Datasets:

Modalities:
Text
Formats:
text
Libraries:
Datasets
dmahata commited on
Commit
b7bcf26
·
1 Parent(s): 9a89d0a

Delete inspec_ke_tagged.py

Browse files
Files changed (1) hide show
  1. inspec_ke_tagged.py +0 -121
inspec_ke_tagged.py DELETED
@@ -1,121 +0,0 @@
1
- # Lint as: python3
2
- """Keyphrase extraction as sequence labeling using contextualized embeddings"""
3
-
4
- import datasets
5
-
6
-
7
- logger = datasets.logging.get_logger(__name__)
8
-
9
-
10
- _CITATION = """\
11
- @article{sahrawat2020keyphrase,
12
- title={Keyphrase extraction as sequence labeling using contextualized embeddings},
13
- author={Sahrawat, Dhruva and Mahata, Debanjan and Zhang, Haimin and Kulkarni, Mayank and Sharma, Agniv and Gosangi, Rakesh and Stent, Amanda and Kumar, Yaman and Shah, Rajiv Ratn and Zimmermann, Roger},
14
- journal={Advances in Information Retrieval},
15
- volume={12036},
16
- pages={328},
17
- year={2020},
18
- publisher={Nature Publishing Group}
19
- }
20
- """
21
-
22
- _DESCRIPTION = """\
23
- This dataset is one of the datasets used in the paper entitled, Keyphrase Extraction from Scholarly Articles as Sequence
24
- Labeling using Contextualized Embeddings https://arxiv.org/abs/1910.08840. The dataset consists of the Inspec corpus
25
- which has been tagged using the BIO tagging scheme. The dataset should be used for training and evaluating keyphrase
26
- extraction models when modeled as a sequence tagging task
27
- """
28
-
29
- _URL = "https://huggingface.co/datasets/midas/inspec_ke_tagged/blob/main/"
30
- _TRAINING_FILE = "train.txt"
31
- _DEV_FILE = "valid.txt"
32
- _TEST_FILE = "test.txt"
33
-
34
-
35
- class InspecKETaggedConfig(datasets.BuilderConfig):
36
- """BuilderConfig for InspecKETagged"""
37
-
38
- def __init__(self, **kwargs):
39
- """BuilderConfig for InspecKETagged.
40
-
41
- Args:
42
- **kwargs: keyword arguments forwarded to super.
43
- """
44
- super(InspecKETaggedConfig, self).__init__(**kwargs)
45
-
46
-
47
- class InspecKETagged(datasets.GeneratorBasedBuilder):
48
- """InspecKETagged dataset."""
49
-
50
- BUILDER_CONFIGS = [
51
- InspecKETaggedConfig(name="inspec_ke_tagged", version=datasets.Version("1.0.0"), description="InspecKETagged "
52
- "dataset"),
53
- ]
54
-
55
- def _info(self):
56
- return datasets.DatasetInfo(
57
- description=_DESCRIPTION,
58
- features=datasets.Features(
59
- {
60
- "id": datasets.Value("string"),
61
- "tokens": datasets.Sequence(datasets.Value("string")),
62
- "ke_tags": datasets.Sequence(
63
- datasets.features.ClassLabel(
64
- names=[
65
- "O",
66
- "B-KEY",
67
- "I-KEY",
68
- ]
69
- )
70
- ),
71
- }
72
- ),
73
- supervised_keys=None,
74
- homepage="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7148038/",
75
- citation=_CITATION,
76
- )
77
-
78
- def _split_generators(self, dl_manager):
79
- """Returns SplitGenerators."""
80
- urls_to_download = {
81
- "train": f"{_URL}{_TRAINING_FILE}",
82
- "dev": f"{_URL}{_DEV_FILE}",
83
- "test": f"{_URL}{_TEST_FILE}",
84
- }
85
- downloaded_files = dl_manager.download_and_extract(urls_to_download)
86
-
87
- return [
88
- datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"filepath": downloaded_files["train"]}),
89
- datasets.SplitGenerator(name=datasets.Split.VALIDATION, gen_kwargs={"filepath": downloaded_files["dev"]}),
90
- datasets.SplitGenerator(name=datasets.Split.TEST, gen_kwargs={"filepath": downloaded_files["test"]}),
91
- ]
92
-
93
- def _generate_examples(self, filepath):
94
- logger.info("⏳ Generating examples from = %s", filepath)
95
- with open(filepath, encoding="utf-8") as f:
96
- guid = 0
97
- tokens = []
98
- ke_tags = []
99
- for line in f:
100
- if line == "" or line == "\n":
101
- if tokens:
102
- yield guid, {
103
- "id": str(guid),
104
- "tokens": tokens,
105
- "ke_tags": ke_tags,
106
- }
107
- guid += 1
108
- tokens = []
109
- ke_tags = []
110
- else:
111
- # the tokens are space separated
112
- splits = line.split()
113
- print(splits)
114
- tokens.append(splits[0])
115
- ke_tags.append(splits[1].rstrip())
116
- # last example
117
- yield guid, {
118
- "id": str(guid),
119
- "tokens": tokens,
120
- "ke_tags": ke_tags,
121
- }