Dmitry Chaplinsky
commited on
Commit
·
77f91c1
1
Parent(s):
8b11c67
Code and amendments to the README
Browse files- .gitignore +12 -0
- README.md +10 -1
- bin/export_structured_data.py +124 -0
- bin/extract_relevant_structured_data.py +102 -0
- bin/get_seed_urls.sh +10 -0
- requirements.txt +6 -0
- scraper/scraper/__init__.py +0 -0
- scraper/scraper/items.py +12 -0
- scraper/scraper/middlewares.py +103 -0
- scraper/scraper/pipelines.py +13 -0
- scraper/scraper/settings.py +92 -0
- scraper/scraper/spiders/__init__.py +4 -0
- scraper/scraper/spiders/webdatacommons_org.py +81 -0
- scraper/scrapy.cfg +11 -0
.gitignore
ADDED
@@ -0,0 +1,12 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
.DS_Store
|
2 |
+
.scrapy/
|
3 |
+
venv/
|
4 |
+
*.csv
|
5 |
+
*.xml
|
6 |
+
*.json
|
7 |
+
*.jsonlines
|
8 |
+
*.jsonl
|
9 |
+
*.pyc
|
10 |
+
test_spiders/
|
11 |
+
.hg/
|
12 |
+
.hgignore
|
README.md
CHANGED
@@ -14,7 +14,7 @@ Every Prompt is a data-driven approach to mining instructions from the web.
|
|
14 |
It contains over a million FAQs and HowTos from around the world in a structured format.
|
15 |
It also has basic pre-processing to calculate the length of the useful text and identify the language of that text with the help of [GCLD3](https://github.com/google/cld3)
|
16 |
|
17 |
-
It relies on the [Web Data Commons](http://webdatacommons.org) dataset to find the seed list of sites with [**HowTo**](https://schema.org/HowTo) and [**FAQPage**](https://schema.org/FAQPage) items.
|
18 |
The general pipeline looks like this:
|
19 |
* Download 1.6TB of structured data from webdatacommons to identify the pages with the structured data we need (wget/parallel). That gives us 1,985,925 seed pages
|
20 |
* Crawls the seed pages and tries to extract structured data using [extruct](https://pypi.org/project/extruct/#description) package. That left around 1,358,638 pages which are alive and well-formed.
|
@@ -24,5 +24,14 @@ The general pipeline looks like this:
|
|
24 |
You can use the resulting dataset by filtering for the language and amount of the text. You need to convert the structured data into instructions yourself.
|
25 |
You'll need to apply extra cleansing/evaluation of the instructions you've got because, you know, the internet is still full of crap.
|
26 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
27 |
## License
|
28 |
**Code** of the project has an MIT license.
|
|
|
14 |
It contains over a million FAQs and HowTos from around the world in a structured format.
|
15 |
It also has basic pre-processing to calculate the length of the useful text and identify the language of that text with the help of [GCLD3](https://github.com/google/cld3)
|
16 |
|
17 |
+
It relies on the [Web Data Commons](http://webdatacommons.org) dataset (from October 2022) to find the seed list of sites with [**HowTo**](https://schema.org/HowTo) and [**FAQPage**](https://schema.org/FAQPage) items.
|
18 |
The general pipeline looks like this:
|
19 |
* Download 1.6TB of structured data from webdatacommons to identify the pages with the structured data we need (wget/parallel). That gives us 1,985,925 seed pages
|
20 |
* Crawls the seed pages and tries to extract structured data using [extruct](https://pypi.org/project/extruct/#description) package. That left around 1,358,638 pages which are alive and well-formed.
|
|
|
24 |
You can use the resulting dataset by filtering for the language and amount of the text. You need to convert the structured data into instructions yourself.
|
25 |
You'll need to apply extra cleansing/evaluation of the instructions you've got because, you know, the internet is still full of crap.
|
26 |
|
27 |
+
## Recreating the results
|
28 |
+
1. Clone the repo without the LFS files
|
29 |
+
2. Install requirements from `requirements.txt`
|
30 |
+
3. Install `pv` and `parallel`
|
31 |
+
4. Run `bin/get_seed_urls.sh` to filter urls of interest out of 1.6TB of compressed data. Don't worry about disk space. Worry about the traffic
|
32 |
+
5. Run scrapy spider like this `scrapy crawl webdatacommons_org -s WEB_DATA_COMMONS=web_data_commons_urls_sample.txt -L INFO -o webdatacommons.jsonlines` with `WEB_DATA_COMMONS` pointing to the list of seed URLs from step 4.
|
33 |
+
6. Run `python extract_relevant_structured_data.py --num-threads 12 webdatacommons.jsonlines relevant.jsonlines.bz2`
|
34 |
+
7. Run `python export_structured_data.py relevant.jsonlines.bz2 extruct_out.jsonlines.bz2` to obtain the final version of the dataset
|
35 |
+
|
36 |
## License
|
37 |
**Code** of the project has an MIT license.
|
bin/export_structured_data.py
ADDED
@@ -0,0 +1,124 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from typing import Iterator, List, Dict, TypeVar
|
2 |
+
import json
|
3 |
+
import argparse
|
4 |
+
from concurrent.futures import ThreadPoolExecutor
|
5 |
+
from itertools import islice
|
6 |
+
|
7 |
+
import smart_open
|
8 |
+
from tqdm import tqdm
|
9 |
+
import jmespath
|
10 |
+
import gcld3
|
11 |
+
|
12 |
+
T = TypeVar("T")
|
13 |
+
|
14 |
+
|
15 |
+
detector = gcld3.NNetLanguageIdentifier(min_num_bytes=20, max_num_bytes=1000)
|
16 |
+
|
17 |
+
def batch_iterator(iterator: Iterator[T], batch_size: int = 50) -> Iterator[List[T]]:
|
18 |
+
"""
|
19 |
+
Batch an iterator into an iterator over lists of batch size.
|
20 |
+
"""
|
21 |
+
iterator = iter(iterator)
|
22 |
+
while True:
|
23 |
+
batch = list(islice(iterator, batch_size))
|
24 |
+
if not batch:
|
25 |
+
return
|
26 |
+
yield batch
|
27 |
+
|
28 |
+
|
29 |
+
def process_chunk(chunk: List, extractor: jmespath.parser.ParsedResult) -> List[Dict]:
|
30 |
+
"""
|
31 |
+
Apply JMESPath to a chunk of JSONL data.
|
32 |
+
"""
|
33 |
+
results: List[Dict] = []
|
34 |
+
for line in chunk:
|
35 |
+
data = json.loads(line)
|
36 |
+
extracted = extractor.search(data)
|
37 |
+
if extracted is not None:
|
38 |
+
if not isinstance(extracted, list):
|
39 |
+
extracted = [extracted]
|
40 |
+
|
41 |
+
try:
|
42 |
+
extracted_str = " ".join(set([ex for ex in extracted if isinstance(ex, str)])).strip()
|
43 |
+
except:
|
44 |
+
print(json.dumps(data, ensure_ascii=False))
|
45 |
+
raise
|
46 |
+
|
47 |
+
lang = detector.FindLanguage(extracted_str)
|
48 |
+
data["language"] = lang.language
|
49 |
+
data["language_is_reliable"] = lang.is_reliable
|
50 |
+
data["text_length"] = len(extracted_str)
|
51 |
+
data["data_length"] = len(line)
|
52 |
+
data["text_to_data_ratio"] = len(extracted_str) / len(line)
|
53 |
+
|
54 |
+
results.append(data)
|
55 |
+
|
56 |
+
return results
|
57 |
+
|
58 |
+
|
59 |
+
def process_file(
|
60 |
+
input_files: str,
|
61 |
+
output_file: str,
|
62 |
+
chunk_size: int,
|
63 |
+
num_threads: int,
|
64 |
+
extractor: jmespath.parser.ParsedResult,
|
65 |
+
):
|
66 |
+
"""
|
67 |
+
Apply JMESPath to a large JSONL file in parallel.
|
68 |
+
input_file: path to input JSONL file
|
69 |
+
output_file: path to output JSONL file
|
70 |
+
chunk_size: number of lines to process at a time
|
71 |
+
num_threads: number of threads to use
|
72 |
+
extractor: compiled JMESPath expression to apply
|
73 |
+
"""
|
74 |
+
with smart_open.open(output_file, "wt", encoding="utf-8") as writer:
|
75 |
+
for input_file in input_files:
|
76 |
+
with smart_open.open(
|
77 |
+
input_file, "rt", encoding="utf-8"
|
78 |
+
) as reader:
|
79 |
+
with ThreadPoolExecutor(max_workers=num_threads) as executor:
|
80 |
+
for chunk in batch_iterator(tqdm(reader), batch_size=chunk_size):
|
81 |
+
if not chunk:
|
82 |
+
break
|
83 |
+
|
84 |
+
results = executor.map(process_chunk, [chunk], [extractor])
|
85 |
+
for result in results:
|
86 |
+
for item in result:
|
87 |
+
writer.write(json.dumps(item, ensure_ascii=False))
|
88 |
+
writer.write("\n")
|
89 |
+
|
90 |
+
|
91 |
+
if __name__ == "__main__":
|
92 |
+
parser = argparse.ArgumentParser(
|
93 |
+
description="Apply JMESPath to a large JSONL files in parallel."
|
94 |
+
)
|
95 |
+
parser.add_argument("input_files", help="path to input JSONL files", nargs="+")
|
96 |
+
parser.add_argument("output_file", help="path to output JSONL file")
|
97 |
+
parser.add_argument(
|
98 |
+
"--chunk-size",
|
99 |
+
type=int,
|
100 |
+
default=10000,
|
101 |
+
help="number of lines to process at a time (default: 10000)",
|
102 |
+
)
|
103 |
+
parser.add_argument(
|
104 |
+
"--num-threads",
|
105 |
+
type=int,
|
106 |
+
default=4,
|
107 |
+
help="number of threads to use (default: 4)",
|
108 |
+
)
|
109 |
+
args = parser.parse_args()
|
110 |
+
# TODO: itemListElement as text or Thing?
|
111 |
+
jmespath_expression: jmespath.parser.ParsedResult = jmespath.compile(
|
112 |
+
"[name, description, headline, about, tool, supply, keywords, step[].name, step[].text, step[].itemListElement[].text, "
|
113 |
+
+ "step[].itemListElement[].itemListElement[].text, mainEntity[].name, mainEntity[].acceptedAnswer.text, "
|
114 |
+
+ "mainEntity[].acceptedAnswer.name, mainEntity.name, mainEntity.acceptedAnswer.text, "
|
115 |
+
+ "mainEntity.*.acceptedAnswer[].text, mainEntity[].acceptedAnswer[].text, step.itemListElement[].text, step.itemListElement[].itemListElement[].text][][]"
|
116 |
+
)
|
117 |
+
|
118 |
+
process_file(
|
119 |
+
args.input_files,
|
120 |
+
args.output_file,
|
121 |
+
args.chunk_size,
|
122 |
+
args.num_threads,
|
123 |
+
jmespath_expression,
|
124 |
+
)
|
bin/extract_relevant_structured_data.py
ADDED
@@ -0,0 +1,102 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from typing import Iterator, List, Dict, TypeVar
|
2 |
+
import json
|
3 |
+
import argparse
|
4 |
+
from concurrent.futures import ThreadPoolExecutor, ProcessPoolExecutor
|
5 |
+
from itertools import islice
|
6 |
+
|
7 |
+
import smart_open
|
8 |
+
from tqdm import tqdm
|
9 |
+
import jmespath
|
10 |
+
|
11 |
+
T = TypeVar("T")
|
12 |
+
|
13 |
+
|
14 |
+
def batch_iterator(iterator: Iterator[T], batch_size: int = 50) -> Iterator[List[T]]:
|
15 |
+
iterator = iter(iterator)
|
16 |
+
while True:
|
17 |
+
batch = list(islice(iterator, batch_size))
|
18 |
+
if not batch:
|
19 |
+
return
|
20 |
+
yield batch
|
21 |
+
|
22 |
+
|
23 |
+
def process_chunk(chunk: List, extractor: jmespath.parser.ParsedResult) -> List[Dict]:
|
24 |
+
"""
|
25 |
+
Apply JMESPath to a chunk of JSONL data.
|
26 |
+
"""
|
27 |
+
results: List[Dict] = []
|
28 |
+
for line in chunk:
|
29 |
+
data = json.loads(line)
|
30 |
+
extracted = extractor.search(data)
|
31 |
+
if extracted is not None:
|
32 |
+
if not isinstance(extracted, list):
|
33 |
+
extracted = [extracted]
|
34 |
+
|
35 |
+
for item in extracted:
|
36 |
+
item["url"] = data["url"]
|
37 |
+
item["schema_type"] = data["schema_type"]
|
38 |
+
results.append(item)
|
39 |
+
return results
|
40 |
+
|
41 |
+
|
42 |
+
def process_file(
|
43 |
+
input_file: str,
|
44 |
+
output_file: str,
|
45 |
+
chunk_size: int,
|
46 |
+
num_threads: int,
|
47 |
+
extractor: jmespath.parser.ParsedResult,
|
48 |
+
):
|
49 |
+
"""
|
50 |
+
Apply JMESPath to a large JSONL file in parallel.
|
51 |
+
input_file: path to input JSONL file
|
52 |
+
output_file: path to output JSONL file
|
53 |
+
chunk_size: number of lines to process at a time
|
54 |
+
num_threads: number of threads to use
|
55 |
+
extractor: compiled JMESPath expression to apply
|
56 |
+
"""
|
57 |
+
with smart_open.open(input_file, "rt", encoding="utf-8") as reader, smart_open.open(
|
58 |
+
output_file, "wt", encoding="utf-8"
|
59 |
+
) as writer:
|
60 |
+
with ThreadPoolExecutor(max_workers=num_threads) as executor:
|
61 |
+
for chunk in batch_iterator(tqdm(reader), batch_size=chunk_size):
|
62 |
+
if not chunk:
|
63 |
+
break
|
64 |
+
|
65 |
+
results = executor.map(process_chunk, [chunk], [extractor])
|
66 |
+
for result in results:
|
67 |
+
for item in result:
|
68 |
+
writer.write(json.dumps(item, ensure_ascii=False))
|
69 |
+
writer.write("\n")
|
70 |
+
|
71 |
+
|
72 |
+
if __name__ == "__main__":
|
73 |
+
parser = argparse.ArgumentParser(
|
74 |
+
description="Apply JMESPath to a large JSONL file in parallel."
|
75 |
+
)
|
76 |
+
parser.add_argument("input_file", help="path to input JSONL file")
|
77 |
+
parser.add_argument("output_file", help="path to output JSONL file")
|
78 |
+
parser.add_argument(
|
79 |
+
"--chunk-size",
|
80 |
+
type=int,
|
81 |
+
default=10000,
|
82 |
+
help="number of lines to process at a time (default: 10000)",
|
83 |
+
)
|
84 |
+
parser.add_argument(
|
85 |
+
"--num-threads",
|
86 |
+
type=int,
|
87 |
+
default=4,
|
88 |
+
help="number of threads to use (default: 4)",
|
89 |
+
)
|
90 |
+
args = parser.parse_args()
|
91 |
+
|
92 |
+
jmespath_expression: jmespath.parser.ParsedResult = jmespath.compile(
|
93 |
+
"""metadata.*[?"@type"=='FAQPage' || "@type"=='HowTo'][]"""
|
94 |
+
)
|
95 |
+
|
96 |
+
process_file(
|
97 |
+
args.input_file,
|
98 |
+
args.output_file,
|
99 |
+
args.chunk_size,
|
100 |
+
args.num_threads,
|
101 |
+
jmespath_expression,
|
102 |
+
)
|
bin/get_seed_urls.sh
ADDED
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/bin/bash
|
2 |
+
|
3 |
+
# download file containing urls
|
4 |
+
curl http://webdatacommons.org/structureddata/2022-12/files/file.list > urls.txt
|
5 |
+
|
6 |
+
# create output file
|
7 |
+
touch output.txt
|
8 |
+
|
9 |
+
# use parallel command to download/grep in parallel
|
10 |
+
cat urls.txt | pv -cN Input | parallel -j 4 "curl -s {} | zcat | grep -e '<http://schema.org/FAQPage>' -e '<http://schema.org/HowTo>'" | pv -cN Output > output.txt
|
requirements.txt
ADDED
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
smart-open
|
2 |
+
jmespath
|
3 |
+
tqdm
|
4 |
+
Scrapy
|
5 |
+
extruct
|
6 |
+
gcld3
|
scraper/scraper/__init__.py
ADDED
File without changes
|
scraper/scraper/items.py
ADDED
@@ -0,0 +1,12 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Define here the models for your scraped items
|
2 |
+
#
|
3 |
+
# See documentation in:
|
4 |
+
# https://docs.scrapy.org/en/latest/topics/items.html
|
5 |
+
|
6 |
+
import scrapy
|
7 |
+
|
8 |
+
|
9 |
+
class ScraperItem(scrapy.Item):
|
10 |
+
# define the fields for your item here like:
|
11 |
+
# name = scrapy.Field()
|
12 |
+
pass
|
scraper/scraper/middlewares.py
ADDED
@@ -0,0 +1,103 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Define here the models for your spider middleware
|
2 |
+
#
|
3 |
+
# See documentation in:
|
4 |
+
# https://docs.scrapy.org/en/latest/topics/spider-middleware.html
|
5 |
+
|
6 |
+
from scrapy import signals
|
7 |
+
|
8 |
+
# useful for handling different item types with a single interface
|
9 |
+
from itemadapter import is_item, ItemAdapter
|
10 |
+
|
11 |
+
|
12 |
+
class ScraperSpiderMiddleware:
|
13 |
+
# Not all methods need to be defined. If a method is not defined,
|
14 |
+
# scrapy acts as if the spider middleware does not modify the
|
15 |
+
# passed objects.
|
16 |
+
|
17 |
+
@classmethod
|
18 |
+
def from_crawler(cls, crawler):
|
19 |
+
# This method is used by Scrapy to create your spiders.
|
20 |
+
s = cls()
|
21 |
+
crawler.signals.connect(s.spider_opened, signal=signals.spider_opened)
|
22 |
+
return s
|
23 |
+
|
24 |
+
def process_spider_input(self, response, spider):
|
25 |
+
# Called for each response that goes through the spider
|
26 |
+
# middleware and into the spider.
|
27 |
+
|
28 |
+
# Should return None or raise an exception.
|
29 |
+
return None
|
30 |
+
|
31 |
+
def process_spider_output(self, response, result, spider):
|
32 |
+
# Called with the results returned from the Spider, after
|
33 |
+
# it has processed the response.
|
34 |
+
|
35 |
+
# Must return an iterable of Request, or item objects.
|
36 |
+
for i in result:
|
37 |
+
yield i
|
38 |
+
|
39 |
+
def process_spider_exception(self, response, exception, spider):
|
40 |
+
# Called when a spider or process_spider_input() method
|
41 |
+
# (from other spider middleware) raises an exception.
|
42 |
+
|
43 |
+
# Should return either None or an iterable of Request or item objects.
|
44 |
+
pass
|
45 |
+
|
46 |
+
def process_start_requests(self, start_requests, spider):
|
47 |
+
# Called with the start requests of the spider, and works
|
48 |
+
# similarly to the process_spider_output() method, except
|
49 |
+
# that it doesn’t have a response associated.
|
50 |
+
|
51 |
+
# Must return only requests (not items).
|
52 |
+
for r in start_requests:
|
53 |
+
yield r
|
54 |
+
|
55 |
+
def spider_opened(self, spider):
|
56 |
+
spider.logger.info('Spider opened: %s' % spider.name)
|
57 |
+
|
58 |
+
|
59 |
+
class ScraperDownloaderMiddleware:
|
60 |
+
# Not all methods need to be defined. If a method is not defined,
|
61 |
+
# scrapy acts as if the downloader middleware does not modify the
|
62 |
+
# passed objects.
|
63 |
+
|
64 |
+
@classmethod
|
65 |
+
def from_crawler(cls, crawler):
|
66 |
+
# This method is used by Scrapy to create your spiders.
|
67 |
+
s = cls()
|
68 |
+
crawler.signals.connect(s.spider_opened, signal=signals.spider_opened)
|
69 |
+
return s
|
70 |
+
|
71 |
+
def process_request(self, request, spider):
|
72 |
+
# Called for each request that goes through the downloader
|
73 |
+
# middleware.
|
74 |
+
|
75 |
+
# Must either:
|
76 |
+
# - return None: continue processing this request
|
77 |
+
# - or return a Response object
|
78 |
+
# - or return a Request object
|
79 |
+
# - or raise IgnoreRequest: process_exception() methods of
|
80 |
+
# installed downloader middleware will be called
|
81 |
+
return None
|
82 |
+
|
83 |
+
def process_response(self, request, response, spider):
|
84 |
+
# Called with the response returned from the downloader.
|
85 |
+
|
86 |
+
# Must either;
|
87 |
+
# - return a Response object
|
88 |
+
# - return a Request object
|
89 |
+
# - or raise IgnoreRequest
|
90 |
+
return response
|
91 |
+
|
92 |
+
def process_exception(self, request, exception, spider):
|
93 |
+
# Called when a download handler or a process_request()
|
94 |
+
# (from other downloader middleware) raises an exception.
|
95 |
+
|
96 |
+
# Must either:
|
97 |
+
# - return None: continue processing this exception
|
98 |
+
# - return a Response object: stops process_exception() chain
|
99 |
+
# - return a Request object: stops process_exception() chain
|
100 |
+
pass
|
101 |
+
|
102 |
+
def spider_opened(self, spider):
|
103 |
+
spider.logger.info('Spider opened: %s' % spider.name)
|
scraper/scraper/pipelines.py
ADDED
@@ -0,0 +1,13 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Define your item pipelines here
|
2 |
+
#
|
3 |
+
# Don't forget to add your pipeline to the ITEM_PIPELINES setting
|
4 |
+
# See: https://docs.scrapy.org/en/latest/topics/item-pipeline.html
|
5 |
+
|
6 |
+
|
7 |
+
# useful for handling different item types with a single interface
|
8 |
+
from itemadapter import ItemAdapter
|
9 |
+
|
10 |
+
|
11 |
+
class ScraperPipeline:
|
12 |
+
def process_item(self, item, spider):
|
13 |
+
return item
|
scraper/scraper/settings.py
ADDED
@@ -0,0 +1,92 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Scrapy settings for scraper project
|
2 |
+
#
|
3 |
+
# For simplicity, this file contains only settings considered important or
|
4 |
+
# commonly used. You can find more settings consulting the documentation:
|
5 |
+
#
|
6 |
+
# https://docs.scrapy.org/en/latest/topics/settings.html
|
7 |
+
# https://docs.scrapy.org/en/latest/topics/downloader-middleware.html
|
8 |
+
# https://docs.scrapy.org/en/latest/topics/spider-middleware.html
|
9 |
+
|
10 |
+
BOT_NAME = 'scraper'
|
11 |
+
|
12 |
+
SPIDER_MODULES = ['scraper.spiders']
|
13 |
+
NEWSPIDER_MODULE = 'scraper.spiders'
|
14 |
+
|
15 |
+
|
16 |
+
# Crawl responsibly by identifying yourself (and your website) on the user-agent
|
17 |
+
#USER_AGENT = 'scraper (+http://www.yourdomain.com)'
|
18 |
+
|
19 |
+
# Obey robots.txt rules
|
20 |
+
ROBOTSTXT_OBEY = True
|
21 |
+
|
22 |
+
# Configure maximum concurrent requests performed by Scrapy (default: 16)
|
23 |
+
#CONCURRENT_REQUESTS = 32
|
24 |
+
|
25 |
+
# Configure a delay for requests for the same website (default: 0)
|
26 |
+
# See https://docs.scrapy.org/en/latest/topics/settings.html#download-delay
|
27 |
+
# See also autothrottle settings and docs
|
28 |
+
#DOWNLOAD_DELAY = 3
|
29 |
+
# The download delay setting will honor only one of:
|
30 |
+
#CONCURRENT_REQUESTS_PER_DOMAIN = 16
|
31 |
+
#CONCURRENT_REQUESTS_PER_IP = 16
|
32 |
+
|
33 |
+
# Disable cookies (enabled by default)
|
34 |
+
#COOKIES_ENABLED = False
|
35 |
+
|
36 |
+
# Disable Telnet Console (enabled by default)
|
37 |
+
#TELNETCONSOLE_ENABLED = False
|
38 |
+
|
39 |
+
# Override the default request headers:
|
40 |
+
#DEFAULT_REQUEST_HEADERS = {
|
41 |
+
# 'Accept': 'text/html,application/xhtml+xml,application/xml;q=0.9,*/*;q=0.8',
|
42 |
+
# 'Accept-Language': 'en',
|
43 |
+
#}
|
44 |
+
|
45 |
+
# Enable or disable spider middlewares
|
46 |
+
# See https://docs.scrapy.org/en/latest/topics/spider-middleware.html
|
47 |
+
#SPIDER_MIDDLEWARES = {
|
48 |
+
# 'scraper.middlewares.ScraperSpiderMiddleware': 543,
|
49 |
+
#}
|
50 |
+
|
51 |
+
# Enable or disable downloader middlewares
|
52 |
+
# See https://docs.scrapy.org/en/latest/topics/downloader-middleware.html
|
53 |
+
#DOWNLOADER_MIDDLEWARES = {
|
54 |
+
# 'scraper.middlewares.ScraperDownloaderMiddleware': 543,
|
55 |
+
#}
|
56 |
+
|
57 |
+
# Enable or disable extensions
|
58 |
+
# See https://docs.scrapy.org/en/latest/topics/extensions.html
|
59 |
+
#EXTENSIONS = {
|
60 |
+
# 'scrapy.extensions.telnet.TelnetConsole': None,
|
61 |
+
#}
|
62 |
+
|
63 |
+
# Configure item pipelines
|
64 |
+
# See https://docs.scrapy.org/en/latest/topics/item-pipeline.html
|
65 |
+
#ITEM_PIPELINES = {
|
66 |
+
# 'scraper.pipelines.ScraperPipeline': 300,
|
67 |
+
#}
|
68 |
+
|
69 |
+
# Enable and configure the AutoThrottle extension (disabled by default)
|
70 |
+
# See https://docs.scrapy.org/en/latest/topics/autothrottle.html
|
71 |
+
#AUTOTHROTTLE_ENABLED = True
|
72 |
+
# The initial download delay
|
73 |
+
#AUTOTHROTTLE_START_DELAY = 5
|
74 |
+
# The maximum download delay to be set in case of high latencies
|
75 |
+
#AUTOTHROTTLE_MAX_DELAY = 60
|
76 |
+
# The average number of requests Scrapy should be sending in parallel to
|
77 |
+
# each remote server
|
78 |
+
#AUTOTHROTTLE_TARGET_CONCURRENCY = 1.0
|
79 |
+
# Enable showing throttling stats for every response received:
|
80 |
+
#AUTOTHROTTLE_DEBUG = False
|
81 |
+
|
82 |
+
# Enable and configure HTTP caching (disabled by default)
|
83 |
+
# See https://docs.scrapy.org/en/latest/topics/downloader-middleware.html#httpcache-middleware-settings
|
84 |
+
#HTTPCACHE_ENABLED = True
|
85 |
+
#HTTPCACHE_EXPIRATION_SECS = 0
|
86 |
+
#HTTPCACHE_DIR = 'httpcache'
|
87 |
+
#HTTPCACHE_IGNORE_HTTP_CODES = []
|
88 |
+
#HTTPCACHE_STORAGE = 'scrapy.extensions.httpcache.FilesystemCacheStorage'
|
89 |
+
|
90 |
+
# Set settings whose default value is deprecated to a future-proof value
|
91 |
+
REQUEST_FINGERPRINTER_IMPLEMENTATION = '2.7'
|
92 |
+
TWISTED_REACTOR = 'twisted.internet.asyncioreactor.AsyncioSelectorReactor'
|
scraper/scraper/spiders/__init__.py
ADDED
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# This package will contain the spiders of your Scrapy project
|
2 |
+
#
|
3 |
+
# Please refer to the documentation for information on how to create and manage
|
4 |
+
# your spiders.
|
scraper/scraper/spiders/webdatacommons_org.py
ADDED
@@ -0,0 +1,81 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from typing import Dict
|
2 |
+
import pathlib
|
3 |
+
import logging
|
4 |
+
|
5 |
+
import scrapy
|
6 |
+
import extruct
|
7 |
+
from w3lib.html import get_base_url
|
8 |
+
|
9 |
+
|
10 |
+
class WebDataCommonsSpider(scrapy.spiders.Spider):
|
11 |
+
"""
|
12 |
+
Spider for crawling pages with structured data found in the web-data-commons project.
|
13 |
+
http://webdatacommons.org
|
14 |
+
|
15 |
+
You can later extract the required structured information using
|
16 |
+
metadata.*[?"@type"=='FAQPage' || "@type"=='HowTo'][] code in jmespath
|
17 |
+
"""
|
18 |
+
|
19 |
+
allowed_domains = ["*"]
|
20 |
+
name = "webdatacommons_org"
|
21 |
+
custom_settings = {
|
22 |
+
"HTTPCACHE_ENABLED": True,
|
23 |
+
"CONCURRENT_REQUESTS": 100,
|
24 |
+
"CONCURRENT_ITEMS": 100,
|
25 |
+
"CONCURRENT_REQUESTS_PER_DOMAIN": 3,
|
26 |
+
"AUTOTHROTTLE_ENABLED": False,
|
27 |
+
"RETRY_TIMES": 1,
|
28 |
+
"DOWNLOAD_DELAY": 0,
|
29 |
+
}
|
30 |
+
|
31 |
+
def parse(self, response):
|
32 |
+
base_url: str = get_base_url(response.text, response.url)
|
33 |
+
try:
|
34 |
+
metadata: Dict = extruct.extract(
|
35 |
+
htmlstring=response.text, base_url=base_url, uniform=True
|
36 |
+
)
|
37 |
+
yield {
|
38 |
+
"url": response.url,
|
39 |
+
"metadata": metadata,
|
40 |
+
"schema_type": response.meta["schema_type"],
|
41 |
+
}
|
42 |
+
except Exception as e:
|
43 |
+
logging.error(f"Error while parsing {response.url}: {e}")
|
44 |
+
|
45 |
+
def start_requests(self):
|
46 |
+
"""
|
47 |
+
Start crawling from the index file, created with the following command (be careful, this command downloads 1.6TB of data):
|
48 |
+
#!/bin/bash
|
49 |
+
|
50 |
+
# download file containing urls
|
51 |
+
curl http://webdatacommons.org/structureddata/2022-12/files/file.list > urls.txt
|
52 |
+
|
53 |
+
# create output file
|
54 |
+
touch output.txt
|
55 |
+
|
56 |
+
# use parallel command to download/grep in parallel
|
57 |
+
cat urls.txt | pv -cN Input | parallel -j 4 "curl -s {} | zcat | grep -e '<http://schema.org/FAQPage>' -e '<http://schema.org/HowTo>'" | pv -cN Output > output.txt
|
58 |
+
|
59 |
+
"""
|
60 |
+
|
61 |
+
assert self.settings.get(
|
62 |
+
"WEB_DATA_COMMONS"
|
63 |
+
), "You should specify WEB_DATA_COMMONS setting as a path to a file or url in order run that spider"
|
64 |
+
|
65 |
+
index_file = pathlib.Path(self.settings["WEB_DATA_COMMONS"])
|
66 |
+
|
67 |
+
assert (
|
68 |
+
index_file.exists()
|
69 |
+
), f"Local file with index '{index_file}' doesn't exist"
|
70 |
+
|
71 |
+
with index_file.open("r") as fp:
|
72 |
+
for l in map(str.strip, fp):
|
73 |
+
_, _, schema_type, url, _ = l.split(" ", 4)
|
74 |
+
schema_type = schema_type.strip("<>")
|
75 |
+
url = url.strip("<>")
|
76 |
+
if "://" not in url:
|
77 |
+
url = "https://" + url
|
78 |
+
|
79 |
+
yield scrapy.Request(
|
80 |
+
url, callback=self.parse, meta={"schema_type": schema_type}
|
81 |
+
)
|
scraper/scrapy.cfg
ADDED
@@ -0,0 +1,11 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Automatically created by: scrapy startproject
|
2 |
+
#
|
3 |
+
# For more information about the [deploy] section see:
|
4 |
+
# https://scrapyd.readthedocs.io/en/latest/deploy.html
|
5 |
+
|
6 |
+
[settings]
|
7 |
+
default = scraper.settings
|
8 |
+
|
9 |
+
[deploy]
|
10 |
+
#url = http://localhost:6800/
|
11 |
+
project = scraper
|