juvenile_fellonies", |
|
"decile_score", |
|
"number_of_juvenile_misdemeanors", |
|
"number_of_other_juvenile_offenses", |
|
"number_of_prior_offenses", |
|
"days_before_screening_arrest", |
|
"is_recidivous", |
|
"days_in_custody", |
|
"is_violent_recidivous", |
|
"violence_decile_score", |
|
"two_year_recidivous", |
|
] |
|
_ENCODING_DICS = { |
|
"is_male": { |
|
"Male": 1, |
|
"Female": 0 |
|
}, |
|
"race": { |
|
"Caucasian": 0, |
|
"African-American": 1, |
|
"Hispanic": 2, |
|
"Asian": 3, |
|
"Other": 4, |
|
"Native American": 5, |
|
} |
|
} |
|
|
|
DESCRIPTION = "COMPAS dataset for recidivism prediction." |
|
_HOMEPAGE = "https://github.com/propublica/compas-analysis" |
|
_URLS = ("https://huggingface.co/datasets/mstz/compas/raw/main/compas-scores-two-years-violent.csv") |
|
_CITATION = """""" |
|
|
|
|
|
urls_per_split = { |
|
"train": "https://huggingface.co/datasets/mstz/compas/raw/main/compas-scores-two-years-violent.csv", |
|
} |
|
features_types_per_config = { |
|
"encoding": { |
|
"feature": datasets.Value("string"), |
|
"original_value": datasets.Value("string"), |
|
"encoded_value": datasets.Value("int8"), |
|
}, |
|
|
|
"two-years-recidividity": { |
|
"is_male": datasets.Value("bool"), |
|
"age": datasets.Value("int64"), |
|
"race": datasets.Value("string"), |
|
"number_of_juvenile_fellonies": datasets.Value("int64"), |
|
"decile_score": datasets.Value("int64"), |
|
"number_of_juvenile_misdemeanors": datasets.Value("int64"), |
|
"number_of_other_juvenile_offenses": datasets.Value("int64"), |
|
"number_of_prior_offenses": datasets.Value("int64"), |
|
"days_before_screening_arrest": datasets.Value("int64"), |
|
"is_recidivous": datasets.Value("bool"), |
|
"days_in_custody": datasets.Value("int64"), |
|
"is_violent_recidivous": datasets.Value("bool"), |
|
"violence_decile_score": datasets.Value("int64"), |
|
"two_year_recidivous": datasets.ClassLabel(num_classes=2, names=("no", "yes")), |
|
}, |
|
|
|
"two-years-recidividity-no-race": { |
|
"is_male": datasets.Value("bool"), |
|
"age": datasets.Value("int64"), |
|
"number_of_juvenile_fellonies": datasets.Value("int64"), |
|
"decile_score": datasets.Value("int64"), |
|
"number_of_juvenile_misdemeanors": datasets.Value("int64"), |
|
"number_of_other_juvenile_offenses": datasets.Value("int64"), |
|
"number_of_prior_offenses": datasets.Value("int64"), |
|
"days_before_screening_arrest": datasets.Value("int64"), |
|
"is_recidivous": datasets.Value("bool"), |
|
"days_in_custody": datasets.Value("int64"), |
|
"is_violent_recidivous": datasets.Value("bool"), |
|
"violence_decile_score": datasets.Value("int64"), |
|
"two_year_recidivous": datasets.ClassLabel(num_classes=2, names=("no", "yes")), |
|
}, |
|
|
|
"priors-prediction": { |
|
"is_male": datasets.Value("bool"), |
|
"age": datasets.Value("int64"), |
|
"race": datasets.Value("string"), |
|
"number_of_juvenile_fellonies": datasets.Value("int64"), |
|
"decile_score": datasets.Value("int64"), |
|
"number_of_juvenile_misdemeanors": datasets.Value("int64"), |
|
"number_of_other_juvenile_offenses": datasets.Value("int64"), |
|
"days_before_screening_arrest": datasets.Value("int64"), |
|
"is_recidivous": datasets.Value("bool"), |
|
"days_in_custody": datasets.Value("int64"), |
|
"is_violent_recidivous": datasets.Value("bool"), |
|
"violence_decile_score": datasets.Value("int64"), |
|
"two_year_recidivous": datasets.Value("int64"), |
|
"number_of_prior_offenses": datasets.Value("int64") |
|
}, |
|
|
|
"priors-prediction-no-race": { |
|
"is_male": datasets.Value("bool"), |
|
"age": datasets.Value("int64"), |
|
"number_of_juvenile_fellonies": datasets.Value("int64"), |
|
"decile_score": datasets.Value("int64"), |
|
"number_of_juvenile_misdemeanors": datasets.Value("int64"), |
|
"number_of_other_juvenile_offenses": datasets.Value("int64"), |
|
"days_before_screening_arrest": datasets.Value("int64"), |
|
"is_recidivous": datasets.Value("bool"), |
|
"days_in_custody": datasets.Value("int64"), |
|
"is_violent_recidivous": datasets.Value("bool"), |
|
"violence_decile_score": datasets.Value("int64"), |
|
"two_year_recidivous": datasets.Value("int64"), |
|
"number_of_prior_offenses": datasets.Value("int64"), |
|
}, |
|
|
|
"race": { |
|
"is_male": datasets.Value("bool"), |
|
"age": datasets.Value("int64"), |
|
"number_of_juvenile_fellonies": datasets.Value("int64"), |
|
"decile_score": datasets.Value("int64"), |
|
"number_of_juvenile_misdemeanors": datasets.Value("int64"), |
|
"number_of_other_juvenile_offenses": datasets.Value("int64"), |
|
"days_before_screening_arrest": datasets.Value("int64"), |
|
"is_recidivous": datasets.Value("bool"), |
|
"days_in_custody": datasets.Value("int64"), |
|
"is_violent_recidivous": datasets.Value("bool"), |
|
"violence_decile_score": datasets.Value("int64"), |
|
"two_year_recidivous": datasets.Value("int64"), |
|
"number_of_prior_offenses": datasets.Value("int64"), |
|
"race": datasets.ClassLabel(num_classes=6, names=("Caucasian", "African-American", |
|
"Hispanic", "Asian", "Other", "Native American")), |
|
} |
|
} |
|
features_per_config = {k: datasets.Features(features_types_per_config[k]) for k in features_types_per_config} |
|
|
|
|
|
class CompasConfig(datasets.BuilderConfig): |
|
def __init__(self, **kwargs): |
|
super(CompasConfig, self).__init__(version=VERSION, **kwargs) |
|
self.features = features_per_config[kwargs["name"]] |
|
|
|
|
|
class Compas(datasets.GeneratorBasedBuilder): |
|
|
|
DEFAULT_CONFIG = "two-years-recidividity" |
|
BUILDER_CONFIGS = [ |
|
CompasConfig(name="race", |
|
description="Multiclass classification, predict `race` out of other features."), |
|
CompasConfig(name="two-years-recidividity", |
|
description="Compas binary classification for two-year recidividity."), |
|
CompasConfig(name="two-years-recidividity-no-race", |
|
description="Compas binary classification for two-year recidividity. Race excluded from features."), |
|
CompasConfig(name="priors-prediction", |
|
description="Compas regression task for estimating number of prior offenses of defendant."), |
|
CompasConfig(name="priors-prediction-no-race", |
|
description="Compas regression task for estimating number of prior offenses of defendant. Race excluded from features."), |
|
CompasConfig(name="encoding", |
|
description="Encoding dictionaries for discrete labels."), |
|
] |
|
|
|
|
|
def _info(self): |
|
info = datasets.DatasetInfo(description=DESCRIPTION, citation=_CITATION, homepage=_HOMEPAGE, |
|
features=features_per_config[self.config.name]) |
|
|
|
return info |
|
|
|
def _split_generators(self, dl_manager: datasets.DownloadManager) -> List[datasets.SplitGenerator]: |
|
downloads = dl_manager.download_and_extract(urls_per_split) |
|
|
|
return [ |
|
datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"filepath": downloads["train"]}), |
|
] |
|
|
|
def _generate_examples(self, filepath: str): |
|
if self.config.name == "encoding": |
|
data = self.encoding_dics() |
|
else: |
|
data = pandas.read_csv(filepath) |
|
data = self.preprocess(data, config=self.config.name) |
|
|
|
for row_id, row in data.iterrows(): |
|
data_row = dict(row) |
|
|
|
yield row_id, data_row |
|
|
|
def preprocess(self, data: pandas.DataFrame, config: str = "income") -> pandas.DataFrame: |
|
data.drop("id", axis="columns", inplace=True) |
|
data.drop("name", axis="columns", inplace=True) |
|
data.drop("first", axis="columns", inplace=True) |
|
data.drop("last", axis="columns", inplace=True) |
|
data.drop("dob", axis="columns", inplace=True) |
|
data.drop("age_cat", axis="columns", inplace=True) |
|
data.drop("c_offense_date", axis="columns", inplace=True) |
|
data.drop("c_jail_in", axis="columns", inplace=True) |
|
data.drop("c_jail_out", axis="columns", inplace=True) |
|
data.drop("c_arrest_date", axis="columns", inplace=True) |
|
data.drop("c_charge_degree", axis="columns", inplace=True) |
|
data.drop("c_charge_desc", axis="columns", inplace=True) |
|
data.drop("r_case_number", axis="columns", inplace=True) |
|
data.drop("r_charge_degree", axis="columns", inplace=True) |
|
data.drop("r_offense_date", axis="columns", inplace=True) |
|
data.drop("r_charge_desc", axis="columns", inplace=True) |
|
data.drop("violent_recid", axis="columns", inplace=True) |
|
data.drop("vr_case_number", axis="columns", inplace=True) |
|
data.drop("vr_charge_degree", axis="columns", inplace=True) |
|
data.drop("vr_offense_date", axis="columns", inplace=True) |
|
data.drop("vr_charge_desc", axis="columns", inplace=True) |
|
data.drop("type_of_assessment", axis="columns", inplace=True) |
|
data.drop("score_text", axis="columns", inplace=True) |
|
data.drop("v_score_text", axis="columns", inplace=True) |
|
data.drop("v_screening_date", axis="columns", inplace=True) |
|
data.drop("screening_date", axis="columns", inplace=True) |
|
data.drop("start", axis="columns", inplace=True) |
|
data.drop("end", axis="columns", inplace=True) |
|
data.drop("event", axis="columns", inplace=True) |
|
data.drop("two_year_recid.1", axis="columns", inplace=True) |
|
data.drop("r_jail_in", axis="columns", inplace=True) |
|
data.drop("r_jail_out", axis="columns", inplace=True) |
|
data.drop("v_type_of_assessment", axis="columns", inplace=True) |
|
data.drop("compas_screening_date", axis="columns", inplace=True) |
|
data.drop("decile_score.1", axis="columns", inplace=True) |
|
data.drop("priors_count.1", axis="columns", inplace=True) |
|
data.drop("c_case_number", axis="columns", inplace=True) |
|
data.drop("c_days_from_compas", axis="columns", inplace=True) |
|
data.drop("r_days_from_arrest", axis="columns", inplace=True) |
|
|
|
|
|
|
|
data.loc[data.days_b_screening_arrest.isna(), "days_b_screening_arrest"] = -1 |
|
data["days_b_screening_arrest"] = data.days_b_screening_arrest.astype(int) |
|
|
|
|
|
data = data[(~data.in_custody.isna()) & (~data.out_custody.isna())] |
|
in_dates = data.in_custody.apply(datetime.date.fromisoformat) |
|
out_dates = data.out_custody.apply(datetime.date.fromisoformat) |
|
days_in_custody = [delta.days for delta in out_dates - in_dates] |
|
data.loc[:, "days_in_custody"] = days_in_custody |
|
data.drop("in_custody", axis="columns", inplace=True) |
|
data.drop("out_custody", axis="columns", inplace=True) |
|
|
|
data = data[["sex", |
|
"age", |
|
"race", |
|
"juv_fel_count", |
|
"decile_score", |
|
"juv_misd_count", |
|
"juv_other_count", |
|
"priors_count", |
|
"days_b_screening_arrest", |
|
"is_recid", |
|
"days_in_custody", |
|
"is_violent_recid", |
|
"v_decile_score", |
|
"two_year_recid"]] |
|
|
|
data.columns = _BASE_FEATURE_NAMES |
|
|
|
for feature in _ENCODING_DICS: |
|
if feature == "race": |
|
if config != "race": |
|
continue |
|
encoding_function = partial(self.encode, feature) |
|
data.loc[:, feature] = data[feature].apply(encoding_function) |
|
data.loc[:, "is_recidivous"] = data["is_recidivous"].apply(bool) |
|
data.loc[:, "is_violent_recidivous"] = data["is_violent_recidivous"].apply(bool) |
|
data = data.astype({"is_recidivous": "bool", "is_violent_recidivous": "bool"}) |
|
|
|
return data[list(features_types_per_config[config].keys())] |
|
|
|
def encode(self, feature, value): |
|
if feature in _ENCODING_DICS: |
|
return _ENCODING_DICS[feature][value] |
|
raise ValueError(f"Unknown feature: {feature}") |
|
|
|
def encoding_dics(self): |
|
data = [pandas.DataFrame([(feature, original, encoded) for original, encoded in d.items()]) |
|
for feature, d in _ENCODING_DICS.items()] |
|
data = pandas.concat(data, axis="rows").reset_index() |
|
data.drop("index", axis="columns", inplace=True) |
|
data.columns = ["feature", "original_value", "encoded_value"] |
|
|
|
return data |
|
|