File size: 3,177 Bytes
896f0d8
 
 
 
 
 
 
 
 
 
367de65
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1a97216
 
367de65
 
 
 
 
 
 
 
 
188d28c
 
1a97216
367de65
896f0d8
367de65
0d37ec0
367de65
0d37ec0
367de65
 
 
 
 
 
 
 
 
 
1a97216
367de65
 
 
 
1a97216
367de65
 
1a97216
367de65
 
 
 
1a97216
367de65
0d37ec0
367de65
0d37ec0
367de65
 
 
 
 
0d37ec0
367de65
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0d37ec0
367de65
 
 
 
 
e7fe55b
 
 
 
367de65
0d37ec0
367de65
0d37ec0
367de65
 
 
e7fe55b
 
 
 
 
 
 
 
 
367de65
896f0d8
 
0d37ec0
367de65
0d37ec0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
---
task_categories:
- text-classification
language:
- tl
- en
size_categories:
- 10K<n<100K
license: cc-by-4.0
---

# Dataset Card for 2016 and 2022 Hate Speech in Filipino

## Dataset Description

- **Homepage:** 
- **Repository:** 
- **Paper:** 
- **Leaderboard:** 
- **Point of Contact:** 

### Dataset Summary

Contains a total of 27,383 tweets that are labeled as hate speech (1) or non-hate speech (0). Split into 80-10-10 (train-validation-test) with a total of 21,773 tweets for training, 2,800 tweets for validation, and 2,810 tweets for testing.
Created by combining [hate_speech_filipino](https://huggingface.co/datasets/hate_speech_filipino) and a newly crawled 2022 Philippine Presidential Elections-related Tweets Hate Speech Dataset.

This dataset has an almost balanced number of hate and non-hate tweets:

```
Training Dataset:
Hate (1): 10,994
Non-hate (0): 10,779

Validation Dataset:
Hate (1): 1,415
Non-hate (0): 1,385

Testing Dataset:
Hate (1): 1,398
Non-hate (0): 1,412
```

Feel free to connect via [LinkedIn](https://www.linkedin.com/in/map-soriano/) for further information on this dataset or on the study that it was used on.

<!-- ### Supported Tasks and Leaderboards

[More Information Needed] -->

### Languages

The dataset consists mainly of Filipino text, supplemented with a few English words commonly employed in the Filipino language, especially during the 2016 and 2022 Philippine National/Presidential Elections

## Dataset Structure

### Data Instances

Non-hate speech sample data:
```
{
  "text": "Yes to BBM at SARA para sa ikakaunlad ng pilipinas",
  "label": 0
}
```

Hate speech sample data:
```
{
  "text": "Kapal ng mukha moIkaw magwithdraw!!!!![USERNAME]Hindi pelikula ang magsilbi sa bayan!!! Tama na pagbabasa ng script!!! Kakampink stfu Isko kupal",
  "label": 1
}
```

<!-- ### Data Fields

[More Information Needed] -->

### Data Splits

This dataset was split into 80% training, 10% validation, 10% testing.

<!-- ## Dataset Creation

### Curation Rationale

[More Information Needed]

### Source Data

#### Initial Data Collection and Normalization

[More Information Needed]

#### Who are the source language producers?

[More Information Needed]

### Annotations

#### Annotation process

[More Information Needed]

#### Who are the annotators?

[More Information Needed]

### Personal and Sensitive Information

[More Information Needed]

## Considerations for Using the Data

### Social Impact of Dataset

[More Information Needed]

### Discussion of Biases

[More Information Needed]

### Other Known Limitations

[More Information Needed] -->

## Additional Information

### Dataset Curators

- Castro, D.
- Dizon, L. J.
- Sarip, A. J.
- Soriano, M. A.

<!-- ### Licensing Information

[More Information Needed] -->

### Citation Information

**Research Title:** Application of BERT in Detecting Online Hate

**Published:** 2023

**Authors:** 
- Castro, D.
- Dizon, L. J.
- Sarip, A. J.
- Soriano, M. A.

Feel free to connect via [LinkedIn](https://www.linkedin.com/in/map-soriano/) for further information on this dataset or on the study that it was used on.

<!-- ### Contributions

[More Information Needed] -->