lucabaggi commited on
Commit
59e608f
·
verified ·
1 Parent(s): b302a03

feat: add extraction script

Browse files
Files changed (1) hide show
  1. extract.py +124 -0
extract.py ADDED
@@ -0,0 +1,124 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+ import random
3
+ from pathlib import Path
4
+ import shutil
5
+ import zipfile
6
+ import argparse
7
+ import tempfile
8
+
9
+
10
+ def reorganize_dataset(
11
+ zip_file: str,
12
+ *,
13
+ destination_dir: str = "./data",
14
+ split_ratio: float = 0.8,
15
+ random_seed: int = 42,
16
+ remove_zip: bool = False,
17
+ ) -> None:
18
+ """Reorganize dataset into train and test directories.
19
+
20
+ Args:
21
+ zip_file (str): Path to the zip file.
22
+ dest_dir (str, optional): Path to the destination directory. Defaults to './data'.
23
+ train_ratio (float, optional): Ratio of data to be used for training. Defaults to 0.7.
24
+ random_seed (int, optional): Random seed for reproducibility. Defaults to 42.
25
+ remove_zip (bool, optional): Whether to remove the zip file after extraction. Defaults to False.
26
+
27
+ Raises:
28
+ ValueError: If the source directory or destination directory does not exist.
29
+ ValueError: If the destination directory is not empty.
30
+ """
31
+ # Convert the destination directory to a Path object
32
+ dest_dir = Path(destination_dir)
33
+
34
+ # Check if the source directory exists
35
+ if not Path(zip_file).is_file():
36
+ raise ValueError(f"Source directory '{zip_file}' does not exist.")
37
+
38
+ # Check if the destination directory is empty
39
+ if dest_dir.exists() and any(dest_dir.iterdir()):
40
+ raise ValueError(f"Destination directory '{dest_dir}' is not empty.")
41
+
42
+ # Set the random seed for reproducibility
43
+ random.seed(random_seed)
44
+
45
+ # Create train and test directories in the destination directory
46
+ train_dir = dest_dir / "train"
47
+ test_dir = dest_dir / "test"
48
+ train_dir.mkdir(parents=True, exist_ok=True)
49
+ test_dir.mkdir(parents=True, exist_ok=True)
50
+
51
+ # Extract the zip file to a temporary directory
52
+ with tempfile.TemporaryDirectory() as temp_dir:
53
+ with zipfile.ZipFile(zip_file, "r") as zip_ref:
54
+ zip_ref.extractall(temp_dir)
55
+
56
+ # Navigate to the animals directory inside the extracted files
57
+ root_dir = Path(temp_dir) / "animals" / "animals"
58
+
59
+ # Iterate through each animal directory
60
+ for animal_path in root_dir.iterdir():
61
+ if animal_path.is_dir() and animal_path.name not in ["train", "test"]:
62
+ # Create corresponding directories in train and test
63
+ (train_dir / animal_path.name).mkdir(parents=True, exist_ok=True)
64
+ (test_dir / animal_path.name).mkdir(parents=True, exist_ok=True)
65
+
66
+ # Get all files in the animal directory
67
+ files = [file for file in animal_path.iterdir() if file.is_file()]
68
+ random.shuffle(files)
69
+
70
+ # Split files into train and test sets
71
+ split_index = int(len(files) * split_ratio)
72
+ train_files = files[:split_index]
73
+ test_files = files[split_index:]
74
+
75
+ # Move files to train directory
76
+ for file in train_files:
77
+ dst = train_dir / animal_path.name / file.name
78
+ shutil.move(str(file), str(dst))
79
+
80
+ # Move files to test directory
81
+ for file in test_files:
82
+ dst = test_dir / animal_path.name / file.name
83
+ shutil.move(str(file), str(dst))
84
+
85
+ # Remove the zip file if the flag is set to True
86
+ if remove_zip:
87
+ os.remove(zip_file)
88
+
89
+ print(f"Dataset reorganization complete! (Seed: {random_seed})")
90
+
91
+
92
+ if __name__ == "__main__":
93
+ parser = argparse.ArgumentParser(description="Reorganize dataset.")
94
+ parser.add_argument("zip_file", type=str, help="Path to the zip file.")
95
+ parser.add_argument(
96
+ "--destination-dir",
97
+ type=str,
98
+ default="./data",
99
+ help="Path to the destination directory.",
100
+ )
101
+ parser.add_argument(
102
+ "--split-ratio",
103
+ type=float,
104
+ default=0.8,
105
+ help="Ratio of data to be used for training.",
106
+ )
107
+ parser.add_argument(
108
+ "--random-seed", type=int, default=42, help="Random seed for reproducibility."
109
+ )
110
+ parser.add_argument(
111
+ "--remove-zip",
112
+ action="store_true",
113
+ help="Whether to remove the source zip archive file after extraction.",
114
+ )
115
+
116
+ args = parser.parse_args()
117
+
118
+ reorganize_dataset(
119
+ args.zip_file,
120
+ destination_dir=args.destination_dir,
121
+ split_ratio=args.split_ratio,
122
+ random_seed=args.random_seed,
123
+ remove_zip=args.remove_zip,
124
+ )