import csv | |
import json | |
import os | |
import datasets | |
from typing import List, Any | |
# TODO: Add BibTeX citation | |
# Find for instance the citation on arxiv or on the dataset repo/website | |
_CITATION = """\ | |
author: amardeep | |
""" | |
# TODO: Add description of the dataset here | |
# You can copy an official description | |
_DESCRIPTION = """\ | |
This new dataset is designed to solve kp NLP task and is crafted with a lot of care. | |
""" | |
# TODO: Add a link to an official homepage for the dataset here | |
_HOMEPAGE = "" | |
# TODO: Add the licence for the dataset here if you can find it | |
_LICENSE = "" | |
# TODO: Add link to the official dataset URLs here | |
# The HuggingFace Datasets library doesn't host the datasets but only points to the original files. | |
# This can be an arbitrary nested dict/list of URLs (see below in `_split_generators` method) | |
_URLS = { | |
"test": "test.jsonl", | |
"train": "train.jsonl", | |
"valid": "valid.jsonl" | |
} | |
# TODO: Name of the dataset usually match the script name with CamelCase instead of snake_case | |
class TestLDKP(datasets.GeneratorBasedBuilder): | |
"""TODO: Short description of my dataset.""" | |
VERSION = datasets.Version("1.1.0") | |
# This is an example of a dataset with multiple configurations. | |
# If you don't want/need to define several sub-sets in your dataset, | |
# just remove the BUILDER_CONFIG_CLASS and the BUILDER_CONFIGS attributes. | |
# If you need to make complex sub-parts in the datasets with configurable options | |
# You can create your own builder configuration class to store attribute, inheriting from datasets.BuilderConfig | |
# BUILDER_CONFIG_CLASS = MyBuilderConfig | |
# You will be able to load one or the other configurations in the following list with | |
# data = datasets.load_dataset('my_dataset', 'first_domain') | |
# data = datasets.load_dataset('my_dataset', 'second_domain') | |
BUILDER_CONFIGS = [ | |
datasets.BuilderConfig(name="ldkp", version=VERSION, description="This part of my dataset covers long document"), | |
datasets.BuilderConfig(name="normal", version=VERSION, description="This part of my dataset covers abstract only"), | |
] | |
DEFAULT_CONFIG_NAME = "normal" # It's not mandatory to have a default configuration. Just use one if it make sense. | |
def _info(self): | |
# TODO: This method specifies the datasets.DatasetInfo object which contains informations and typings for the dataset | |
if self.config.name == "ldkp": # This is the name of the configuration selected in BUILDER_CONFIGS above | |
features = datasets.Features( | |
{ | |
"text": datasets.features.Sequence(datasets.Value("string")), | |
"BIO_tags": datasets.features.Sequence(datasets.Value("string")) | |
#"text": datasets.features.Sequence({'txt':datasets.Value("string")}), | |
#"BIO_tags": datasets.features.Sequence({'tag':datasets.Value("string")}) | |
#"text": datasets.Value("string"), | |
#"BIO_tags": datasets.Value("string") | |
# "answer": datasets.Value("string") | |
# These are the features of your dataset like images, labels ... | |
} | |
) | |
else: # This is an example to show how to have different features for "first_domain" and "second_domain" | |
features = datasets.Features( | |
{ | |
"text": datasets.Value("string"), | |
"BIO_tags": datasets.Value("string") | |
# "second_domain_answer": datasets.Value("string") | |
# These are the features of your dataset like images, labels ... | |
} | |
) | |
return datasets.DatasetInfo( | |
# This is the description that will appear on the datasets page. | |
description=_DESCRIPTION, | |
# This defines the different columns of the dataset and their types | |
features=features, # Here we define them above because they are different between the two configurations | |
# If there's a common (input, target) tuple from the features, uncomment supervised_keys line below and | |
# specify them. They'll be used if as_supervised=True in builder.as_dataset. | |
# supervised_keys=("sentence", "label"), | |
# Homepage of the dataset for documentation | |
homepage=_HOMEPAGE, | |
# License for the dataset if available | |
license=_LICENSE, | |
# Citation for the dataset | |
citation=_CITATION, | |
) | |
def _split_generators(self, dl_manager): | |
# TODO: This method is tasked with downloading/extracting the data and defining the splits depending on the configuration | |
# If several configurations are possible (listed in BUILDER_CONFIGS), the configuration selected by the user is in self.config.name | |
# dl_manager is a datasets.download.DownloadManager that can be used to download and extract URLS | |
# It can accept any type or nested list/dict and will give back the same structure with the url replaced with path to local files. | |
# By default the archives will be extracted and a path to a cached folder where they are extracted is returned instead of the archive | |
# urls = _URLS[self.config.name] | |
data_dir = dl_manager.download_and_extract(_URLS) | |
return [ | |
datasets.SplitGenerator( | |
name=datasets.Split.TRAIN, | |
# These kwargs will be passed to _generate_examples | |
gen_kwargs={ | |
"filepath": data_dir['train'], | |
"split": "train", | |
}, | |
), | |
datasets.SplitGenerator( | |
name=datasets.Split.TEST, | |
# These kwargs will be passed to _generate_examples | |
gen_kwargs={ | |
"filepath": data_dir['test'], | |
"split": "test" | |
}, | |
), | |
datasets.SplitGenerator( | |
name=datasets.Split.VALIDATION, | |
# These kwargs will be passed to _generate_examples | |
gen_kwargs={ | |
"filepath": data_dir['valid'], | |
"split": "valid", | |
}, | |
), | |
] | |
# method parameters are unpacked from `gen_kwargs` as given in `_split_generators` | |
def _generate_examples(self, filepath, split): | |
# TODO: This method handles input defined in _split_generators to yield (key, example) tuples from the dataset. | |
# The `key` is for legacy reasons (tfds) and is not important in itself, but must be unique for each example. | |
with open(filepath, encoding="utf-8") as f: | |
for key, row in enumerate(f): | |
data = json.loads(row) | |
if self.config.name == "ldkp": | |
# Yields examples as (key, example) tuples | |
yield key, { | |
#"text": {"txt":data["abstract"]+data["other_sec"]}, | |
#"BIO_tags": {'tag':data["abstract_tags"] + data["other_sec_tags"]} | |
"text": data["abstract"]+data["other_sec"], | |
"BIO_tags": data["abstract_tags"] + data["other_sec_tags"] | |
# "answer": "" if split == "test" else data["answer"], | |
} | |
else: | |
yield key, { | |
"text": data["abstract"], | |
"BIO_tags": data["abstract_tags"] | |
# "second_domain_answer": "" if split == "test" else data["second_domain_answer"], | |
} |