File size: 7,226 Bytes
d520c03 e1242dc d520c03 98bb15e d520c03 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 |
## Dataset Summary
A dataset for benchmarking keyphrase extraction and generation techniques from abstract of english scientific articles. For more details about the dataset please refer the original paper - [https://aclanthology.org/D14-1150/](https://aclanthology.org/D14-1150/)
Original source of the data - []()
## Dataset Structure
Table 1: Statistics on the length of the abstractive keyphrases for Test split of www dataset.
| | Test |
|:-----------:|:------:|
| Single word | 28.21% |
| Two words | 47.65% |
| Three words | 15.20% |
| Four words | 8.04% |
| Five words | 0.65% |
| Six words | 0.12% |
| Seven words | 0.05% |
| Eight words | 0.05% |
Table 2: Statistics on the length of the extractive keyphrases for Test split of www dataset.
| | Test |
|:-----------:|:------:|
| Single word | 44.09% |
| Two words | 48.07% |
| Three words | 7.20% |
| Four words | 0.45% |
| Five words | 0.16% |
Table 3: General statistics about www dataset.
| Type of Analysis | Test |
|:------------------------------------------------:|:-------------------:|
| Annotator Type | Authors and Readers |
| Document Type | Scientific Articles |
| No. of Documents | 1330 |
| Avg. Document length (words) | 163.51 |
| Max Document length (words) | 587 |
| Max no. of abstractive keyphrases in a document | 13 |
| Min no. of abstractive keyphrases in a document | 0 |
| Avg. no. of abstractive keyphrases per document | 2.98 |
| Max no. of extractive keyphrases in a document | 9 |
| Min no. of extractive keyphrases in a document | 0 |
| Avg. no. of extractive keyphrases per document | 1.81 |
### Data Fields
- **id**: unique identifier of the document.
- **document**: Whitespace separated list of words in the document.
- **doc_bio_tags**: BIO tags for each word in the document. B stands for the beginning of a keyphrase and I stands for inside the keyphrase. O stands for outside the keyphrase and represents the word that isn't a part of the keyphrase at all.
- **extractive_keyphrases**: List of all the present keyphrases.
- **abstractive_keyphrase**: List of all the absent keyphrases.
### Data Splits
|Split| #datapoints |
|--|--|
| Test | 1330 |
## Usage
### Full Dataset
```python
from datasets import load_dataset
# get entire dataset
dataset = load_dataset("midas/www", "raw")
# sample from the test split
print("Sample from test dataset split")
test_sample = dataset["test"][0]
print("Fields in the sample: ", [key for key in test_sample.keys()])
print("Tokenized Document: ", test_sample["document"])
print("Document BIO Tags: ", test_sample["doc_bio_tags"])
print("Extractive/present Keyphrases: ", test_sample["extractive_keyphrases"])
print("Abstractive/absent Keyphrases: ", test_sample["abstractive_keyphrases"])
print("\n-----------\n")
```
**Output**
```bash
Sample from test data split
Fields in the sample: ['id', 'document', 'doc_bio_tags', 'extractive_keyphrases', 'abstractive_keyphrases', 'other_metadata']
Tokenized Document: ['The', 'web', 'of', 'nations', 'In', 'this', 'paper', ',', 'we', 'report', 'on', 'a', 'large-scale', 'study', 'of', 'structural', 'differences', 'among', 'the', 'national', 'webs', '.', 'The', 'study', 'is', 'based', 'on', 'a', 'web-scale', 'crawl', 'conducted', 'in', 'the', 'summer', '2008', '.', 'More', 'specifically', ',', 'we', 'study', 'two', 'graphs', 'derived', 'from', 'this', 'crawl', ',', 'the', 'nation', 'graph', ',', 'with', 'nodes', 'corresponding', 'to', 'nations', 'and', 'edges', '-', 'to', 'links', 'among', 'nations', ',', 'and', 'the', 'host', 'graph', ',', 'with', 'nodes', 'corresponding', 'to', 'hosts', 'and', 'edges', '-', 'to', 'hyperlinks', 'among', 'pages', 'on', 'the', 'hosts', '.', 'Contrary', 'to', 'some', 'of', 'the', 'previous', 'work', '(', '2', ')', ',', 'our', 'results', 'show', 'that', 'webs', 'of', 'different', 'nations', 'are', 'often', 'very', 'different', 'from', 'each', 'other', ',', 'both', 'in', 'terms', 'of', 'their', 'internal', 'structure', ',', 'and', 'in', 'terms', 'of', 'their', 'connectivity', 'with', 'other', 'nations', '.']
Document BIO Tags: ['O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'B', 'I', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'B', 'I', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O']
Extractive/present Keyphrases: ['host graph', 'nation graph']
Abstractive/absent Keyphrases: ['web graph', 'web structure']
-----------
```
### Keyphrase Extraction
```python
from datasets import load_dataset
# get the dataset only for keyphrase extraction
dataset = load_dataset("midas/www", "extraction")
print("Samples for Keyphrase Extraction")
# sample from the test split
print("Sample from test data split")
test_sample = dataset["test"][0]
print("Fields in the sample: ", [key for key in test_sample.keys()])
print("Tokenized Document: ", test_sample["document"])
print("Document BIO Tags: ", test_sample["doc_bio_tags"])
print("\n-----------\n")
```
### Keyphrase Generation
```python
# get the dataset only for keyphrase generation
dataset = load_dataset("midas/www", "generation")
print("Samples for Keyphrase Generation")
# sample from the test split
print("Sample from test data split")
test_sample = dataset["test"][0]
print("Fields in the sample: ", [key for key in test_sample.keys()])
print("Tokenized Document: ", test_sample["document"])
print("Extractive/present Keyphrases: ", test_sample["extractive_keyphrases"])
print("Abstractive/absent Keyphrases: ", test_sample["abstractive_keyphrases"])
print("\n-----------\n")
```
## Citation Information
```
@inproceedings{caragea-etal-2014-citation,
title = "Citation-Enhanced Keyphrase Extraction from Research Papers: A Supervised Approach",
author = "Caragea, Cornelia and
Bulgarov, Florin Adrian and
Godea, Andreea and
Das Gollapalli, Sujatha",
booktitle = "Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing ({EMNLP})",
month = oct,
year = "2014",
address = "Doha, Qatar",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/D14-1150",
doi = "10.3115/v1/D14-1150",
pages = "1435--1446",
}
```
## Contributions
Thanks to [@debanjanbhucs](https://github.com/debanjanbhucs), [@dibyaaaaax](https://github.com/dibyaaaaax) and [@ad6398](https://github.com/ad6398) for adding this dataset
|