Datasets:
Tasks:
Token Classification
Modalities:
Text
Formats:
parquet
Sub-tasks:
named-entity-recognition
Languages:
Tagalog
Size:
1K - 10K
ArXiv:
DOI:
License:
from typing import List | |
import datasets | |
logger = datasets.logging.get_logger(__name__) | |
_DESCRIPTION = """ | |
This dataset contains the annotated TLUnified corpora from Cruz and Cheng | |
(2021). It is a curated sample of around 7,000 documents for the | |
named entity recognition (NER) task. The majority of the corpus are news | |
reports in Tagalog, resembling the domain of the original ConLL 2003. There | |
are three entity types: Person (PER), Organization (ORG), and Location (LOC). | |
""" | |
_LICENSE = """GNU GPL v3.0""" | |
_URL = "https://huggingface.co/ljvmiranda921/tlunified-ner" | |
_CLASSES = ["O", "B-PER", "I-PER", "B-ORG", "I-ORG", "B-LOC", "I-LOC"] | |
_VERSION = "1.0.0" | |
class TLUnifiedNERConfig(datasets.BuilderConfig): | |
def __init__(self, **kwargs): | |
super(TLUnifiedNER, self).__init__(**kwargs) | |
class TLUnifiedNER(datasets.GeneratorBasedBuilder): | |
"""Contains an annotated version of the TLUnified dataset from Cruz and Cheng (2021).""" | |
VERSION = datasets.Version(_VERSION) | |
def _info(self) -> "datasets.DatasetInfo": | |
return datasets.DatasetInfo( | |
description=_DESCRIPTION, | |
features=datasets.Features( | |
{ | |
"id": datasets.Value("string"), | |
"tokens": datasets.Sequence(datasets.Value("string")), | |
"ner_tags": datasets.Sequence( | |
datasets.features.ClassLabel(names=_CLASSES) | |
), | |
} | |
), | |
homepage=_URL, | |
supervised_keys=None, | |
) | |
def _split_generators( | |
self, dl_manager: "datasets.builder.DownloadManager" | |
) -> List["datasets.SplitGenerator"]: | |
"""Return a list of SplitGenerators that organizes the splits.""" | |
# The file extracts into {train,dev,test}.spacy files. The _generate_examples function | |
# below will define how these files are parsed. | |
data_files = { | |
"train": dl_manager.download_and_extract("corpus/iob/train.iob"), | |
"dev": dl_manager.download_and_extract("corpus/iob/dev.iob"), | |
"test": dl_manager.download_and_extract("corpus/iob/test.iob"), | |
} | |
return [ | |
# fmt: off | |
datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"filepath": data_files["train"]}), | |
datasets.SplitGenerator(name=datasets.Split.VALIDATION, gen_kwargs={"filepath": data_files["dev"]}), | |
datasets.SplitGenerator(name=datasets.Split.TEST, gen_kwargs={"filepath": data_files["test"]}), | |
# fmt: on | |
] | |
def _generate_examples(self, filepath: str): | |
"""Defines how examples are parsed from the IOB file.""" | |
logger.info("⏳ Generating examples from = %s", filepath) | |
with open(filepath, encoding="utf-8") as f: | |
guid = 0 | |
tokens = [] | |
ner_tags = [] | |
for line in f: | |
if line.startswith("-DOCSTART-") or line == "" or line == "\n": | |
if tokens: | |
yield guid, { | |
"id": str(guid), | |
"tokens": tokens, | |
"ner_tags": ner_tags, | |
} | |
guid += 1 | |
tokens = [] | |
ner_tags = [] | |
else: | |
# TLUnified-NER iob are separated by \t | |
token, ner_tag = line.split("\t") | |
tokens.append(token) | |
ner_tags.append(ner_tag.rstrip()) | |
# Last example | |
if tokens: | |
yield guid, { | |
"id": str(guid), | |
"tokens": tokens, | |
"ner_tags": ner_tags, | |
} | |