from typing import List import datasets import pandas VERSION = datasets.Version("1.0.0") _BASE_FEATURE_NAMES = [ "temperature", "has_nausea", "has_lumbar_pain", "has_urine_pushing", "has_micturition_pains", "has_burnt_urethra", "has_inflammed_bladder", "has_nephritis_of_renal_pelvis", "has_acute_inflammation" ] DESCRIPTION = "Acute_Inflammation dataset from the UCI ML repository." _HOMEPAGE = "https://archive.ics.uci.edu/ml/datasets/Acute_Inflammation" _URLS = ("https://huggingface.co/datasets/mstz/acute_inflammation/raw/main/diagnosis.csv") _CITATION = """ @misc{misc_acute_inflammations_184, author = {Czerniak,Jacek}, title = {{Acute Inflammations}}, year = {2009}, howpublished = {UCI Machine Learning Repository}, note = {{DOI}: \\url{10.24432/C5V59S}} }""" # Dataset info urls_per_split = { "train": "https://huggingface.co/datasets/mstz/acute_inflammation/raw/main/diagnosis.csv" } features_types_per_config = { "inflammation": { "temperature": datasets.Value("float64"), "has_nausea": datasets.Value("bool"), "has_lumbar_pain": datasets.Value("bool"), "has_urine_pushing": datasets.Value("bool"), "has_micturition_pains": datasets.Value("bool"), "has_burnt_urethra": datasets.Value("bool"), "has_inflammed_bladder": datasets.Value("bool"), "has_nephritis_of_renal_pelvis": datasets.Value("bool"), "has_acute_inflammation": datasets.ClassLabel(num_classes=2) }, "nephritis": { "temperature": datasets.Value("float64"), "has_nausea": datasets.Value("bool"), "has_lumbar_pain": datasets.Value("bool"), "has_urine_pushing": datasets.Value("bool"), "has_micturition_pains": datasets.Value("bool"), "has_burnt_urethra": datasets.Value("bool"), "has_inflammed_bladder": datasets.Value("bool"), "has_acute_inflammation": datasets.Value("bool"), "has_nephritis_of_renal_pelvis": datasets.ClassLabel(num_classes=2) }, "bladder": { "temperature": datasets.Value("float64"), "has_nausea": datasets.Value("bool"), "has_lumbar_pain": datasets.Value("bool"), "has_urine_pushing": datasets.Value("bool"), "has_micturition_pains": datasets.Value("bool"), "has_burnt_urethra": datasets.Value("bool"), "has_acute_inflammation": datasets.Value("bool"), "has_nephritis_of_renal_pelvis": datasets.Value("bool"), "has_inflammed_bladder": datasets.ClassLabel(num_classes=2), } } features_per_config = {k: datasets.Features(features_types_per_config[k]) for k in features_types_per_config} class Acute_InflammationConfig(datasets.BuilderConfig): def __init__(self, **kwargs): super(Acute_InflammationConfig, self).__init__(version=VERSION, **kwargs) self.features = features_per_config[kwargs["name"]] class Acute_Inflammation(datasets.GeneratorBasedBuilder): # dataset versions DEFAULT_CONFIG = "inflammation" BUILDER_CONFIGS = [ Acute_InflammationConfig(name="inflammation", description="Binary classification of inflammation."), Acute_InflammationConfig(name="nephritis", description="Binary classification of nephritis."), Acute_InflammationConfig(name="bladder", description="Binary classification of bladder inflammation."), ] def _info(self): info = datasets.DatasetInfo(description=DESCRIPTION, citation=_CITATION, homepage=_HOMEPAGE, features=features_per_config[self.config.name]) return info def _split_generators(self, dl_manager: datasets.DownloadManager) -> List[datasets.SplitGenerator]: downloads = dl_manager.download_and_extract(urls_per_split) return [ datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"filepath": downloads["train"]}) ] def _generate_examples(self, filepath: str): data = pandas.read_csv(filepath, header=None) data = self.preprocess(data, config=self.config.name) for row_id, row in data.iterrows(): data_row = dict(row) yield row_id, data_row def preprocess(self, data: pandas.DataFrame, config: str = DEFAULT_CONFIG) -> pandas.DataFrame: data.columns = _BASE_FEATURE_NAMES boolean_features = ["has_nausea", "has_lumbar_pain", "has_urine_pushing", "has_micturition_pains", "has_burnt_urethra", "has_inflammed_bladder", "has_nephritis_of_renal_pelvis", "has_acute_inflammation"] for f in boolean_features: data.loc[:, f] = data[f].apply(lambda x: True if x == "yes" else False) if config == "inflammation": data = data.astype({"has_acute_inflammation": int}) elif config == "nephritis": data = data.astype({"has_nephritis_of_renal_pelvis": int}) elif config == "bladder": data = data.astype({"has_inflammed_bladder": int}) data = data[list(features_types_per_config[config].keys())] return data