File size: 5,344 Bytes
b38e620 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 |
import json
import datasets
# _SPLIT = ['test']
_CITATION = """\
@inproceedings{Krapivin2009LargeDF,
title={Large Dataset for Keyphrases Extraction},
author={Mikalai Krapivin and Aliaksandr Autaeu and Maurizio Marchese},
year={2009}
}
"""
_DESCRIPTION = """\
"""
_HOMEPAGE = ""
# TODO: Add the licence for the dataset here if you can find it
_LICENSE = ""
# TODO: Add link to the official dataset URLs here
_URLS = {
"test": "test.jsonl"
}
# TODO: Name of the dataset usually match the script name with CamelCase instead of snake_case
class Krapivin(datasets.GeneratorBasedBuilder):
"""TODO: Short description of my dataset."""
VERSION = datasets.Version("0.0.1")
BUILDER_CONFIGS = [
datasets.BuilderConfig(name="extraction", version=VERSION,
description="This part of my dataset covers extraction"),
datasets.BuilderConfig(name="generation", version=VERSION,
description="This part of my dataset covers generation"),
datasets.BuilderConfig(name="raw", version=VERSION, description="This part of my dataset covers the raw data"),
]
DEFAULT_CONFIG_NAME = "extraction"
def _info(self):
if self.config.name == "extraction": # This is the name of the configuration selected in BUILDER_CONFIGS above
features = datasets.Features(
{
"id": datasets.Value("int64"),
"document": datasets.features.Sequence(datasets.Value("string")),
"doc_bio_tags": datasets.features.Sequence(datasets.Value("string"))
}
)
elif self.config.name == "generation":
features = datasets.Features(
{
"id": datasets.Value("int64"),
"document": datasets.features.Sequence(datasets.Value("string")),
"extractive_keyphrases": datasets.features.Sequence(datasets.Value("string")),
"abstractive_keyphrases": datasets.features.Sequence(datasets.Value("string"))
}
)
else:
features = datasets.Features(
{
"id": datasets.Value("int64"),
"document": datasets.features.Sequence(datasets.Value("string")),
"doc_bio_tags": datasets.features.Sequence(datasets.Value("string")),
"extractive_keyphrases": datasets.features.Sequence(datasets.Value("string")),
"abstractive_keyphrases": datasets.features.Sequence(datasets.Value("string")),
"other_metadata": datasets.features.Sequence(
{
"text": datasets.features.Sequence(datasets.Value("string")),
"bio_tags": datasets.features.Sequence(datasets.Value("string"))
}
)
}
)
return datasets.DatasetInfo(
# This is the description that will appear on the datasets page.
description=_DESCRIPTION,
# This defines the different columns of the dataset and their types
features=features,
homepage=_HOMEPAGE,
# License for the dataset if available
license=_LICENSE,
# Citation for the dataset
citation=_CITATION,
)
def _split_generators(self, dl_manager):
data_dir = dl_manager.download_and_extract(_URLS)
return [
datasets.SplitGenerator(
name=datasets.Split.TEST,
# These kwargs will be passed to _generate_examples
gen_kwargs={
"filepath": data_dir['test'],
"split": "test"
},
),
]
# method parameters are unpacked from `gen_kwargs` as given in `_split_generators`
def _generate_examples(self, filepath, split):
with open(filepath, encoding="utf-8") as f:
for key, row in enumerate(f):
data = json.loads(row)
if self.config.name == "extraction":
# Yields examples as (key, example) tuples
yield key, {
"id": data['paper_id'],
"document": data["document"],
"doc_bio_tags": data.get("doc_bio_tags")
}
elif self.config.name == "generation":
yield key, {
"id": data['paper_id'],
"document": data["document"],
"extractive_keyphrases": data.get("extractive_keyphrases"),
"abstractive_keyphrases": data.get("abstractive_keyphrases")
}
else:
yield key, {
"id": data['paper_id'],
"document": data["document"],
"doc_bio_tags": data.get("doc_bio_tags"),
"extractive_keyphrases": data.get("extractive_keyphrases"),
"abstractive_keyphrases": data.get("abstractive_keyphrases"),
"other_metadata": data["other_metadata"]
}
|