import csv import os import datasets logger = datasets.logging.get_logger(__name__) _DESCRIPTION = """ """ _URLS = { "clothing": "https://drive.google.com/u/0/uc?id=1HP3EPX9Q8JffUUZz2czXD7qudzvitscq&export=download", "electronics": "https://drive.google.com/u/0/uc?id=1W50FNd0707qK1CCktEF30nlDqsImLg3X&export=download", "office": "https://drive.google.com/u/0/uc?id=1lsttnBIjFD4nQw9idZYQNUWKSzj5VibD&export=download", } _FIELDS = ["date", "rating", "reviewText", "summary"] _RATINGS = ["1", "2", "3", "4", "5"] class AmazonConfig(datasets.BuilderConfig): def __init__( self, training_files, testing_files, url, label_classes=_RATINGS, **kwargs, ): super().__init__(version=datasets.Version("1.0.0", ""), **kwargs) self.label_classes = label_classes self.training_files = training_files self.testing_files = testing_files self.url = url class Amazon(datasets.GeneratorBasedBuilder): BUILDER_CONFIGS = [ AmazonConfig( name="clothing_majorshift01", description="", url=_URLS["clothing"], training_files=[ "201011.csv", "201012.csv", "201101.csv", "201102.csv", "201103.csv", "201104.csv", "201105.csv", "201106.csv", "201107.csv", "201108.csv", "201109.csv", "201110.csv", "201111.csv", "201112.csv", "201201.csv", "201202.csv", "201203.csv", "201204.csv", "201205.csv", "201206.csv", "201207.csv", "201208.csv", "201209.csv", "201210.csv", ], testing_files=[ "201211.csv", "201212.csv", "201301.csv", "201302.csv", "201303.csv", "201304.csv", ], ), AmazonConfig( name="clothing_majorshift02", description="", url=_URLS["clothing"], training_files=[ "200808.csv", "200809.csv", "200810.csv", "200811.csv", "200812.csv", "200901.csv", "200902.csv", "200903.csv", "200904.csv", "200905.csv", "200906.csv", "200907.csv", "200908.csv", "200909.csv", "200910.csv", "200911.csv", "200912.csv", "201001.csv", "201002.csv", "201003.csv", "201004.csv", "201005.csv", "201006.csv", "201007.csv", ], testing_files=[ "201008.csv", "201009.csv", "201010.csv", "201011.csv", "201012.csv", "201101.csv", ], ), AmazonConfig( name="clothing_majorshift03", description="", url=_URLS["clothing"], training_files=[ "201602.csv", "201603.csv", "201604.csv", "201605.csv", "201606.csv", "201607.csv", "201608.csv", "201609.csv", "201610.csv", "201611.csv", "201612.csv", "201701.csv", "201702.csv", "201703.csv", "201704.csv", "201705.csv", "201706.csv", "201707.csv", "201708.csv", "201709.csv", "201710.csv", "201711.csv", "201712.csv", "201801.csv", ], testing_files=[ "201802.csv", "201803.csv", "201804.csv", "201805.csv", "201806.csv", "201807.csv", ], ), ] def _info(self): features = { "date": datasets.Value("string"), "id": datasets.Value("int32"), "label": datasets.features.ClassLabel(names=self.config.label_classes), "text": datasets.Value("string"), } return datasets.DatasetInfo( description=_DESCRIPTION, features=datasets.Features(features), ) def _split_generators(self, dl_manager): dirname = dl_manager.download_and_extract(self.config.url) logger.info(str(dirname)) category = self.config.name.split("_")[ 0 ] # extract category name from the config train_filepaths = tuple( os.path.join(dirname, category, fname) for fname in self.config.training_files ) test_filepaths = tuple( os.path.join(dirname, category, fname) for fname in self.config.testing_files ) return [ datasets.SplitGenerator( name=datasets.Split.TRAIN, gen_kwargs={"filepaths": train_filepaths}, ), datasets.SplitGenerator( name=datasets.Split.TEST, gen_kwargs={"filepaths": test_filepaths}, ), ] def _generate_examples(self, filepaths): logger.info(f"generating examples from {len(filepaths)} files") idx = 0 for filepath in filepaths: with open(filepath, encoding="utf-8") as f: reader = csv.DictReader(f, fieldnames=_FIELDS) for row in reader: yield idx, { "date": row["date"], "id": idx, "label": row["rating"], "text": row["reviewText"], } idx += 1