Datasets:

Modalities:
Text
Size:
< 1K
Libraries:
Datasets
test_ldkp / test_ldkp.py
rajivratn's picture
Update test_ldkp.py
df3ee34
import csv
import json
import os
import datasets
from typing import List, Any
# TODO: Add BibTeX citation
# Find for instance the citation on arxiv or on the dataset repo/website
_CITATION = """\
author: amardeep
"""
# TODO: Add description of the dataset here
# You can copy an official description
_DESCRIPTION = """\
This new dataset is designed to solve kp NLP task and is crafted with a lot of care.
"""
# TODO: Add a link to an official homepage for the dataset here
_HOMEPAGE = ""
# TODO: Add the licence for the dataset here if you can find it
_LICENSE = ""
# TODO: Add link to the official dataset URLs here
# The HuggingFace Datasets library doesn't host the datasets but only points to the original files.
# This can be an arbitrary nested dict/list of URLs (see below in `_split_generators` method)
_URLS = {
"test": "test.jsonl",
"train": "train.jsonl",
"valid": "valid.jsonl"
}
# TODO: Name of the dataset usually match the script name with CamelCase instead of snake_case
class TestLDKP(datasets.GeneratorBasedBuilder):
"""TODO: Short description of my dataset."""
VERSION = datasets.Version("1.1.0")
# This is an example of a dataset with multiple configurations.
# If you don't want/need to define several sub-sets in your dataset,
# just remove the BUILDER_CONFIG_CLASS and the BUILDER_CONFIGS attributes.
# If you need to make complex sub-parts in the datasets with configurable options
# You can create your own builder configuration class to store attribute, inheriting from datasets.BuilderConfig
# BUILDER_CONFIG_CLASS = MyBuilderConfig
# You will be able to load one or the other configurations in the following list with
# data = datasets.load_dataset('my_dataset', 'first_domain')
# data = datasets.load_dataset('my_dataset', 'second_domain')
BUILDER_CONFIGS = [
datasets.BuilderConfig(name="ldkp", version=VERSION, description="This part of my dataset covers long document"),
datasets.BuilderConfig(name="normal", version=VERSION, description="This part of my dataset covers abstract only"),
]
DEFAULT_CONFIG_NAME = "normal" # It's not mandatory to have a default configuration. Just use one if it make sense.
def _info(self):
# TODO: This method specifies the datasets.DatasetInfo object which contains informations and typings for the dataset
if self.config.name == "ldkp": # This is the name of the configuration selected in BUILDER_CONFIGS above
features = datasets.Features(
{
"text": datasets.features.Sequence(datasets.Value("string")),
"BIO_tags": datasets.features.Sequence(datasets.Value("string"))
#"text": datasets.features.Sequence({'txt':datasets.Value("string")}),
#"BIO_tags": datasets.features.Sequence({'tag':datasets.Value("string")})
#"text": datasets.Value("string"),
#"BIO_tags": datasets.Value("string")
# "answer": datasets.Value("string")
# These are the features of your dataset like images, labels ...
}
)
else: # This is an example to show how to have different features for "first_domain" and "second_domain"
features = datasets.Features(
{
"text": datasets.features.Sequence(datasets.Value("string")),
"BIO_tags": datasets.features.Sequence(datasets.Value("string"))
# "second_domain_answer": datasets.Value("string")
# These are the features of your dataset like images, labels ...
}
)
return datasets.DatasetInfo(
# This is the description that will appear on the datasets page.
description=_DESCRIPTION,
# This defines the different columns of the dataset and their types
features=features, # Here we define them above because they are different between the two configurations
# If there's a common (input, target) tuple from the features, uncomment supervised_keys line below and
# specify them. They'll be used if as_supervised=True in builder.as_dataset.
# supervised_keys=("sentence", "label"),
# Homepage of the dataset for documentation
homepage=_HOMEPAGE,
# License for the dataset if available
license=_LICENSE,
# Citation for the dataset
citation=_CITATION,
)
def _split_generators(self, dl_manager):
# TODO: This method is tasked with downloading/extracting the data and defining the splits depending on the configuration
# If several configurations are possible (listed in BUILDER_CONFIGS), the configuration selected by the user is in self.config.name
# dl_manager is a datasets.download.DownloadManager that can be used to download and extract URLS
# It can accept any type or nested list/dict and will give back the same structure with the url replaced with path to local files.
# By default the archives will be extracted and a path to a cached folder where they are extracted is returned instead of the archive
# urls = _URLS[self.config.name]
data_dir = dl_manager.download_and_extract(_URLS)
return [
datasets.SplitGenerator(
name=datasets.Split.TRAIN,
# These kwargs will be passed to _generate_examples
gen_kwargs={
"filepath": data_dir['train'],
"split": "train",
},
),
datasets.SplitGenerator(
name=datasets.Split.TEST,
# These kwargs will be passed to _generate_examples
gen_kwargs={
"filepath": data_dir['test'],
"split": "test"
},
),
datasets.SplitGenerator(
name=datasets.Split.VALIDATION,
# These kwargs will be passed to _generate_examples
gen_kwargs={
"filepath": data_dir['valid'],
"split": "valid",
},
),
]
# method parameters are unpacked from `gen_kwargs` as given in `_split_generators`
def _generate_examples(self, filepath, split):
# TODO: This method handles input defined in _split_generators to yield (key, example) tuples from the dataset.
# The `key` is for legacy reasons (tfds) and is not important in itself, but must be unique for each example.
with open(filepath, encoding="utf-8") as f:
for key, row in enumerate(f):
data = json.loads(row)
if self.config.name == "ldkp":
# Yields examples as (key, example) tuples
yield key, {
#"text": {"txt":data["abstract"]+data["other_sec"]},
#"BIO_tags": {'tag':data["abstract_tags"] + data["other_sec_tags"]}
"text": data["abstract"]+data["other_sec"],
"BIO_tags": data["abstract_tags"] + data["other_sec_tags"]
# "answer": "" if split == "test" else data["answer"],
}
else:
yield key, {
"text": data["abstract"],
"BIO_tags": data["abstract_tags"]
# "second_domain_answer": "" if split == "test" else data["second_domain_answer"],
}