haneulpark
commited on
Update README.md
Browse files
README.md
CHANGED
@@ -1,3 +1,158 @@
|
|
1 |
-
---
|
2 |
-
license: mit
|
3 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: mit
|
3 |
+
task_categories:
|
4 |
+
- text-classification
|
5 |
+
language:
|
6 |
+
- en
|
7 |
+
tags:
|
8 |
+
- chemistry
|
9 |
+
size_categories:
|
10 |
+
- 1K<n<10K
|
11 |
+
pretty_name: Blood-Brain Barrier Database
|
12 |
+
dataset_summary: >-
|
13 |
+
Curation of 50 published resources of categorical and numeric measurements of Blood-Brain Barrier penetration.
|
14 |
+
citation: >-
|
15 |
+
COPY AND PASTE WHAT YOU GOT FROM THE BIBTEX WEBSITE
|
16 |
+
|
17 |
+
config_names:
|
18 |
+
- B3DB_classification
|
19 |
+
- B3DB_classification_extended
|
20 |
+
- B3DB_regression
|
21 |
+
- B3DB_regression_extended
|
22 |
+
configs:
|
23 |
+
- config_name: B3DB_classification
|
24 |
+
data_files:
|
25 |
+
- split: test
|
26 |
+
path: B3DB_classification/test.csv
|
27 |
+
- split: train
|
28 |
+
path: B3DB_classification/train.csv
|
29 |
+
- config_name: B3DB_classification_extended
|
30 |
+
data_files:
|
31 |
+
- split: test
|
32 |
+
path: B3DB_classification_extended/test.csv
|
33 |
+
- split: train
|
34 |
+
path: B3DB_classification_extended/train.csv
|
35 |
+
- config_name: B3DB_regression
|
36 |
+
data_files:
|
37 |
+
- split: test
|
38 |
+
path: B3DB_regression/test.csv
|
39 |
+
- split: train
|
40 |
+
path: B3DB_regression/train.csv
|
41 |
+
- config_name: B3DB_regression_extended
|
42 |
+
data_files:
|
43 |
+
- split: test
|
44 |
+
path: B3DB_regression_extended/test.csv
|
45 |
+
- split: train
|
46 |
+
path: B3DB_regression_extended/train.csv
|
47 |
+
dataset_info:
|
48 |
+
- config_name: B3DB_regression_extended
|
49 |
+
features:
|
50 |
+
- name: "NO."
|
51 |
+
dtype: int64
|
52 |
+
- name: "compound_name"
|
53 |
+
dtype: object
|
54 |
+
- name: "IUPAC_name"
|
55 |
+
dtype: object
|
56 |
+
- name: "SMILES"
|
57 |
+
dtype: object
|
58 |
+
- name: "CID"
|
59 |
+
dtype: object
|
60 |
+
- name: "logBB"
|
61 |
+
dtype: float64
|
62 |
+
- name: "Inchi"
|
63 |
+
dtype: object
|
64 |
+
- name: "reference"
|
65 |
+
dtype: object
|
66 |
+
- name: "smiles_result"
|
67 |
+
dtype: object
|
68 |
+
- name: "group"
|
69 |
+
dtype: object
|
70 |
+
- name: "comments"
|
71 |
+
dtype: float64
|
72 |
+
- name: "ClusterNo"
|
73 |
+
dtype: int64
|
74 |
+
- name: "MolCount"
|
75 |
+
dtype: int64
|
76 |
+
splits:
|
77 |
+
- name: train
|
78 |
+
num_bytes: 82808
|
79 |
+
num_examples: 795
|
80 |
+
- name: test
|
81 |
+
num_bytes: 27480
|
82 |
+
num_examples: 263
|
83 |
+
---
|
84 |
+
|
85 |
+
# Blood-Brain Barrier Database
|
86 |
+
|
87 |
+
|
88 |
+
## Quickstart Usage
|
89 |
+
|
90 |
+
### Load a dataset in python
|
91 |
+
Each subset can be loaded into python using the Huggingface [datasets](https://huggingface.co/docs/datasets/index) library.
|
92 |
+
First, from the command line install the `datasets` library
|
93 |
+
|
94 |
+
$ pip install datasets
|
95 |
+
|
96 |
+
then, from within python load the datasets library
|
97 |
+
|
98 |
+
>>> import datasets
|
99 |
+
|
100 |
+
and load one of the `B3DB` datasets, e.g.,
|
101 |
+
|
102 |
+
|
103 |
+
and inspecting the loaded dataset
|
104 |
+
|
105 |
+
|
106 |
+
### Use a dataset to train a model
|
107 |
+
One way to use the dataset is through the [MolFlux](https://exscientia.github.io/molflux/) package developed by Exscientia.
|
108 |
+
First, from the command line, install `MolFlux` library with `catboost` and `rdkit` support
|
109 |
+
|
110 |
+
pip install 'molflux[catboost,rdkit]'
|
111 |
+
|
112 |
+
then load, featurize, split, fit, and evaluate the a catboost model
|
113 |
+
|
114 |
+
import json
|
115 |
+
from datasets import load_dataset
|
116 |
+
from molflux.datasets import featurise_dataset
|
117 |
+
from molflux.features import load_from_dicts as load_representations_from_dicts
|
118 |
+
from molflux.splits import load_from_dict as load_split_from_dict
|
119 |
+
from molflux.modelzoo import load_from_dict as load_model_from_dict
|
120 |
+
from molflux.metrics import load_suite
|
121 |
+
|
122 |
+
split_dataset = load_dataset('maomlab/B3DB', name = 'B3DB_classification')
|
123 |
+
|
124 |
+
split_featurised_dataset = featurise_dataset(
|
125 |
+
split_dataset,
|
126 |
+
column = "SMILES",
|
127 |
+
representations = load_representations_from_dicts([{"name": "morgan"}, {"name": "maccs_rdkit"}]))
|
128 |
+
|
129 |
+
model = load_model_from_dict({
|
130 |
+
"name": "cat_boost_classifier",
|
131 |
+
"config": {
|
132 |
+
"x_features": ['SMILES::morgan', 'SMILES::maccs_rdkit'],
|
133 |
+
"y_features": ['BBB+/BBB-']}})
|
134 |
+
|
135 |
+
model.train(split_featurised_dataset["train"])
|
136 |
+
preds = model.predict(split_featurised_dataset["test"])
|
137 |
+
|
138 |
+
classification_suite = load_suite("classification")
|
139 |
+
|
140 |
+
scores = classification_suite.compute(
|
141 |
+
references=split_featurised_dataset["test"]['BBB+/BBB-'],
|
142 |
+
predictions=preds["cat_boost_classifier::BBB+/BBB-"])
|
143 |
+
|
144 |
+
>>> B3DB_classification = datasets.load_dataset("maomlab/B3DB", name = "B3DB_classification")
|
145 |
+
Downloading readme: 100%|ββββββββββββββββββββββββββββββββββββββ| 100/100 [00:00<00:00, 635500.61%/s]
|
146 |
+
Downloading data: 100%|βββββββββββββββββββββββββββββββββ| 82808/82808 [00:00<00:00, 524655476.79%/s]
|
147 |
+
Downloading data: 100%|βββββββββββββββββββββββββββββββββ| 27480/27480 [00:00<00:00, 195686712.94%/s]
|
148 |
+
Generating test split: 100%|ββββββββββββββββββββββββββ| 795/795 [00:00<00:00, 5218265.54 examples/s]
|
149 |
+
Generating train split: 100%|βββββββββββββββββββββββββ| 263/263 [00:00<00:00, 1835444.18 examples/s]## About the B3DB
|
150 |
+
|
151 |
+
### Features of B3DB
|
152 |
+
|
153 |
+
|
154 |
+
### Data splits
|
155 |
+
The original B3DB dataset does not define splits, so here we have used the `Realistic Split` method
|
156 |
+
described in [(Martin et al., 2018)](https://doi.org/10.1021/acs.jcim.7b00166).
|
157 |
+
|
158 |
+
###Citation
|