Datasets:
Tasks:
Image Classification
Modalities:
Image
Formats:
imagefolder
Languages:
English
Size:
100K - 1M
Tags:
OCR
Handwriting
Character Recognition
Grayscale Images
ASCII Labels
Optical Character Recognition
License:
Louis Rädisch
commited on
Commit
·
d895ff8
1
Parent(s):
12e4d4b
Update README.md
Browse files
README.md
CHANGED
@@ -40,115 +40,123 @@ def generate_noisy_images(num_images, image_size=(28, 28), output_dir='NoisyImag
|
|
40 |
|
41 |
for i in range(num_images):
|
42 |
variation_scale = abs(np.random.normal(30, 15))
|
43 |
-
|
44 |
noise = np.random.rand(image_size[0], image_size[1]) * 0.05
|
45 |
noise = (noise * 255).astype(np.uint8)
|
46 |
|
47 |
-
image
|
|
|
48 |
|
|
|
49 |
inverted_image = ImageOps.invert(image)
|
50 |
|
|
|
51 |
enhancer = ImageEnhance.Contrast(inverted_image)
|
52 |
-
contrast_enhanced_image = enhancer.enhance(variation_scale)
|
53 |
|
|
|
54 |
contrast_enhanced_image.save(os.path.join(output_dir, f'{i}.jpg'), format=image_format)
|
55 |
|
|
|
|
|
56 |
```
|
57 |
|
58 |
-
## ASCII Table
|
59 |
-
| ASCII Value | Character |
|
60 |
-
|
61 |
-
| 33 | ! |
|
62 |
-
| 34 | " |
|
63 |
-
| 35 | # |
|
64 |
-
| 36 | $ |
|
65 |
-
| 37 | % |
|
66 |
-
| 38 | & |
|
67 |
-
| 39 | ' |
|
68 |
-
| 40 | ( |
|
69 |
-
| 41 | ) |
|
70 |
-
| 42 | * |
|
71 |
-
| 43 | + |
|
72 |
-
| 44 | , |
|
73 |
-
| 45 | - |
|
74 |
-
| 46 | . |
|
75 |
-
| 47 | / |
|
76 |
-
| 48 | 0 |
|
77 |
-
| 49 | 1 |
|
78 |
-
| 50 | 2 |
|
79 |
-
| 51 | 3 |
|
80 |
-
| 52 | 4 |
|
81 |
-
| 53 | 5 |
|
82 |
-
| 54 | 6 |
|
83 |
-
| 55 | 7 |
|
84 |
-
| 56 | 8 |
|
85 |
-
| 57 | 9 |
|
86 |
-
| 58 | : |
|
87 |
-
| 59 | ; |
|
88 |
-
| 60 | < |
|
89 |
-
| 61 | = |
|
90 |
-
| 62 | > |
|
91 |
-
| 63 | ? |
|
92 |
-
| 64 | @ |
|
93 |
-
| 65 | A |
|
94 |
-
| 66 | B |
|
95 |
-
| 67 | C |
|
96 |
-
| 68 | D |
|
97 |
-
| 69 | E |
|
98 |
-
| 70 | F |
|
99 |
-
| 71 | G |
|
100 |
-
| 72 | H |
|
101 |
-
| 73 | I |
|
102 |
-
| 74 | J |
|
103 |
-
| 75 | K |
|
104 |
-
| 76 | L |
|
105 |
-
| 77 | M |
|
106 |
-
| 78 | N |
|
107 |
-
| 79 | O |
|
108 |
-
| 80 | P |
|
109 |
-
| 81 | Q |
|
110 |
-
| 82 | R |
|
111 |
-
| 83 | S |
|
112 |
-
| 84 | T |
|
113 |
-
| 85 | U |
|
114 |
-
| 86 | V |
|
115 |
-
| 87 | W |
|
116 |
-
| 88 | X |
|
117 |
-
| 89 | Y |
|
118 |
-
| 90 | Z |
|
119 |
-
| 91 | [
|
120 |
-
|
121 |
-
|
|
122 |
-
|
|
123 |
-
|
|
124 |
-
|
|
125 |
-
|
|
126 |
-
|
|
127 |
-
|
|
128 |
-
|
|
129 |
-
|
|
130 |
-
|
|
131 |
-
|
|
132 |
-
|
|
133 |
-
|
|
134 |
-
|
|
135 |
-
|
|
136 |
-
|
|
137 |
-
|
|
138 |
-
|
|
139 |
-
|
|
140 |
-
|
|
141 |
-
|
|
142 |
-
|
|
143 |
-
|
|
144 |
-
|
|
145 |
-
|
|
146 |
-
|
|
147 |
-
|
|
148 |
-
|
|
149 |
-
|
|
150 |
-
|
|
151 |
-
|
|
152 |
-
|
|
153 |
-
|
|
154 |
-
|
|
|
|
|
|
|
40 |
|
41 |
for i in range(num_images):
|
42 |
variation_scale = abs(np.random.normal(30, 15))
|
43 |
+
# Generate random noise with reduced strength
|
44 |
noise = np.random.rand(image_size[0], image_size[1]) * 0.05
|
45 |
noise = (noise * 255).astype(np.uint8)
|
46 |
|
47 |
+
# Create a PIL image from the noise
|
48 |
+
image = Image.fromarray(noise, mode='L') # 'L' for grayscale
|
49 |
|
50 |
+
# Invert the image
|
51 |
inverted_image = ImageOps.invert(image)
|
52 |
|
53 |
+
# Enhance the contrast with increased amplitude
|
54 |
enhancer = ImageEnhance.Contrast(inverted_image)
|
55 |
+
contrast_enhanced_image = enhancer.enhance(variation_scale) # Increased amplitude (e.g., 3.0)
|
56 |
|
57 |
+
# Save the image
|
58 |
contrast_enhanced_image.save(os.path.join(output_dir, f'{i}.jpg'), format=image_format)
|
59 |
|
60 |
+
# Generate 5000 noisy images
|
61 |
+
generate_noisy_images(5000)
|
62 |
```
|
63 |
|
64 |
+
## ASCII Table and Corresponding File Counts
|
65 |
+
| ASCII Value | Character | Number of Files |
|
66 |
+
|-------------|-----------|-----------------|
|
67 |
+
| 33 | ! | 207 |
|
68 |
+
| 34 | " | 267 |
|
69 |
+
| 35 | # | 152 |
|
70 |
+
| 36 | $ | 192 |
|
71 |
+
| 37 | % | 190 |
|
72 |
+
| 38 | & | 104 |
|
73 |
+
| 39 | ' | 276 |
|
74 |
+
| 40 | ( | 346 |
|
75 |
+
| 41 | ) | 359 |
|
76 |
+
| 42 | * | 128 |
|
77 |
+
| 43 | + | 146 |
|
78 |
+
| 44 | , | 320 |
|
79 |
+
| 45 | - | 447 |
|
80 |
+
| 46 | . | 486 |
|
81 |
+
| 47 | / | 259 |
|
82 |
+
| 48 | 0 | 2664 |
|
83 |
+
| 49 | 1 | 2791 |
|
84 |
+
| 50 | 2 | 2564 |
|
85 |
+
| 51 | 3 | 2671 |
|
86 |
+
| 52 | 4 | 2530 |
|
87 |
+
| 53 | 5 | 2343 |
|
88 |
+
| 54 | 6 | 2503 |
|
89 |
+
| 55 | 7 | 2679 |
|
90 |
+
| 56 | 8 | 2544 |
|
91 |
+
| 57 | 9 | 2617 |
|
92 |
+
| 58 | : | 287 |
|
93 |
+
| 59 | ; | 223 |
|
94 |
+
| 60 | < | 168 |
|
95 |
+
| 61 | = | 254 |
|
96 |
+
| 62 | > | 162 |
|
97 |
+
| 63 | ? | 194 |
|
98 |
+
| 64 | @ | 83 |
|
99 |
+
| 65 | A | 1923 |
|
100 |
+
| 66 | B | 1505 |
|
101 |
+
| 67 | C | 1644 |
|
102 |
+
| 68 | D | 1553 |
|
103 |
+
| 69 | E | 2171 |
|
104 |
+
| 70 | F | 1468 |
|
105 |
+
| 71 | G | 1443 |
|
106 |
+
| 72 | H | 1543 |
|
107 |
+
| 73 | I | 1888 |
|
108 |
+
| 74 | J | 1470 |
|
109 |
+
| 75 | K | 1504 |
|
110 |
+
| 76 | L | 1692 |
|
111 |
+
| 77 | M | 1484 |
|
112 |
+
| 78 | N | 1683 |
|
113 |
+
| 79 | O | 2097 |
|
114 |
+
| 80 | P | 1605 |
|
115 |
+
| 81 | Q | 1409 |
|
116 |
+
| 82 | R | 1811 |
|
117 |
+
| 83 | S | 1786 |
|
118 |
+
| 84 | T | 1729 |
|
119 |
+
| 85 | U | 1458 |
|
120 |
+
| 86 | V | 1405 |
|
121 |
+
| 87 | W | 1521 |
|
122 |
+
| 88 | X | 1366 |
|
123 |
+
| 89 | Y | 1456 |
|
124 |
+
| 90 | Z | 1451 |
|
125 |
+
| 91 | [
|
126 |
+
|
127 |
+
| 111 |
|
128 |
+
| 93 | ] | 104 |
|
129 |
+
| 94 | ^ | 88 |
|
130 |
+
| 95 | _ | 80 |
|
131 |
+
| 96 | ` | 42 |
|
132 |
+
| 97 | a | 2219 |
|
133 |
+
| 98 | b | 624 |
|
134 |
+
| 99 | c | 880 |
|
135 |
+
| 100 | d | 1074 |
|
136 |
+
| 101 | e | 2962 |
|
137 |
+
| 102 | f | 608 |
|
138 |
+
| 103 | g | 760 |
|
139 |
+
| 104 | h | 990 |
|
140 |
+
| 105 | i | 2035 |
|
141 |
+
| 106 | j | 427 |
|
142 |
+
| 107 | k | 557 |
|
143 |
+
| 108 | l | 1415 |
|
144 |
+
| 109 | m | 879 |
|
145 |
+
| 110 | n | 1906 |
|
146 |
+
| 111 | o | 2048 |
|
147 |
+
| 112 | p | 786 |
|
148 |
+
| 113 | q | 427 |
|
149 |
+
| 114 | r | 1708 |
|
150 |
+
| 115 | s | 1557 |
|
151 |
+
| 116 | t | 1781 |
|
152 |
+
| 117 | u | 1319 |
|
153 |
+
| 118 | v | 555 |
|
154 |
+
| 119 | w | 680 |
|
155 |
+
| 120 | x | 463 |
|
156 |
+
| 121 | y | 680 |
|
157 |
+
| 122 | z | 505 |
|
158 |
+
| 123 | { | 73 |
|
159 |
+
| 124 | \| | 91 |
|
160 |
+
| 125 | } | 77 |
|
161 |
+
| 126 | ~ | 59 |
|
162 |
+
| 999 | null | 4949 |
|