--- dataset_info: features: - name: image dtype: image - name: label dtype: class_label: names: '0': antelope '1': badger '2': bat '3': bear '4': bee '5': beetle '6': bison '7': boar '8': butterfly '9': cat '10': caterpillar '11': chimpanzee '12': cockroach '13': cow '14': coyote '15': crab '16': crow '17': deer '18': dog '19': dolphin '20': donkey '21': dragonfly '22': duck '23': eagle '24': elephant '25': flamingo '26': fly '27': fox '28': goat '29': goldfish '30': goose '31': gorilla '32': grasshopper '33': hamster '34': hare '35': hedgehog '36': hippopotamus '37': hornbill '38': horse '39': hummingbird '40': hyena '41': jellyfish '42': kangaroo '43': koala '44': ladybugs '45': leopard '46': lion '47': lizard '48': lobster '49': mosquito '50': moth '51': mouse '52': octopus '53': okapi '54': orangutan '55': otter '56': owl '57': ox '58': oyster '59': panda '60': parrot '61': pelecaniformes '62': penguin '63': pig '64': pigeon '65': porcupine '66': possum '67': raccoon '68': rat '69': reindeer '70': rhinoceros '71': sandpiper '72': seahorse '73': seal '74': shark '75': sheep '76': snake '77': sparrow '78': squid '79': squirrel '80': starfish '81': swan '82': tiger '83': turkey '84': turtle '85': whale '86': wolf '87': wombat '88': woodpecker '89': zebra splits: - name: train num_bytes: 468274895 num_examples: 3780 - name: test num_bytes: 196855527.2 num_examples: 1620 download_size: 696316023 dataset_size: 665130422.2 configs: - config_name: default data_files: - split: train path: data/train-* - split: test path: data/test-* task_categories: - image-classification - image-segmentation tags: - animals size_categories: - n<1K --- # Dataset Card for Dataset Name This dataset is a port of the ["Animal Image Dataset"](https://www.kaggle.com/datasets/iamsouravbanerjee/animal-image-dataset-90-different-animals) that you can find on Kaggle. The dataset contains 60 pictures for 90 types of animals, with various image sizes. With respect to the original dataset, I created the train-test-split partitions (80%/20%) to make it compatible via HuggingFace `datasets`. **Note**. At the time of writing, by looking at the Croissant ML Metadata, the original license of the data is `sc:CreativeWork`. If you believe this dataset violates any license, please open an issue in the discussion tab, so I can take action as soon as possible. ## How to use this data ```python from datasets import load_dataset # for exploration ds = load_dataset("lucabaggi/animal-wildlife", split="train") # for training ds = load_dataset("lucabaggi/animal-wildlife") ``` ## How the data was generated You can find the source code for the extraction pipeline [here](./extract.py). Note: partly generated with Claude3 and Codestral 😎😅 Please feel free to open an issue in the discussion sction if you wish to improve the code. ``` $ uv run --python=3.11 -- python -m extract --help usage: extract.py [-h] [--destination-dir DESTINATION_DIR] [--split-ratio SPLIT_RATIO] [--random-seed RANDOM_SEED] [--remove-zip] zip_file Reorganize dataset. positional arguments: zip_file Path to the zip file. options: -h, --help show this help message and exit --destination-dir DESTINATION_DIR Path to the destination directory. --split-ratio SPLIT_RATIO Ratio of data to be used for training. --random-seed RANDOM_SEED Random seed for reproducibility. --remove-zip Whether to remove the source zip archive file after extraction. ``` Example usage: 1. Download the data from Kaggle. You can use Kaggle Python SDK, but that might require an API key if you use it locally. 2. Invoke the script: ```bash uv run --python=3.11 -- python -m extract -- archive.zip ``` This will explode the contents of the zip archive into a `data` directory, splitting the train and test dataset in a 80%/20% ratio. 3. Upload to the hub: ```python from datasets import load_dataset ds = load_datset("imagefolder", data_dir="data") ds.push_to_hub() ```