mattismegevand commited on
Commit
4d5d3e0
·
1 Parent(s): bd272ca

init commit

Browse files
Files changed (3) hide show
  1. README.md +46 -3
  2. get_url.py +59 -0
  3. scrape_pitchfork.py +149 -0
README.md CHANGED
@@ -1,3 +1,46 @@
1
- ---
2
- license: mit
3
- ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Pitchfork Music Reviews Dataset
2
+
3
+ This repository contains the code and dataset for scraping music reviews from Pitchfork.
4
+
5
+ ## Dataset Overview
6
+
7
+ The Pitchfork Music Reviews dataset is a collection of music album reviews from the Pitchfork website. Each entry in the dataset represents a single review and includes the following attributes:
8
+
9
+ - `artist`: The artist of the album.
10
+ - `album`: The name of the album.
11
+ - `year_released`: The year the album was released.
12
+ - `rating`: The rating given to the album by the reviewer.
13
+ - `small_text`: A short snippet from the review.
14
+ - `review`: The full text of the review.
15
+ - `reviewer`: The name of the reviewer.
16
+ - `genre`: The genre(s) of the album.
17
+ - `label`: The record label that released the album.
18
+ - `release_date`: The release date of the review.
19
+ - `album_art_url`: The URL of the album art.
20
+
21
+ ## Usage
22
+
23
+ This dataset is publicly available for research. The data is provided 'as is', and you assume full responsibility for any legal or ethical issues that may arise from the use of the data.
24
+
25
+ ## Scraping Process
26
+
27
+ The dataset was generated by scraping the Pitchfork website. The Python script uses the `requests` and `BeautifulSoup` libraries to send HTTP requests to the website and parse the resulting HTML content.
28
+
29
+ The script saves the data in an SQLite database and can also export the data to a CSV file. Duplicate entries are avoided by checking for existing entries with the same artist and album name before inserting new ones into the database.
30
+
31
+ ## Potential Applications
32
+
33
+ This dataset can be used for a variety of research purposes, such as:
34
+
35
+ - Music information retrieval
36
+ - Text mining and sentiment analysis
37
+ - Music recommendation systems
38
+ - Music trend analysis
39
+
40
+ ## Acknowledgments
41
+
42
+ The dataset is sourced from [Pitchfork](https://pitchfork.com/), a website that publishes daily reviews, features, and news stories about music.
43
+
44
+ ## License
45
+
46
+ Please ensure you comply with Pitchfork's terms of service before using or distributing this data.
get_url.py ADDED
@@ -0,0 +1,59 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import requests
2
+ import pandas as pd
3
+
4
+ from concurrent.futures import ThreadPoolExecutor
5
+ from bs4 import BeautifulSoup
6
+ from os.path import isfile
7
+ from sys import argv
8
+
9
+
10
+ def fetch(args):
11
+ ''' Fetch a single url '''
12
+ url, session = args
13
+ response = session.get(url)
14
+ page_number = url.split('=')[-1]
15
+ soup = BeautifulSoup(response.text, 'lxml')
16
+ error = soup.find('div', {'class': 'error-page'})
17
+ if error:
18
+ print(f'Error page: {url} does not exist')
19
+ return []
20
+ print('.', end='', flush=True)
21
+ return [(page_number, f"https://pitchfork.com{e['href']}") for e in soup.find_all('a', {'class': 'review__link'})]
22
+
23
+ def get_urls(start, end):
24
+ ''' Return a list of urls from the Pitchfork reviews page '''
25
+ urls = [f'https://pitchfork.com/reviews/albums/?page={i}' for i in range(start, end+1)]
26
+ reviews = []
27
+ session = requests.Session()
28
+ with ThreadPoolExecutor(max_workers=5) as executor:
29
+ for result in executor.map(fetch, ((url, session) for url in urls)):
30
+ reviews.extend(result)
31
+ print()
32
+ return reviews
33
+
34
+ def insert_into_df(data):
35
+ ''' Insert data into a pandas dataframe '''
36
+ df = pd.DataFrame(data, columns=['page', 'url'])
37
+ df.drop_duplicates(subset='url', keep='first', inplace=True)
38
+ return df
39
+
40
+ def main():
41
+ start, end = int(argv[1]), int(argv[2])
42
+ print(f'Fetching urls from pages {start} to {end}')
43
+ data = get_urls(start, end)
44
+ print(f'Fetched {len(data)} urls')
45
+ df = insert_into_df(data)
46
+
47
+ print(f'Writing to urls.csv')
48
+ if isfile('urls.csv'):
49
+ df_existing = pd.read_csv('urls.csv')
50
+ df_combined = pd.concat([df_existing, df])
51
+ else:
52
+ df_combined = df
53
+
54
+ df_combined.drop_duplicates(subset='url', keep='first', inplace=True)
55
+ df_combined.to_csv('urls.csv', index=False)
56
+ print('Done')
57
+
58
+ if __name__ == '__main__':
59
+ main()
scrape_pitchfork.py ADDED
@@ -0,0 +1,149 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import re
2
+ import requests
3
+ import sqlite3
4
+ import pandas as pd
5
+
6
+ from concurrent.futures import ThreadPoolExecutor
7
+ from bs4 import BeautifulSoup, SoupStrainer
8
+ from sys import argv
9
+
10
+ regexes = {
11
+ 'artist': re.compile(r'SplitScreenContentHeaderArtist-\w*'),
12
+ 'album': re.compile(r'SplitScreenContentHeaderHed-\w*'),
13
+ 'year_released': re.compile(r'SplitScreenContentHeaderReleaseYear-\w*'),
14
+ 'rating': re.compile(r'Rating-\w*'),
15
+ 'small_text': re.compile(r'SplitScreenContentHeaderDekDown-\w*'),
16
+ 'review': re.compile(r'body__inner-container'),
17
+ 'reviewer': re.compile(r'BylineName'),
18
+ 'genre': re.compile(r'SplitScreenContentHeaderInfoSlice-\w*'),
19
+ 'label': re.compile(r'SplitScreenContentHeaderInfoSlice-\w*'),
20
+ 'reviewed': re.compile(r'SplitScreenContentHeaderInfoSlice-\w*'),
21
+ 'album_art_url': re.compile(r'SplitScreenContentHeaderImage-\w*'),
22
+ }
23
+
24
+ def fetch(args):
25
+ ''' Fetch a single url and return a dictionary of data from a Pitchfork review '''
26
+ url, session = args
27
+ response = session.get(url)
28
+ if response.status_code == 200:
29
+ soup_strainer = SoupStrainer('article', {'data-testid': 'ReviewPageArticle'})
30
+ soup = BeautifulSoup(response.content, 'lxml', parse_only=soup_strainer)
31
+ if soup.find('article', {'data-testid': 'ReviewPageArticle'}) is None:
32
+ with open('not_done.txt', 'a') as f:
33
+ f.write(url + '\n')
34
+ return None
35
+ print('.', end='', flush=True)
36
+ result = data_from_soup(soup)
37
+ if result is None:
38
+ with open('not_done.txt', 'a') as f:
39
+ f.write(url + '\n')
40
+ return result
41
+ else:
42
+ with open('errors.txt', 'a') as f:
43
+ f.write(url + '\n')
44
+ return None
45
+
46
+ def get_reviews(urls):
47
+ ''' Return a list of review data dictionaries from the provided urls '''
48
+ reviews = []
49
+ session = requests.Session()
50
+ with ThreadPoolExecutor() as executor:
51
+ for result in executor.map(fetch, ((url, session) for url in urls)):
52
+ if result: # Check if result is not None
53
+ reviews.append(result)
54
+ print()
55
+ return reviews
56
+
57
+ def data_from_soup(soup):
58
+ ''' Return a dictionary of data from a Pitchfork review '''
59
+ artist = soup.find('div', {'class': regexes['artist']}).text.strip()
60
+ album = soup.find('h1', {'class': regexes['album']}).text.strip()
61
+ year_released = soup.find('time', {'class': regexes['year_released']})
62
+ if year_released:
63
+ year_released = int(year_released.text.strip())
64
+ else:
65
+ return None
66
+ rating = float(soup.find('p', {'class': regexes['rating']}).text.strip())
67
+ small_text = soup.find('div', {'class': regexes['small_text']})
68
+ small_text = small_text.text.strip() if small_text else 'N/A'
69
+ review = "".join(e.text for e in soup.find('div', {'class': regexes['review']}).descendants if e.name == 'p')
70
+ reviewer = soup.find('span', {'data-testid': regexes['reviewer']})
71
+ reviewer = reviewer.text.strip()[3:] if reviewer else 'N/A'
72
+ misc = [e.text for e in soup.find('div', {'class': regexes['genre']}).descendants if e.name == 'li']
73
+ misc = {'genre': 'N/A', 'label': 'N/A', 'reviewed': 'N/A'} | {e.split(':')[0].strip().lower(): e.split(':')[1].strip() for e in misc}
74
+ album_art_url = soup.find('source', {'media': '(max-width: 767px)'})
75
+ album_art_url = album_art_url['srcset'].split(',')[-2].strip() if album_art_url else 'N/A'
76
+ return {
77
+ 'artist': artist, 'album': album, 'year_released': year_released,
78
+ 'rating': rating, 'small_text': small_text, 'review': review,
79
+ 'reviewer': reviewer, 'genre': misc['genre'], 'label': misc['label'],
80
+ 'reviewed': misc['reviewed'], 'album_art_url': album_art_url,
81
+ }
82
+
83
+ def insert_into_db(data, cursor):
84
+ ''' Insert data into a sqlite3 database '''
85
+ for review in data:
86
+ artist = review.get('artist')
87
+ album = review.get('album')
88
+ year_released = review.get('year_released')
89
+ rating = review.get('rating')
90
+ small_text = review.get('small_text')
91
+ review_text = review.get('review') # 'review' is a reserved word in Python
92
+ reviewer = review.get('reviewer')
93
+ genre = review.get('genre')
94
+ label = review.get('label')
95
+ reviewed = review.get('reviewed')
96
+ album_art_url = review.get('album_art_url')
97
+
98
+ cursor.execute('SELECT * FROM reviews WHERE artist=? AND album=?', (artist, album))
99
+ result = cursor.fetchone()
100
+ if result is None:
101
+ # Insert new review into database
102
+ cursor.execute('''
103
+ INSERT INTO reviews (
104
+ artist, album, year_released, rating, small_text,
105
+ review, reviewer, genre, label, reviewed, album_art_url
106
+ ) VALUES (?, ?, ?, ?, ?, ?, ?, ?, ?, ?, ?)
107
+ ''', (
108
+ artist, album, year_released, rating, small_text, review_text,
109
+ reviewer, genre, label, reviewed, album_art_url
110
+ ))
111
+
112
+ def main(start, end):
113
+ conn = sqlite3.connect('reviews.db')
114
+ c = conn.cursor()
115
+
116
+ # Create table with all necessary fields
117
+ c.execute('''
118
+ CREATE TABLE IF NOT EXISTS reviews (
119
+ artist TEXT,
120
+ album TEXT,
121
+ year_released INTEGER,
122
+ rating REAL,
123
+ small_text TEXT,
124
+ review TEXT,
125
+ reviewer TEXT,
126
+ genre TEXT,
127
+ label TEXT,
128
+ reviewed TEXT,
129
+ album_art_url TEXT
130
+ )
131
+ ''')
132
+
133
+ # Read URLs from a CSV file into a list
134
+ df = pd.read_csv('urls.csv')
135
+ urls = df['url'].tolist() # replace 'url' with your actual column name
136
+ start, end = max(0, start), min(len(urls), end)
137
+ urls = urls[start:end]
138
+
139
+ print(f'Fetching {len(urls)} reviews')
140
+ data = get_reviews(urls)
141
+ print(f'Fetching complete. Inserting into database')
142
+ insert_into_db(data, c)
143
+ print('Done')
144
+
145
+ conn.commit()
146
+ conn.close()
147
+
148
+ if __name__ == '__main__':
149
+ main(int(argv[1]), int(argv[2]))