File size: 7,635 Bytes
4a802a0 47d4691 4a802a0 47d4691 9e238a7 4a802a0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 |
# coding=utf-8
# Copyright 2020 The TensorFlow Datasets Authors and the HuggingFace Datasets Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# Lint as: python3
"""XNLI: The Cross-Lingual NLI Corpus."""
import collections
import csv
import os
from contextlib import ExitStack
import datasets
_CITATION = """\
@InProceedings{conneau2018xnli,
author = {Conneau, Alexis
and Rinott, Ruty
and Lample, Guillaume
and Williams, Adina
and Bowman, Samuel R.
and Schwenk, Holger
and Stoyanov, Veselin},
title = {XNLI: Evaluating Cross-lingual Sentence Representations},
booktitle = {Proceedings of the 2018 Conference on Empirical Methods
in Natural Language Processing},
year = {2018},
publisher = {Association for Computational Linguistics},
location = {Brussels, Belgium},
}"""
_DESCRIPTION = """\
XNLI is a subset of a few thousand examples from MNLI which has been translated
into a 14 different languages (some low-ish resource). As with MNLI, the goal is
to predict textual entailment (does sentence A imply/contradict/neither sentence
B) and is a classification task (given two sentences, predict one of three
labels).
"""
_TRAIN_DATA_URL = "https://dl.fbaipublicfiles.com/XNLI/XNLI-MT-1.0.zip"
_TESTVAL_DATA_URL = "https://dl.fbaipublicfiles.com/XNLI/XNLI-1.0.zip"
_LANGUAGES = ("ar", "bg", "de", "el", "en", "es", "fr", "hi", "ru", "sw", "th", "tr", "ur", "vi", "zh")
class XnliConfig(datasets.BuilderConfig):
"""BuilderConfig for XNLI."""
def __init__(self, language: str, languages=None, **kwargs):
"""BuilderConfig for XNLI.
Args:
language: One of ar,bg,de,el,en,es,fr,hi,ru,sw,th,tr,ur,vi,zh, or all_languages
**kwargs: keyword arguments forwarded to super.
"""
super(XnliConfig, self).__init__(**kwargs)
self.language = language
if language != "all_languages":
self.languages = [language]
else:
self.languages = languages if languages is not None else _LANGUAGES
class Xnli(datasets.GeneratorBasedBuilder):
"""XNLI: The Cross-Lingual NLI Corpus. Version 1.0."""
VERSION = datasets.Version("1.1.0", "")
BUILDER_CONFIG_CLASS = XnliConfig
BUILDER_CONFIGS = [
XnliConfig(
name=lang,
language=lang,
version=datasets.Version("1.1.0", ""),
description=f"Plain text import of XNLI for the {lang} language",
)
for lang in _LANGUAGES
]
def _info(self):
features = datasets.Features(
{
"premise": datasets.Value("string"),
"hypothesis": datasets.Value("string"),
"label": datasets.ClassLabel(names=["entailment", "neutral", "contradiction"]),
}
)
return datasets.DatasetInfo(
description=_DESCRIPTION,
features=features,
# No default supervised_keys (as we have to pass both premise
# and hypothesis as input).
supervised_keys=None,
homepage="https://www.nyu.edu/projects/bowman/xnli/",
citation=_CITATION,
)
def _split_generators(self, dl_manager):
dl_dirs = dl_manager.download_and_extract(
{
"train_data": _TRAIN_DATA_URL,
"testval_data": _TESTVAL_DATA_URL,
}
)
train_dir = os.path.join(dl_dirs["train_data"], "XNLI-MT-1.0", "multinli")
testval_dir = os.path.join(dl_dirs["testval_data"], "XNLI-1.0")
return [
datasets.SplitGenerator(
name=datasets.Split.TEST,
gen_kwargs={"filepaths": [os.path.join(testval_dir, "xnli.test.tsv")], "data_format": "XNLI"},
),
datasets.SplitGenerator(
name=datasets.Split.VALIDATION,
gen_kwargs={"filepaths": [os.path.join(testval_dir, "xnli.dev.tsv")], "data_format": "XNLI"},
),
]
def _generate_examples(self, data_format, filepaths):
"""This function returns the examples in the raw (text) form."""
if self.config.language == "all_languages":
if data_format == "XNLI-MT":
with ExitStack() as stack:
files = [stack.enter_context(open(filepath, encoding="utf-8")) for filepath in filepaths]
readers = [csv.DictReader(file, delimiter="\t", quoting=csv.QUOTE_NONE) for file in files]
for row_idx, rows in enumerate(zip(*readers)):
yield row_idx, {
"premise": {lang: row["premise"] for lang, row in zip(self.config.languages, rows)},
"hypothesis": {lang: row["hypo"] for lang, row in zip(self.config.languages, rows)},
"label": rows[0]["label"].replace("contradictory", "contradiction"),
}
else:
rows_per_pair_id = collections.defaultdict(list)
for filepath in filepaths:
with open(filepath, encoding="utf-8") as f:
reader = csv.DictReader(f, delimiter="\t", quoting=csv.QUOTE_NONE)
for row in reader:
rows_per_pair_id[row["pairID"]].append(row)
for rows in rows_per_pair_id.values():
premise = {row["language"]: row["sentence1"] for row in rows}
hypothesis = {row["language"]: row["sentence2"] for row in rows}
yield rows[0]["pairID"], {
"premise": premise,
"hypothesis": hypothesis,
"label": rows[0]["gold_label"],
}
else:
if data_format == "XNLI-MT":
for file_idx, filepath in enumerate(filepaths):
file = open(filepath, encoding="utf-8")
reader = csv.DictReader(file, delimiter="\t", quoting=csv.QUOTE_NONE)
for row_idx, row in enumerate(reader):
key = str(file_idx) + "_" + str(row_idx)
yield key, {
"premise": row["premise"],
"hypothesis": row["hypo"],
"label": row["label"].replace("contradictory", "contradiction"),
}
else:
for filepath in filepaths:
with open(filepath, encoding="utf-8") as f:
reader = csv.DictReader(f, delimiter="\t", quoting=csv.QUOTE_NONE)
for row in reader:
if row["language"] == self.config.language:
yield row["pairID"], {
"premise": row["sentence1"],
"hypothesis": row["sentence2"],
"label": row["gold_label"],
}
|