Datasets:

ArXiv:
License:
albertvillanova HF staff commited on
Commit
c6cd9fc
·
verified ·
1 Parent(s): 1fbd7c4

Define features explicitly in the dataset card

Browse files

Define features explicitly in the dataset card, so they are not inferred.

Note that the features are inferred from the first samples. Therefore, if subsequent samples have features different from the inferred ones, an error is raised.

Fix #8.

Files changed (1) hide show
  1. README.md +46 -0
README.md CHANGED
@@ -1,5 +1,51 @@
1
  ---
2
  license: cc-by-4.0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3
  ---
4
  ## DCLM-baseline
5
  DCLM-baseline is a 4T token / 3B document pretraining dataset that achieves strong performance on language model benchmarks.
 
1
  ---
2
  license: cc-by-4.0
3
+ dataset_info:
4
+ features:
5
+ - name: bff_contained_ngram_count_before_dedupe
6
+ dtype: int64
7
+ - name: language_id_whole_page_fasttext
8
+ struct:
9
+ - name: en
10
+ dtype: float64
11
+ - name: metadata
12
+ struct:
13
+ - name: Content-Length
14
+ dtype: string
15
+ - name: Content-Type
16
+ dtype: string
17
+ - name: WARC-Block-Digest
18
+ dtype: string
19
+ - name: WARC-Concurrent-To
20
+ dtype: string
21
+ - name: WARC-Date
22
+ dtype: timestamp[s]
23
+ - name: WARC-IP-Address
24
+ dtype: string
25
+ - name: WARC-Identified-Payload-Type
26
+ dtype: string
27
+ - name: WARC-Payload-Digest
28
+ dtype: string
29
+ - name: WARC-Record-ID
30
+ dtype: string
31
+ - name: WARC-Target-URI
32
+ dtype: string
33
+ - name: WARC-Type
34
+ dtype: string
35
+ - name: WARC-Warcinfo-ID
36
+ dtype: string
37
+ - name: WARC-Truncated
38
+ dtype: string
39
+ - name: previous_word_count
40
+ dtype: int64
41
+ - name: text
42
+ dtype: string
43
+ - name: url
44
+ dtype: string
45
+ - name: warcinfo
46
+ dtype: string
47
+ - name: fasttext_openhermes_reddit_eli5_vs_rw_v2_bigram_200k_train_prob
48
+ dtype: float64
49
  ---
50
  ## DCLM-baseline
51
  DCLM-baseline is a 4T token / 3B document pretraining dataset that achieves strong performance on language model benchmarks.