import datasets class LugandaSpeechDataset(datasets.GeneratorBasedBuilder): def _info(self): return datasets.DatasetInfo( description="This dataset contains speech recordings in Luganda.", features=datasets.Features({ "sentence": datasets.Value("string"), "language": datasets.Value("string"), "contributor_id": datasets.Value("int64"), "gender": datasets.Value("string"), "age_group": datasets.Value("string"), "voice_clip": datasets.Value("string"), "duration": datasets.Value("float64"), "up_votes": datasets.Value("int64"), "down_votes": datasets.Value("int64"), "Region": datasets.Value("string"), "path": datasets.Audio(sampling_rate=16000), }), supervised_keys=None, homepage="your_dataset_homepage", citation="Your citation", languages=["lg"] ) def _split_generators(self, dl_manager): return [ datasets.SplitGenerator( name=datasets.Split.TRAIN, gen_kwargs={"filepath": "data/train-*"}, ), datasets.SplitGenerator( name=datasets.Split.VALIDATION, gen_kwargs={"filepath": "data/eval-*"}, ), datasets.SplitGenerator( name=datasets.Split.TEST, gen_kwargs={"filepath": "data/test-*"}, ), ] def _generate_examples(self, filepath): # Your logic to parse the data file and generate examples with open(filepath, 'r', encoding='utf-8') as f: for line in f: data = line.strip().split(',') yield data[0], { "sentence": data[1], "language": data[2], "contributor_id": int(data[3]), "gender": data[4], "age_group": data[5], "voice_clip": data[6], "duration": float(data[7]), "up_votes": int(data[8]), "down_votes": int(data[9]), "Region": data[10], "path": data[11] }