Datasets:

Modalities:
Text
Size:
< 1K
Libraries:
Datasets
rajivratn commited on
Commit
c8de02e
·
1 Parent(s): 877c738

Upload test_ldkp.py

Browse files
Files changed (1) hide show
  1. test_ldkp.py +153 -0
test_ldkp.py ADDED
@@ -0,0 +1,153 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import csv
2
+ import json
3
+ import os
4
+
5
+ import datasets
6
+ from typing import List, Any
7
+
8
+ # TODO: Add BibTeX citation
9
+ # Find for instance the citation on arxiv or on the dataset repo/website
10
+ _CITATION = """\
11
+ author: amardeep
12
+ """
13
+
14
+ # TODO: Add description of the dataset here
15
+ # You can copy an official description
16
+ _DESCRIPTION = """\
17
+ This new dataset is designed to solve kp NLP task and is crafted with a lot of care.
18
+ """
19
+
20
+ # TODO: Add a link to an official homepage for the dataset here
21
+ _HOMEPAGE = ""
22
+
23
+ # TODO: Add the licence for the dataset here if you can find it
24
+ _LICENSE = ""
25
+
26
+ # TODO: Add link to the official dataset URLs here
27
+ # The HuggingFace Datasets library doesn't host the datasets but only points to the original files.
28
+ # This can be an arbitrary nested dict/list of URLs (see below in `_split_generators` method)
29
+ _URLS = {
30
+ "test": "test.jsonl",
31
+ "train": "train.jsonl",
32
+ "valid": "valid.jsonl"
33
+ }
34
+
35
+
36
+ # TODO: Name of the dataset usually match the script name with CamelCase instead of snake_case
37
+ class TestLDKP(datasets.GeneratorBasedBuilder):
38
+ """TODO: Short description of my dataset."""
39
+
40
+ VERSION = datasets.Version("1.1.0")
41
+
42
+ # This is an example of a dataset with multiple configurations.
43
+ # If you don't want/need to define several sub-sets in your dataset,
44
+ # just remove the BUILDER_CONFIG_CLASS and the BUILDER_CONFIGS attributes.
45
+
46
+ # If you need to make complex sub-parts in the datasets with configurable options
47
+ # You can create your own builder configuration class to store attribute, inheriting from datasets.BuilderConfig
48
+ # BUILDER_CONFIG_CLASS = MyBuilderConfig
49
+
50
+ # You will be able to load one or the other configurations in the following list with
51
+ # data = datasets.load_dataset('my_dataset', 'first_domain')
52
+ # data = datasets.load_dataset('my_dataset', 'second_domain')
53
+ BUILDER_CONFIGS = [
54
+ datasets.BuilderConfig(name="ldkp", version=VERSION, description="This part of my dataset covers long document"),
55
+ datasets.BuilderConfig(name="normal", version=VERSION, description="This part of my dataset covers abstract only"),
56
+ ]
57
+
58
+ DEFAULT_CONFIG_NAME = "normal" # It's not mandatory to have a default configuration. Just use one if it make sense.
59
+
60
+ def _info(self):
61
+ # TODO: This method specifies the datasets.DatasetInfo object which contains informations and typings for the dataset
62
+ if self.config.name == "ldkp": # This is the name of the configuration selected in BUILDER_CONFIGS above
63
+ features = datasets.Features(
64
+ {
65
+ "text": list,
66
+ "BIO_tags": list
67
+ #"text": datasets.Value("string"),
68
+ #"BIO_tags": datasets.Value("string")
69
+ # "answer": datasets.Value("string")
70
+ # These are the features of your dataset like images, labels ...
71
+ }
72
+ )
73
+ else: # This is an example to show how to have different features for "first_domain" and "second_domain"
74
+ features = datasets.Features(
75
+ {
76
+ "text": datasets.Value("string"),
77
+ "BIO_tags": datasets.Value("string")
78
+ # "second_domain_answer": datasets.Value("string")
79
+ # These are the features of your dataset like images, labels ...
80
+ }
81
+ )
82
+ return datasets.DatasetInfo(
83
+ # This is the description that will appear on the datasets page.
84
+ description=_DESCRIPTION,
85
+ # This defines the different columns of the dataset and their types
86
+ features=features, # Here we define them above because they are different between the two configurations
87
+ # If there's a common (input, target) tuple from the features, uncomment supervised_keys line below and
88
+ # specify them. They'll be used if as_supervised=True in builder.as_dataset.
89
+ # supervised_keys=("sentence", "label"),
90
+ # Homepage of the dataset for documentation
91
+ homepage=_HOMEPAGE,
92
+ # License for the dataset if available
93
+ license=_LICENSE,
94
+ # Citation for the dataset
95
+ citation=_CITATION,
96
+ )
97
+
98
+ def _split_generators(self, dl_manager):
99
+ # TODO: This method is tasked with downloading/extracting the data and defining the splits depending on the configuration
100
+ # If several configurations are possible (listed in BUILDER_CONFIGS), the configuration selected by the user is in self.config.name
101
+
102
+ # dl_manager is a datasets.download.DownloadManager that can be used to download and extract URLS
103
+ # It can accept any type or nested list/dict and will give back the same structure with the url replaced with path to local files.
104
+ # By default the archives will be extracted and a path to a cached folder where they are extracted is returned instead of the archive
105
+ # urls = _URLS[self.config.name]
106
+ data_dir = dl_manager.download_and_extract(_URLS)
107
+ return [
108
+ datasets.SplitGenerator(
109
+ name=datasets.Split.TRAIN,
110
+ # These kwargs will be passed to _generate_examples
111
+ gen_kwargs={
112
+ "filepath": data_dir['train'],
113
+ "split": "train",
114
+ },
115
+ ),
116
+ datasets.SplitGenerator(
117
+ name=datasets.Split.TEST,
118
+ # These kwargs will be passed to _generate_examples
119
+ gen_kwargs={
120
+ "filepath": data_dir['test'],
121
+ "split": "test"
122
+ },
123
+ ),
124
+ datasets.SplitGenerator(
125
+ name=datasets.Split.VALIDATION,
126
+ # These kwargs will be passed to _generate_examples
127
+ gen_kwargs={
128
+ "filepath": data_dir['valid'],
129
+ "split": "valid",
130
+ },
131
+ ),
132
+ ]
133
+
134
+ # method parameters are unpacked from `gen_kwargs` as given in `_split_generators`
135
+ def _generate_examples(self, filepath, split):
136
+ # TODO: This method handles input defined in _split_generators to yield (key, example) tuples from the dataset.
137
+ # The `key` is for legacy reasons (tfds) and is not important in itself, but must be unique for each example.
138
+ with open(filepath, encoding="utf-8") as f:
139
+ for key, row in enumerate(f):
140
+ data = json.loads(row)
141
+ if self.config.name == "ldkp":
142
+ # Yields examples as (key, example) tuples
143
+ yield key, {
144
+ "text": data["abstract"]+data["other_sec"],
145
+ "BIO_tags": data["abstract_tags"] + data["other_sec_tags"]
146
+ # "answer": "" if split == "test" else data["answer"],
147
+ }
148
+ else:
149
+ yield key, {
150
+ "text": data["abstract"],
151
+ "BIO_tags": data["abstract_tags"]
152
+ # "second_domain_answer": "" if split == "test" else data["second_domain_answer"],
153
+ }