admin
commited on
Commit
·
985f58c
1
Parent(s):
8482e88
upd md
Browse files
README.md
CHANGED
@@ -36,124 +36,123 @@ for weights in backbones["IMAGENET1K_V2"]:
|
|
36 |
```
|
37 |
|
38 |
## Param count
|
39 |
-
|
40 |
-
|
|
41 |
-
|
|
42 |
-
|
|
43 |
-
|
|
44 |
-
|
|
45 |
-
|
|
46 |
-
|
|
47 |
-
|
|
48 |
-
|
|
49 |
-
|
|
50 |
-
|
|
51 |
-
|
|
52 |
-
|
|
53 |
-
|
|
54 |
-
|
|
55 |
-
|
|
56 |
-
|
|
57 |
-
|
|
58 |
-
|
|
59 |
-
|
|
60 |
-
|
|
61 |
-
|
|
62 |
-
|
|
63 |
-
|
|
64 |
-
|
|
65 |
-
|
|
66 |
-
|
|
67 |
-
|
|
68 |
-
|
|
69 |
-
|
|
70 |
-
|
|
71 |
-
|
|
72 |
-
|
|
73 |
-
|
|
74 |
-
|
|
75 |
-
|
|
76 |
-
|
|
77 |
-
|
|
78 |
-
|
|
79 |
-
|
|
80 |
-
|
|
81 |
-
|
|
82 |
-
|
|
83 |
-
|
|
84 |
-
|
|
85 |
-
|
|
86 |
-
|
|
87 |
-
|
|
88 |
-
|
|
89 |
-
|
|
90 |
-
|
|
91 |
-
|
|
92 |
-
|
|
93 |
-
|
|
94 |
-
|
|
95 |
-
|
|
96 |
-
|
|
97 |
-
|
|
98 |
-
|
|
99 |
-
|
|
100 |
-
|
|
101 |
-
|
|
102 |
-
|
|
103 |
-
|
|
104 |
-
|
|
105 |
-
|
|
106 |
-
|
|
107 |
-
|
|
108 |
-
|
|
109 |
-
|
|
110 |
-
|
|
111 |
-
|
|
112 |
-
|
|
113 |
-
|
|
114 |
-
|
|
115 |
-
|
|
116 |
-
|
|
117 |
-
|
|
118 |
-
|
|
119 |
-
|
|
120 |
-
|
|
121 |
-
|
|
122 |
-
|
|
123 |
-
|
|
124 |
-
|
|
125 |
-
|
|
126 |
-
|
|
127 |
-
|
|
128 |
-
|
|
129 |
-
|
|
130 |
-
|
|
131 |
-
|
|
132 |
-
|
|
133 |
-
|
|
134 |
-
|
|
135 |
-
|
|
136 |
-
|
|
137 |
-
|
|
138 |
-
|
|
139 |
-
|
|
140 |
-
|
|
141 |
-
|
|
142 |
-
|
|
143 |
-
|
|
144 |
-
|
|
145 |
-
|
|
146 |
-
|
|
147 |
-
|
|
148 |
-
|
|
149 |
-
|
|
150 |
-
|
|
151 |
-
|
|
152 |
-
|
|
153 |
-
|
|
154 |
-
|
|
155 |
-
|
|
156 |
-
| RegNet_Y_128GF_Weights.IMAGENET1K_SWAG_LINEAR_V1 | 644.8 |
|
157 |
|
158 |
## Mirror
|
159 |
<https://www.modelscope.cn/datasets/monetjoe/cv_backbones>
|
|
|
36 |
```
|
37 |
|
38 |
## Param count
|
39 |
+
| Backbone | Params(M) |
|
40 |
+
| :----------------------------------------------: | :-------: |
|
41 |
+
| SqueezeNet1_0_Weights.IMAGENET1K_V1 | 1.2 |
|
42 |
+
| SqueezeNet1_1_Weights.IMAGENET1K_V1 | 1.2 |
|
43 |
+
| ShuffleNet_V2_X0_5_Weights.IMAGENET1K_V1 | 1.4 |
|
44 |
+
| MNASNet0_5_Weights.IMAGENET1K_V1 | 2.2 |
|
45 |
+
| ShuffleNet_V2_X1_0_Weights.IMAGENET1K_V1 | 2.3 |
|
46 |
+
| MobileNet_V3_Small_Weights.IMAGENET1K_V1 | 2.5 |
|
47 |
+
| MNASNet0_75_Weights.IMAGENET1K_V1 | 3.2 |
|
48 |
+
| MobileNet_V2_Weights.IMAGENET1K_V1 | 3.5 |
|
49 |
+
| MobileNet_V2_Weights.IMAGENET1K_V2 | 3.5 |
|
50 |
+
| ShuffleNet_V2_X1_5_Weights.IMAGENET1K_V1 | 3.5 |
|
51 |
+
| RegNet_Y_400MF_Weights.IMAGENET1K_V1 | 4.3 |
|
52 |
+
| RegNet_Y_400MF_Weights.IMAGENET1K_V2 | 4.3 |
|
53 |
+
| MNASNet1_0_Weights.IMAGENET1K_V1 | 4.4 |
|
54 |
+
| EfficientNet_B0_Weights.IMAGENET1K_V1 | 5.3 |
|
55 |
+
| MobileNet_V3_Large_Weights.IMAGENET1K_V1 | 5.5 |
|
56 |
+
| MobileNet_V3_Large_Weights.IMAGENET1K_V2 | 5.5 |
|
57 |
+
| RegNet_X_400MF_Weights.IMAGENET1K_V1 | 5.5 |
|
58 |
+
| RegNet_X_400MF_Weights.IMAGENET1K_V2 | 5.5 |
|
59 |
+
| MNASNet1_3_Weights.IMAGENET1K_V1 | 6.3 |
|
60 |
+
| RegNet_Y_800MF_Weights.IMAGENET1K_V1 | 6.4 |
|
61 |
+
| RegNet_Y_800MF_Weights.IMAGENET1K_V2 | 6.4 |
|
62 |
+
| GoogLeNet_Weights.IMAGENET1K_V1 | 6.6 |
|
63 |
+
| RegNet_X_800MF_Weights.IMAGENET1K_V1 | 7.3 |
|
64 |
+
| RegNet_X_800MF_Weights.IMAGENET1K_V2 | 7.3 |
|
65 |
+
| ShuffleNet_V2_X2_0_Weights.IMAGENET1K_V1 | 7.4 |
|
66 |
+
| EfficientNet_B1_Weights.IMAGENET1K_V1 | 7.8 |
|
67 |
+
| EfficientNet_B1_Weights.IMAGENET1K_V2 | 7.8 |
|
68 |
+
| DenseNet121_Weights.IMAGENET1K_V1 | 8 |
|
69 |
+
| EfficientNet_B2_Weights.IMAGENET1K_V1 | 9.1 |
|
70 |
+
| RegNet_X_1_6GF_Weights.IMAGENET1K_V1 | 9.2 |
|
71 |
+
| RegNet_X_1_6GF_Weights.IMAGENET1K_V2 | 9.2 |
|
72 |
+
| RegNet_Y_1_6GF_Weights.IMAGENET1K_V1 | 11.2 |
|
73 |
+
| RegNet_Y_1_6GF_Weights.IMAGENET1K_V2 | 11.2 |
|
74 |
+
| ResNet18_Weights.IMAGENET1K_V1 | 11.7 |
|
75 |
+
| EfficientNet_B3_Weights.IMAGENET1K_V1 | 12.2 |
|
76 |
+
| DenseNet169_Weights.IMAGENET1K_V1 | 14.1 |
|
77 |
+
| RegNet_X_3_2GF_Weights.IMAGENET1K_V1 | 15.3 |
|
78 |
+
| RegNet_X_3_2GF_Weights.IMAGENET1K_V2 | 15.3 |
|
79 |
+
| EfficientNet_B4_Weights.IMAGENET1K_V1 | 19.3 |
|
80 |
+
| RegNet_Y_3_2GF_Weights.IMAGENET1K_V1 | 19.4 |
|
81 |
+
| RegNet_Y_3_2GF_Weights.IMAGENET1K_V2 | 19.4 |
|
82 |
+
| DenseNet201_Weights.IMAGENET1K_V1 | 20 |
|
83 |
+
| EfficientNet_V2_S_Weights.IMAGENET1K_V1 | 21.5 |
|
84 |
+
| ResNet34_Weights.IMAGENET1K_V1 | 21.8 |
|
85 |
+
| ResNeXt50_32X4D_Weights.IMAGENET1K_V1 | 25 |
|
86 |
+
| ResNeXt50_32X4D_Weights.IMAGENET1K_V2 | 25 |
|
87 |
+
| ResNet50_Weights.IMAGENET1K_V1 | 25.6 |
|
88 |
+
| ResNet50_Weights.IMAGENET1K_V2 | 25.6 |
|
89 |
+
| Inception_V3_Weights.IMAGENET1K_V1 | 27.2 |
|
90 |
+
| Swin_T_Weights.IMAGENET1K_V1 | 28.3 |
|
91 |
+
| Swin_V2_T_Weights.IMAGENET1K_V1 | 28.4 |
|
92 |
+
| ConvNeXt_Tiny_Weights.IMAGENET1K_V1 | 28.6 |
|
93 |
+
| DenseNet161_Weights.IMAGENET1K_V1 | 28.7 |
|
94 |
+
| EfficientNet_B5_Weights.IMAGENET1K_V1 | 30.4 |
|
95 |
+
| MaxVit_T_Weights.IMAGENET1K_V1 | 30.9 |
|
96 |
+
| RegNet_Y_8GF_Weights.IMAGENET1K_V1 | 39.4 |
|
97 |
+
| RegNet_Y_8GF_Weights.IMAGENET1K_V2 | 39.4 |
|
98 |
+
| RegNet_X_8GF_Weights.IMAGENET1K_V1 | 39.6 |
|
99 |
+
| RegNet_X_8GF_Weights.IMAGENET1K_V2 | 39.6 |
|
100 |
+
| EfficientNet_B6_Weights.IMAGENET1K_V1 | 43 |
|
101 |
+
| ResNet101_Weights.IMAGENET1K_V1 | 44.5 |
|
102 |
+
| ResNet101_Weights.IMAGENET1K_V2 | 44.5 |
|
103 |
+
| Swin_S_Weights.IMAGENET1K_V1 | 49.6 |
|
104 |
+
| Swin_V2_S_Weights.IMAGENET1K_V1 | 49.7 |
|
105 |
+
| ConvNeXt_Small_Weights.IMAGENET1K_V1 | 50.2 |
|
106 |
+
| EfficientNet_V2_M_Weights.IMAGENET1K_V1 | 54.1 |
|
107 |
+
| RegNet_X_16GF_Weights.IMAGENET1K_V1 | 54.3 |
|
108 |
+
| RegNet_X_16GF_Weights.IMAGENET1K_V2 | 54.3 |
|
109 |
+
| ResNet152_Weights.IMAGENET1K_V1 | 60.2 |
|
110 |
+
| ResNet152_Weights.IMAGENET1K_V2 | 60.2 |
|
111 |
+
| AlexNet_Weights.IMAGENET1K_V1 | 61.1 |
|
112 |
+
| EfficientNet_B7_Weights.IMAGENET1K_V1 | 66.3 |
|
113 |
+
| Wide_ResNet50_2_Weights.IMAGENET1K_V1 | 68.9 |
|
114 |
+
| Wide_ResNet50_2_Weights.IMAGENET1K_V2 | 68.9 |
|
115 |
+
| ResNeXt101_64X4D_Weights.IMAGENET1K_V1 | 83.5 |
|
116 |
+
| RegNet_Y_16GF_Weights.IMAGENET1K_V1 | 83.6 |
|
117 |
+
| RegNet_Y_16GF_Weights.IMAGENET1K_V2 | 83.6 |
|
118 |
+
| RegNet_Y_16GF_Weights.IMAGENET1K_SWAG_E2E_V1 | 83.6 |
|
119 |
+
| RegNet_Y_16GF_Weights.IMAGENET1K_SWAG_LINEAR_V1 | 83.6 |
|
120 |
+
| ViT_B_16_Weights.IMAGENET1K_V1 | 86.6 |
|
121 |
+
| ViT_B_16_Weights.IMAGENET1K_SWAG_LINEAR_V1 | 86.6 |
|
122 |
+
| ViT_B_16_Weights.IMAGENET1K_SWAG_E2E_V1 | 86.9 |
|
123 |
+
| Swin_B_Weights.IMAGENET1K_V1 | 87.8 |
|
124 |
+
| Swin_V2_B_Weights.IMAGENET1K_V1 | 87.9 |
|
125 |
+
| ViT_B_32_Weights.IMAGENET1K_V1 | 88.2 |
|
126 |
+
| ConvNeXt_Base_Weights.IMAGENET1K_V1 | 88.6 |
|
127 |
+
| ResNeXt101_32X8D_Weights.IMAGENET1K_V1 | 88.8 |
|
128 |
+
| ResNeXt101_32X8D_Weights.IMAGENET1K_V2 | 88.8 |
|
129 |
+
| RegNet_X_32GF_Weights.IMAGENET1K_V1 | 107.8 |
|
130 |
+
| RegNet_X_32GF_Weights.IMAGENET1K_V2 | 107.8 |
|
131 |
+
| EfficientNet_V2_L_Weights.IMAGENET1K_V1 | 118.5 |
|
132 |
+
| Wide_ResNet101_2_Weights.IMAGENET1K_V1 | 126.9 |
|
133 |
+
| Wide_ResNet101_2_Weights.IMAGENET1K_V2 | 126.9 |
|
134 |
+
| VGG11_BN_Weights.IMAGENET1K_V1 | 132.9 |
|
135 |
+
| VGG11_Weights.IMAGENET1K_V1 | 132.9 |
|
136 |
+
| VGG13_Weights.IMAGENET1K_V1 | 133 |
|
137 |
+
| VGG13_BN_Weights.IMAGENET1K_V1 | 133.1 |
|
138 |
+
| VGG16_BN_Weights.IMAGENET1K_V1 | 138.4 |
|
139 |
+
| VGG16_Weights.IMAGENET1K_V1 | 138.4 |
|
140 |
+
| VGG16_Weights.IMAGENET1K_FEATURES | 138.4 |
|
141 |
+
| VGG19_BN_Weights.IMAGENET1K_V1 | 143.7 |
|
142 |
+
| VGG19_Weights.IMAGENET1K_V1 | 143.7 |
|
143 |
+
| RegNet_Y_32GF_Weights.IMAGENET1K_V1 | 145 |
|
144 |
+
| RegNet_Y_32GF_Weights.IMAGENET1K_V2 | 145 |
|
145 |
+
| RegNet_Y_32GF_Weights.IMAGENET1K_SWAG_E2E_V1 | 145 |
|
146 |
+
| RegNet_Y_32GF_Weights.IMAGENET1K_SWAG_LINEAR_V1 | 145 |
|
147 |
+
| ConvNeXt_Large_Weights.IMAGENET1K_V1 | 197.8 |
|
148 |
+
| ViT_L_16_Weights.IMAGENET1K_V1 | 304.3 |
|
149 |
+
| ViT_L_16_Weights.IMAGENET1K_SWAG_LINEAR_V1 | 304.3 |
|
150 |
+
| ViT_L_16_Weights.IMAGENET1K_SWAG_E2E_V1 | 305.2 |
|
151 |
+
| ViT_L_32_Weights.IMAGENET1K_V1 | 306.5 |
|
152 |
+
| ViT_H_14_Weights.IMAGENET1K_SWAG_LINEAR_V1 | 632 |
|
153 |
+
| ViT_H_14_Weights.IMAGENET1K_SWAG_E2E_V1 | 633.5 |
|
154 |
+
| RegNet_Y_128GF_Weights.IMAGENET1K_SWAG_E2E_V1 | 644.8 |
|
155 |
+
| RegNet_Y_128GF_Weights.IMAGENET1K_SWAG_LINEAR_V1 | 644.8 |
|
|
|
156 |
|
157 |
## Mirror
|
158 |
<https://www.modelscope.cn/datasets/monetjoe/cv_backbones>
|