File size: 6,280 Bytes
6f241aa
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
import csv
import os

import datasets

logger = datasets.logging.get_logger(__name__)

_DESCRIPTION = """
"""

_URLS = {
    "clothing": "https://drive.google.com/u/0/uc?id=1HP3EPX9Q8JffUUZz2czXD7qudzvitscq&export=download",
    "electronics": "https://drive.google.com/u/0/uc?id=1W50FNd0707qK1CCktEF30nlDqsImLg3X&export=download",
    "office": "https://drive.google.com/u/0/uc?id=1lsttnBIjFD4nQw9idZYQNUWKSzj5VibD&export=download",
}

_FIELDS = ["date", "rating", "reviewText", "summary"]
_RATINGS = ["1", "2", "3", "4", "5"]


class AmazonConfig(datasets.BuilderConfig):
    def __init__(
        self,
        training_files,
        testing_files,
        url,
        label_classes=_RATINGS,
        **kwargs,
    ):
        super().__init__(version=datasets.Version("1.0.0", ""), **kwargs)
        self.label_classes = label_classes
        self.training_files = training_files
        self.testing_files = testing_files
        self.url = url


class Amazon(datasets.GeneratorBasedBuilder):
    BUILDER_CONFIGS = [
        AmazonConfig(
            name="clothing_majorshift01",
            description="",
            url=_URLS["clothing"],
            training_files=[
                "201011.csv",
                "201012.csv",
                "201101.csv",
                "201102.csv",
                "201103.csv",
                "201104.csv",
                "201105.csv",
                "201106.csv",
                "201107.csv",
                "201108.csv",
                "201109.csv",
                "201110.csv",
                "201111.csv",
                "201112.csv",
                "201201.csv",
                "201202.csv",
                "201203.csv",
                "201204.csv",
                "201205.csv",
                "201206.csv",
                "201207.csv",
                "201208.csv",
                "201209.csv",
                "201210.csv",
            ],
            testing_files=[
                "201211.csv",
                "201212.csv",
                "201301.csv",
                "201302.csv",
                "201303.csv",
                "201304.csv",
            ],
        ),
        AmazonConfig(
            name="clothing_majorshift02",
            description="",
            url=_URLS["clothing"],
            training_files=[
                "200808.csv",
                "200809.csv",
                "200810.csv",
                "200811.csv",
                "200812.csv",
                "200901.csv",
                "200902.csv",
                "200903.csv",
                "200904.csv",
                "200905.csv",
                "200906.csv",
                "200907.csv",
                "200908.csv",
                "200909.csv",
                "200910.csv",
                "200911.csv",
                "200912.csv",
                "201001.csv",
                "201002.csv",
                "201003.csv",
                "201004.csv",
                "201005.csv",
                "201006.csv",
                "201007.csv",
            ],
            testing_files=[
                "201008.csv",
                "201009.csv",
                "201010.csv",
                "201011.csv",
                "201012.csv",
                "201101.csv",
            ],
        ),
        AmazonConfig(
            name="clothing_majorshift03",
            description="",
            url=_URLS["clothing"],
            training_files=[
                "201602.csv",
                "201603.csv",
                "201604.csv",
                "201605.csv",
                "201606.csv",
                "201607.csv",
                "201608.csv",
                "201609.csv",
                "201610.csv",
                "201611.csv",
                "201612.csv",
                "201701.csv",
                "201702.csv",
                "201703.csv",
                "201704.csv",
                "201705.csv",
                "201706.csv",
                "201707.csv",
                "201708.csv",
                "201709.csv",
                "201710.csv",
                "201711.csv",
                "201712.csv",
                "201801.csv",
            ],
            testing_files=[
                "201802.csv",
                "201803.csv",
                "201804.csv",
                "201805.csv",
                "201806.csv",
                "201807.csv",
            ],
        ),
    ]

    def _info(self):
        features = {
            "date": datasets.Value("string"),
            "id": datasets.Value("int32"),
            "label": datasets.features.ClassLabel(names=self.config.label_classes),
            "text": datasets.Value("string"),
        }
        return datasets.DatasetInfo(
            description=_DESCRIPTION,
            features=datasets.Features(features),
        )

    def _split_generators(self, dl_manager):
        dirname = dl_manager.download_and_extract(self.config.url)
        logger.info(str(dirname))
        category = self.config.name.split("_")[
            0
        ]  # extract category name from the config
        train_filepaths = tuple(
            os.path.join(dirname, category, fname)
            for fname in self.config.training_files
        )
        test_filepaths = tuple(
            os.path.join(dirname, category, fname)
            for fname in self.config.testing_files
        )
        return [
            datasets.SplitGenerator(
                name=datasets.Split.TRAIN,
                gen_kwargs={"filepaths": train_filepaths},
            ),
            datasets.SplitGenerator(
                name=datasets.Split.TEST,
                gen_kwargs={"filepaths": test_filepaths},
            ),
        ]

    def _generate_examples(self, filepaths):
        logger.info(f"generating examples from {len(filepaths)} files")
        idx = 0
        for filepath in filepaths:
            with open(filepath, encoding="utf-8") as f:
                reader = csv.DictReader(f, fieldnames=_FIELDS)
                for row in reader:
                    yield idx, {
                        "date": row["date"],
                        "id": idx,
                        "label": row["rating"],
                        "text": row["reviewText"],
                    }
                    idx += 1