Datasets:

Modalities:
Text
Formats:
parquet
Languages:
Hindi
Libraries:
Datasets
pandas
License:
system HF staff commited on
Commit
8337f9f
·
0 Parent(s):

Update files from the datasets library (from 1.3.0)

Browse files

Release notes: https://github.com/huggingface/datasets/releases/tag/1.3.0

.gitattributes ADDED
@@ -0,0 +1,27 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ *.7z filter=lfs diff=lfs merge=lfs -text
2
+ *.arrow filter=lfs diff=lfs merge=lfs -text
3
+ *.bin filter=lfs diff=lfs merge=lfs -text
4
+ *.bin.* filter=lfs diff=lfs merge=lfs -text
5
+ *.bz2 filter=lfs diff=lfs merge=lfs -text
6
+ *.ftz filter=lfs diff=lfs merge=lfs -text
7
+ *.gz filter=lfs diff=lfs merge=lfs -text
8
+ *.h5 filter=lfs diff=lfs merge=lfs -text
9
+ *.joblib filter=lfs diff=lfs merge=lfs -text
10
+ *.lfs.* filter=lfs diff=lfs merge=lfs -text
11
+ *.model filter=lfs diff=lfs merge=lfs -text
12
+ *.msgpack filter=lfs diff=lfs merge=lfs -text
13
+ *.onnx filter=lfs diff=lfs merge=lfs -text
14
+ *.ot filter=lfs diff=lfs merge=lfs -text
15
+ *.parquet filter=lfs diff=lfs merge=lfs -text
16
+ *.pb filter=lfs diff=lfs merge=lfs -text
17
+ *.pt filter=lfs diff=lfs merge=lfs -text
18
+ *.pth filter=lfs diff=lfs merge=lfs -text
19
+ *.rar filter=lfs diff=lfs merge=lfs -text
20
+ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
21
+ *.tar.* filter=lfs diff=lfs merge=lfs -text
22
+ *.tflite filter=lfs diff=lfs merge=lfs -text
23
+ *.tgz filter=lfs diff=lfs merge=lfs -text
24
+ *.xz filter=lfs diff=lfs merge=lfs -text
25
+ *.zip filter=lfs diff=lfs merge=lfs -text
26
+ *.zstandard filter=lfs diff=lfs merge=lfs -text
27
+ *tfevents* filter=lfs diff=lfs merge=lfs -text
README.md ADDED
@@ -0,0 +1,195 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ annotations_creators:
3
+ - machine-generated
4
+ language_creators:
5
+ - found
6
+ languages:
7
+ - hi
8
+ licenses:
9
+ - mit
10
+ multilinguality:
11
+ - monolingual
12
+ size_categories:
13
+ - 10K<n<100K
14
+ source_datasets:
15
+ - extended|bbc__hindi_news_classification
16
+ task_categories:
17
+ - text-classification
18
+ task_ids:
19
+ - natural-language-inference
20
+ ---
21
+
22
+ # Dataset Card for BBC Hindi NLI Dataset
23
+
24
+ ## Table of Contents
25
+ - [Dataset Description](#dataset-description)
26
+ - [Dataset Summary](#dataset-summary)
27
+ - [Supported Tasks](#supported-tasks-and-leaderboards)
28
+ - [Languages](#languages)
29
+ - [Dataset Structure](#dataset-structure)
30
+ - [Data Instances](#data-instances)
31
+ - [Data Fields](#data-fields)
32
+ - [Data Splits](#data-splits)
33
+ - [Dataset Creation](#dataset-creation)
34
+ - [Curation Rationale](#curation-rationale)
35
+ - [Source Data](#source-data)
36
+ - [Annotations](#annotations)
37
+ - [Personal and Sensitive Information](#personal-and-sensitive-information)
38
+ - [Considerations for Using the Data](#considerations-for-using-the-data)
39
+ - [Social Impact of Dataset](#social-impact-of-dataset)
40
+ - [Discussion of Biases](#discussion-of-biases)
41
+ - [Other Known Limitations](#other-known-limitations)
42
+ - [Additional Information](#additional-information)
43
+ - [Dataset Curators](#dataset-curators)
44
+ - [Licensing Information](#licensing-information)
45
+ - [Citation Information](#citation-information)
46
+ - [Contributions](#contributions)
47
+
48
+ ## Dataset Description
49
+
50
+ - **Repository:** [GitHub](https://github.com/midas-research/hindi-nli-data)
51
+ - **Paper:** [Aclweb](https://www.aclweb.org/anthology/2020.aacl-main.71)
52
+ - **Point of Contact:** [GitHub](https://github.com/midas-research/hindi-nli-data)
53
+
54
+ ### Dataset Summary
55
+
56
+ - Dataset for Natural Language Inference in Hindi Language. BBC Hindi Dataset consists of textual-entailment pairs.
57
+ - Each row of the Datasets if made up of 4 columns - Premise, Hypothesis, Label and Topic.
58
+ - Context and Hypothesis is written in Hindi while Entailment_Label is in English.
59
+ - Entailment_label is of 2 types - entailed and not-entailed.
60
+ - Dataset can be used to train models for Natural Language Inference tasks in Hindi Language.
61
+ [More Information Needed]
62
+
63
+ ### Supported Tasks and Leaderboards
64
+
65
+ - Natural Language Inference for Hindi
66
+
67
+ ### Languages
68
+
69
+ Dataset is in Hindi
70
+
71
+ ## Dataset Structure
72
+
73
+ - Data is structured in TSV format.
74
+ - Train and Test files are in seperate files
75
+
76
+
77
+ ### Dataset Instances
78
+
79
+ An example of 'train' looks as follows.
80
+
81
+ ```
82
+ {'hypothesis': 'यह खबर की सूचना है|', 'label': 'entailed', 'premise': 'गोपनीयता की नीति', 'topic': '1'}
83
+
84
+ ```
85
+ ### Data Fields
86
+
87
+ - Each row contatins 4 columns - Premise, Hypothesis, Label and Topic.
88
+
89
+ ### Data Splits
90
+
91
+ - Train : 15553
92
+ - Valid : 2581
93
+ - Test : 2593
94
+
95
+ ## Dataset Creation
96
+
97
+ - We employ a recasting technique from Poliak et al. (2018a,b) to convert publicly available BBC Hindi news text classification datasets in Hindi and pose them as TE problems
98
+ - In this recasting process, we build template hypotheses for each class in the label taxonomy
99
+ - Then, we pair the original annotated sentence with each of the template hypotheses to create TE samples.
100
+ - For more information on the recasting process, refer to paper "https://www.aclweb.org/anthology/2020.aacl-main.71"
101
+
102
+ ### Source Data
103
+
104
+ Source Dataset for the recasting process is the BBC Hindi Headlines Dataset(https://github.com/NirantK/hindi2vec/releases/tag/bbc-hindi-v0.1)
105
+
106
+ #### Initial Data Collection and Normalization
107
+
108
+ - BBC Hindi News Classification Dataset contains 4, 335 Hindi news headlines tagged across 14 categories: India, Pakistan,news, International, entertainment, sport, science, China, learning english, social, southasia, business, institutional, multimedia
109
+ - We processed this dataset to combine two sets of relevant but low prevalence classes.
110
+ - Namely, we merged the samples from Pakistan, China, international, and southasia as one class called international.
111
+ - Likewise, we also merged samples from news, business, social, learning english, and institutional as news.
112
+ - Lastly, we also removed the class multimedia because there were very few samples.
113
+
114
+ #### Who are the source language producers?
115
+
116
+ Pls refer to this paper: "https://www.aclweb.org/anthology/2020.aacl-main.71"
117
+
118
+ ### Annotations
119
+
120
+ #### Annotation process
121
+
122
+ Annotation process has been described in Dataset Creation Section.
123
+
124
+ #### Who are the annotators?
125
+
126
+ Annotation is done automatically.
127
+
128
+ ### Personal and Sensitive Information
129
+
130
+ No Personal and Sensitive Information is mentioned in the Datasets.
131
+
132
+ ## Considerations for Using the Data
133
+
134
+ Pls refer to this paper: https://www.aclweb.org/anthology/2020.aacl-main.71
135
+
136
+ ### Discussion of Biases
137
+
138
+ Pls refer to this paper: https://www.aclweb.org/anthology/2020.aacl-main.71
139
+
140
+ ### Other Known Limitations
141
+
142
+ No other known limitations
143
+
144
+ ## Additional Information
145
+
146
+ Pls refer to this link: https://github.com/midas-research/hindi-nli-data
147
+
148
+ ### Dataset Curators
149
+
150
+ It is written in the repo : https://github.com/avinsit123/hindi-nli-data that
151
+ - This corpus can be used freely for research purposes.
152
+ - The paper listed below provide details of the creation and use of the corpus. If you use the corpus, then please cite the paper.
153
+ - If interested in commercial use of the corpus, send email to [email protected].
154
+ - If you use the corpus in a product or application, then please credit the authors and Multimodal Digital Media Analysis Lab - Indraprastha Institute of Information Technology, New Delhi appropriately. Also, if you send us an email, we will be thrilled to know about how you have used the corpus.
155
+ - Multimodal Digital Media Analysis Lab - Indraprastha Institute of Information Technology, New Delhi, India disclaims any responsibility for the use of the corpus and does not provide technical support. However, the contact listed above will be happy to respond to queries and clarifications.
156
+ - Rather than redistributing the corpus, please direct interested parties to this page
157
+ - Please feel free to send us an email:
158
+ - with feedback regarding the corpus.
159
+ - with information on how you have used the corpus.
160
+ - if interested in having us analyze your data for natural language inference.
161
+ - if interested in a collaborative research project.
162
+
163
+
164
+ ### Licensing Information
165
+
166
+ Copyright (C) 2019 Multimodal Digital Media Analysis Lab - Indraprastha Institute of Information Technology, New Delhi (MIDAS, IIIT-Delhi).
167
+ Pls contact authors for any information on the dataset.
168
+
169
+ ### Citation Information
170
+
171
+ ```
172
+ @inproceedings{uppal-etal-2020-two,
173
+ title = "Two-Step Classification using Recasted Data for Low Resource Settings",
174
+ author = "Uppal, Shagun and
175
+ Gupta, Vivek and
176
+ Swaminathan, Avinash and
177
+ Zhang, Haimin and
178
+ Mahata, Debanjan and
179
+ Gosangi, Rakesh and
180
+ Shah, Rajiv Ratn and
181
+ Stent, Amanda",
182
+ booktitle = "Proceedings of the 1st Conference of the Asia-Pacific Chapter of the Association for Computational Linguistics and the 10th International Joint Conference on Natural Language Processing",
183
+ month = dec,
184
+ year = "2020",
185
+ address = "Suzhou, China",
186
+ publisher = "Association for Computational Linguistics",
187
+ url = "https://www.aclweb.org/anthology/2020.aacl-main.71",
188
+ pages = "706--719",
189
+ abstract = "An NLP model{'}s ability to reason should be independent of language. Previous works utilize Natural Language Inference (NLI) to understand the reasoning ability of models, mostly focusing on high resource languages like English. To address scarcity of data in low-resource languages such as Hindi, we use data recasting to create NLI datasets for four existing text classification datasets. Through experiments, we show that our recasted dataset is devoid of statistical irregularities and spurious patterns. We further study the consistency in predictions of the textual entailment models and propose a consistency regulariser to remove pairwise-inconsistencies in predictions. We propose a novel two-step classification method which uses textual-entailment predictions for classification task. We further improve the performance by using a joint-objective for classification and textual entailment. We therefore highlight the benefits of data recasting and improvements on classification performance using our approach with supporting experimental results.",
190
+ }
191
+ ```
192
+
193
+ ### Contributions
194
+
195
+ Thanks to [@avinsit123](https://github.com/avinsit123) for adding this dataset.
bbc_hindi_nli.py ADDED
@@ -0,0 +1,161 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # coding=utf-8
2
+ # Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor.
3
+ #
4
+ # Licensed under the Apache License, Version 2.0 (the "License");
5
+ # you may not use this file except in compliance with the License.
6
+ # You may obtain a copy of the License at
7
+ #
8
+ # http://www.apache.org/licenses/LICENSE-2.0
9
+ #
10
+ # Unless required by applicable law or agreed to in writing, software
11
+ # distributed under the License is distributed on an "AS IS" BASIS,
12
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13
+ # See the License for the specific language governing permissions and
14
+ # limitations under the License.
15
+ """TODO: Add a description here."""
16
+
17
+ from __future__ import absolute_import, division, print_function
18
+
19
+ import csv
20
+
21
+ import datasets
22
+
23
+
24
+ # TODO: Add BibTeX citation
25
+ # Find for instance the citation on arxiv or on the dataset repo/website
26
+ _CITATION = """\
27
+ @inproceedings{uppal-etal-2020-two,
28
+ title = "Two-Step Classification using Recasted Data for Low Resource Settings",
29
+ author = "Uppal, Shagun and
30
+ Gupta, Vivek and
31
+ Swaminathan, Avinash and
32
+ Zhang, Haimin and
33
+ Mahata, Debanjan and
34
+ Gosangi, Rakesh and
35
+ Shah, Rajiv Ratn and
36
+ Stent, Amanda",
37
+ booktitle = "Proceedings of the 1st Conference of the Asia-Pacific Chapter of the Association for Computational Linguistics and the 10th International Joint Conference on Natural Language Processing",
38
+ month = dec,
39
+ year = "2020",
40
+ address = "Suzhou, China",
41
+ publisher = "Association for Computational Linguistics",
42
+ url = "https://www.aclweb.org/anthology/2020.aacl-main.71",
43
+ pages = "706--719",
44
+ abstract = "An NLP model{'}s ability to reason should be independent of language. Previous works utilize Natural Language Inference (NLI) to understand the reasoning ability of models, mostly focusing on high resource languages like English. To address scarcity of data in low-resource languages such as Hindi, we use data recasting to create NLI datasets for four existing text classification datasets. Through experiments, we show that our recasted dataset is devoid of statistical irregularities and spurious patterns. We further study the consistency in predictions of the textual entailment models and propose a consistency regulariser to remove pairwise-inconsistencies in predictions. We propose a novel two-step classification method which uses textual-entailment predictions for classification task. We further improve the performance by using a joint-objective for classification and textual entailment. We therefore highlight the benefits of data recasting and improvements on classification performance using our approach with supporting experimental results.",
45
+ }
46
+ """
47
+
48
+ # TODO: Add description of the dataset here
49
+ # You can copy an official description
50
+ _DESCRIPTION = """\
51
+ This dataset is used to train models for Natural Language Inference Tasks in Low-Resource Languages like Hindi.
52
+ """
53
+
54
+ # TODO: Add a link to an official homepage for the dataset here
55
+ _HOMEPAGE = "https://github.com/avinsit123/hindi-nli-data"
56
+
57
+ # TODO: Add the licence for the dataset here if you can find it
58
+ _LICENSE = """
59
+ MIT License
60
+
61
+ Copyright (c) 2019 MIDAS, IIIT Delhi
62
+
63
+ Permission is hereby granted, free of charge, to any person obtaining a copy
64
+ of this software and associated documentation files (the "Software"), to deal
65
+ in the Software without restriction, including without limitation the rights
66
+ to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
67
+ copies of the Software, and to permit persons to whom the Software is
68
+ furnished to do so, subject to the following conditions:
69
+
70
+ The above copyright notice and this permission notice shall be included in all
71
+ copies or substantial portions of the Software.
72
+
73
+ THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
74
+ IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
75
+ FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
76
+ AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
77
+ LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
78
+ OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
79
+ SOFTWARE.
80
+ """
81
+
82
+ _TRAIN_DOWNLOAD_URL = (
83
+ "https://raw.githubusercontent.com/avinsit123/hindi-nli-data/master/Textual_Entailment/BBC/BBC_recasted_train.tsv"
84
+ )
85
+ _VALID_DOWNLOAD_URL = (
86
+ "https://raw.githubusercontent.com/avinsit123/hindi-nli-data/master/Textual_Entailment/BBC/BBC_recasted_dev.tsv"
87
+ )
88
+ _TEST_DOWNLOAD_URL = (
89
+ "https://raw.githubusercontent.com/avinsit123/hindi-nli-data/master/Textual_Entailment/BBC/BBC_recasted_test.tsv"
90
+ )
91
+
92
+
93
+ class BbcHindiNLIConfig(datasets.BuilderConfig):
94
+ """BuilderConfig for BBC Hindi NLI Config"""
95
+
96
+ def __init__(self, **kwargs):
97
+ """BuilderConfig for BBC Hindi NLI Config.
98
+ Args:
99
+ **kwargs: keyword arguments forwarded to super.
100
+ """
101
+ super(BbcHindiNLIConfig, self).__init__(**kwargs)
102
+
103
+
104
+ class BbcHindiNLI(datasets.GeneratorBasedBuilder):
105
+ """BBC Hindi NLI dataset -- Dataset providing textual-entailment pairs for NLI tasks in Hindi"""
106
+
107
+ BUILDER_CONFIGS = [
108
+ BbcHindiNLIConfig(
109
+ name="bbc hindi nli",
110
+ version=datasets.Version("1.1.0"),
111
+ description="BBC Hindi NLI: Natural Language Inference Dataset in Hindi",
112
+ ),
113
+ ]
114
+
115
+ def _info(self):
116
+
117
+ return datasets.DatasetInfo(
118
+ description=_DESCRIPTION,
119
+ features=datasets.Features(
120
+ {
121
+ "premise": datasets.Value("string"),
122
+ "hypothesis": datasets.Value("string"),
123
+ "label": datasets.ClassLabel(names=["not-entailment", "entailment"]),
124
+ "topic": datasets.ClassLabel(
125
+ names=["india", "news", "international", "entertainment", "sport", "science"]
126
+ ),
127
+ }
128
+ ),
129
+ supervised_keys=None,
130
+ homepage=_HOMEPAGE,
131
+ license=_LICENSE,
132
+ citation=_CITATION,
133
+ )
134
+
135
+ def _split_generators(self, dl_manager):
136
+ """Returns SplitGenerators."""
137
+ train_path = dl_manager.download_and_extract(_TRAIN_DOWNLOAD_URL)
138
+ test_path = dl_manager.download_and_extract(_TEST_DOWNLOAD_URL)
139
+ valid_path = dl_manager.download_and_extract(_VALID_DOWNLOAD_URL)
140
+
141
+ return [
142
+ datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"filepath": train_path}),
143
+ datasets.SplitGenerator(name=datasets.Split.VALIDATION, gen_kwargs={"filepath": valid_path}),
144
+ datasets.SplitGenerator(name=datasets.Split.TEST, gen_kwargs={"filepath": test_path}),
145
+ ]
146
+
147
+ def _generate_examples(self, filepath):
148
+ """ Yields examples. """
149
+
150
+ with open(filepath, encoding="utf-8") as tsv_file:
151
+ tsv_reader = csv.reader(tsv_file, delimiter="\t")
152
+ for id_, row in enumerate(tsv_reader):
153
+ if id_ == 0:
154
+ continue
155
+ (premise, hypothesis, label, topic) = row
156
+ yield id_, {
157
+ "premise": premise,
158
+ "hypothesis": hypothesis,
159
+ "label": 1 if label == "entailed" else 0,
160
+ "topic": int(topic),
161
+ }
dataset_infos.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"bbc hindi nli": {"description": "This dataset is used to train models for Natural Language Inference Tasks in Low-Resource Languages like Hindi.\n", "citation": " @inproceedings{uppal-etal-2020-two,\n title = \"Two-Step Classification using Recasted Data for Low Resource Settings\",\n author = \"Uppal, Shagun and\n Gupta, Vivek and\n Swaminathan, Avinash and\n Zhang, Haimin and\n Mahata, Debanjan and\n Gosangi, Rakesh and\n Shah, Rajiv Ratn and\n Stent, Amanda\",\n booktitle = \"Proceedings of the 1st Conference of the Asia-Pacific Chapter of the Association for Computational Linguistics and the 10th International Joint Conference on Natural Language Processing\",\n month = dec,\n year = \"2020\",\n address = \"Suzhou, China\",\n publisher = \"Association for Computational Linguistics\",\n url = \"https://www.aclweb.org/anthology/2020.aacl-main.71\",\n pages = \"706--719\",\n abstract = \"An NLP model{'}s ability to reason should be independent of language. Previous works utilize Natural Language Inference (NLI) to understand the reasoning ability of models, mostly focusing on high resource languages like English. To address scarcity of data in low-resource languages such as Hindi, we use data recasting to create NLI datasets for four existing text classification datasets. Through experiments, we show that our recasted dataset is devoid of statistical irregularities and spurious patterns. We further study the consistency in predictions of the textual entailment models and propose a consistency regulariser to remove pairwise-inconsistencies in predictions. We propose a novel two-step classification method which uses textual-entailment predictions for classification task. We further improve the performance by using a joint-objective for classification and textual entailment. We therefore highlight the benefits of data recasting and improvements on classification performance using our approach with supporting experimental results.\",\n}\n", "homepage": "https://github.com/avinsit123/hindi-nli-data", "license": "\nMIT License\n\nCopyright (c) 2019 MIDAS, IIIT Delhi\n\nPermission is hereby granted, free of charge, to any person obtaining a copy\nof this software and associated documentation files (the \"Software\"), to deal\nin the Software without restriction, including without limitation the rights\nto use, copy, modify, merge, publish, distribute, sublicense, and/or sell\ncopies of the Software, and to permit persons to whom the Software is\nfurnished to do so, subject to the following conditions:\n\nThe above copyright notice and this permission notice shall be included in all\ncopies or substantial portions of the Software.\n\nTHE SOFTWARE IS PROVIDED \"AS IS\", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR\nIMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,\nFITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE\nAUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER\nLIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,\nOUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE\nSOFTWARE.\n", "features": {"premise": {"dtype": "string", "id": null, "_type": "Value"}, "hypothesis": {"dtype": "string", "id": null, "_type": "Value"}, "label": {"num_classes": 2, "names": ["not-entailment", "entailment"], "names_file": null, "id": null, "_type": "ClassLabel"}, "topic": {"num_classes": 6, "names": ["india", "news", "international", "entertainment", "sport", "science"], "names_file": null, "id": null, "_type": "ClassLabel"}}, "post_processed": null, "supervised_keys": null, "builder_name": "bbc_hindi_nli", "config_name": "bbc hindi nli", "version": {"version_str": "1.1.0", "description": null, "major": 1, "minor": 1, "patch": 0}, "splits": {"train": {"name": "train", "num_bytes": 2990080, "num_examples": 15552, "dataset_name": "bbc_hindi_nli"}, "validation": {"name": "validation", "num_bytes": 496808, "num_examples": 2580, "dataset_name": "bbc_hindi_nli"}, "test": {"name": "test", "num_bytes": 494432, "num_examples": 2592, "dataset_name": "bbc_hindi_nli"}}, "download_checksums": {"https://raw.githubusercontent.com/avinsit123/hindi-nli-data/master/Textual_Entailment/BBC/BBC_recasted_train.tsv": {"num_bytes": 2865740, "checksum": "35aa4408b87d6a4bc9a896a1244598619ef95944f200f09dc1b67517a6f7caa6"}, "https://raw.githubusercontent.com/avinsit123/hindi-nli-data/master/Textual_Entailment/BBC/BBC_recasted_test.tsv": {"num_bytes": 473720, "checksum": "9dd74eed0546156c7d9dfca6eed90419c34d09b2968166d1c5c4130f2606b598"}, "https://raw.githubusercontent.com/avinsit123/hindi-nli-data/master/Textual_Entailment/BBC/BBC_recasted_dev.tsv": {"num_bytes": 476192, "checksum": "37fabb5b29319db5189d9e201b9510d8febf29cfb5fd0e1dae1b9841b6b268b0"}}, "download_size": 3815652, "post_processing_size": null, "dataset_size": 3981320, "size_in_bytes": 7796972}}
dummy/bbc hindi nli/1.1.0/dummy_data.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:61f8be49ae9ae7bab30d8d424d2b5dc20a31f9af500844db34d12b2ce75939f5
3
+ size 4072