Datasets:
Tasks:
Question Answering
Modalities:
Text
Formats:
parquet
Sub-tasks:
extractive-qa
Languages:
Russian
Size:
10K - 100K
ArXiv:
License:
Commit
•
358bdfe
0
Parent(s):
Update files from the datasets library (from 1.13.0)
Browse filesRelease notes: https://github.com/huggingface/datasets/releases/tag/1.13.0
- .gitattributes +27 -0
- README.md +183 -0
- dataset_infos.json +1 -0
- dummy/sberquad/1.0.0/dummy_data.zip +3 -0
- sberquad.py +103 -0
.gitattributes
ADDED
@@ -0,0 +1,27 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
*.7z filter=lfs diff=lfs merge=lfs -text
|
2 |
+
*.arrow filter=lfs diff=lfs merge=lfs -text
|
3 |
+
*.bin filter=lfs diff=lfs merge=lfs -text
|
4 |
+
*.bin.* filter=lfs diff=lfs merge=lfs -text
|
5 |
+
*.bz2 filter=lfs diff=lfs merge=lfs -text
|
6 |
+
*.ftz filter=lfs diff=lfs merge=lfs -text
|
7 |
+
*.gz filter=lfs diff=lfs merge=lfs -text
|
8 |
+
*.h5 filter=lfs diff=lfs merge=lfs -text
|
9 |
+
*.joblib filter=lfs diff=lfs merge=lfs -text
|
10 |
+
*.lfs.* filter=lfs diff=lfs merge=lfs -text
|
11 |
+
*.model filter=lfs diff=lfs merge=lfs -text
|
12 |
+
*.msgpack filter=lfs diff=lfs merge=lfs -text
|
13 |
+
*.onnx filter=lfs diff=lfs merge=lfs -text
|
14 |
+
*.ot filter=lfs diff=lfs merge=lfs -text
|
15 |
+
*.parquet filter=lfs diff=lfs merge=lfs -text
|
16 |
+
*.pb filter=lfs diff=lfs merge=lfs -text
|
17 |
+
*.pt filter=lfs diff=lfs merge=lfs -text
|
18 |
+
*.pth filter=lfs diff=lfs merge=lfs -text
|
19 |
+
*.rar filter=lfs diff=lfs merge=lfs -text
|
20 |
+
saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
21 |
+
*.tar.* filter=lfs diff=lfs merge=lfs -text
|
22 |
+
*.tflite filter=lfs diff=lfs merge=lfs -text
|
23 |
+
*.tgz filter=lfs diff=lfs merge=lfs -text
|
24 |
+
*.xz filter=lfs diff=lfs merge=lfs -text
|
25 |
+
*.zip filter=lfs diff=lfs merge=lfs -text
|
26 |
+
*.zstandard filter=lfs diff=lfs merge=lfs -text
|
27 |
+
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
README.md
ADDED
@@ -0,0 +1,183 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
pretty_name: SberQuAD
|
3 |
+
annotations_creators:
|
4 |
+
- crowdsourced
|
5 |
+
language_creators:
|
6 |
+
- found
|
7 |
+
- crowdsourced
|
8 |
+
languages:
|
9 |
+
- ru
|
10 |
+
licenses:
|
11 |
+
- unknown
|
12 |
+
multilinguality:
|
13 |
+
- monolingual
|
14 |
+
size_categories:
|
15 |
+
- 10K<n<100K
|
16 |
+
source_datasets:
|
17 |
+
- original
|
18 |
+
task_categories:
|
19 |
+
- question-answering
|
20 |
+
task_ids:
|
21 |
+
- extractive-qa
|
22 |
+
paperswithcode_id: sberquad
|
23 |
+
---
|
24 |
+
|
25 |
+
|
26 |
+
# Dataset Card for sberquad
|
27 |
+
|
28 |
+
## Table of Contents
|
29 |
+
- [Dataset Description](#dataset-description)
|
30 |
+
- [Dataset Summary](#dataset-summary)
|
31 |
+
- [Supported Tasks](#supported-tasks-and-leaderboards)
|
32 |
+
- [Languages](#languages)
|
33 |
+
- [Dataset Structure](#dataset-structure)
|
34 |
+
- [Data Instances](#data-instances)
|
35 |
+
- [Data Fields](#data-instances)
|
36 |
+
- [Data Splits](#data-instances)
|
37 |
+
- [Dataset Creation](#dataset-creation)
|
38 |
+
- [Curation Rationale](#curation-rationale)
|
39 |
+
- [Source Data](#source-data)
|
40 |
+
- [Annotations](#annotations)
|
41 |
+
- [Personal and Sensitive Information](#personal-and-sensitive-information)
|
42 |
+
- [Considerations for Using the Data](#considerations-for-using-the-data)
|
43 |
+
- [Social Impact of Dataset](#social-impact-of-dataset)
|
44 |
+
- [Discussion of Biases](#discussion-of-biases)
|
45 |
+
- [Other Known Limitations](#other-known-limitations)
|
46 |
+
- [Additional Information](#additional-information)
|
47 |
+
- [Dataset Curators](#dataset-curators)
|
48 |
+
- [Licensing Information](#licensing-information)
|
49 |
+
- [Citation Information](#citation-information)
|
50 |
+
- [Contributions](#contributions)
|
51 |
+
|
52 |
+
## Dataset Description
|
53 |
+
|
54 |
+
- **Homepage:** [Needs More Information]
|
55 |
+
- **Repository:** https://github.com/sberbank-ai/data-science-journey-2017
|
56 |
+
- **Paper:** https://arxiv.org/abs/1912.09723
|
57 |
+
- **Leaderboard:** [Needs More Information]
|
58 |
+
- **Point of Contact:** [Needs More Information]
|
59 |
+
|
60 |
+
### Dataset Summary
|
61 |
+
|
62 |
+
Sber Question Answering Dataset (SberQuAD) is a reading comprehension dataset, consisting of questions posed by crowdworkers on a set of Wikipedia articles, where the answer to every question is a segment of text, or span, from the corresponding reading passage, or the question might be unanswerable.
|
63 |
+
Russian original analogue presented in Sberbank Data Science Journey 2017.
|
64 |
+
|
65 |
+
### Supported Tasks and Leaderboards
|
66 |
+
|
67 |
+
[Needs More Information]
|
68 |
+
|
69 |
+
### Languages
|
70 |
+
|
71 |
+
Russian
|
72 |
+
|
73 |
+
## Dataset Structure
|
74 |
+
|
75 |
+
### Data Instances
|
76 |
+
```
|
77 |
+
{
|
78 |
+
"context": "Первые упоминания о строении человеческого тела встречаются в Древнем Египте...",
|
79 |
+
"id": 14754,
|
80 |
+
"qas": [
|
81 |
+
{
|
82 |
+
"id": 60544,
|
83 |
+
"question": "Где встречаются первые упоминания о строении человеческого тела?",
|
84 |
+
"answers": [{"answer_start": 60, "text": "в Древнем Египте"}],
|
85 |
+
}
|
86 |
+
]
|
87 |
+
}
|
88 |
+
```
|
89 |
+
|
90 |
+
### Data Fields
|
91 |
+
|
92 |
+
- id: a int32 feature
|
93 |
+
- title: a string feature
|
94 |
+
- context: a string feature
|
95 |
+
- question: a string feature
|
96 |
+
- answers: a dictionary feature containing:
|
97 |
+
- text: a string feature
|
98 |
+
- answer_start: a int32 feature
|
99 |
+
|
100 |
+
### Data Splits
|
101 |
+
|
102 |
+
| name |train |validation|test |
|
103 |
+
|----------|-----:|---------:|-----|
|
104 |
+
|plain_text|45328 | 5036 |23936|
|
105 |
+
|
106 |
+
## Dataset Creation
|
107 |
+
|
108 |
+
### Curation Rationale
|
109 |
+
|
110 |
+
[Needs More Information]
|
111 |
+
|
112 |
+
### Source Data
|
113 |
+
|
114 |
+
#### Initial Data Collection and Normalization
|
115 |
+
|
116 |
+
[Needs More Information]
|
117 |
+
|
118 |
+
#### Who are the source language producers?
|
119 |
+
|
120 |
+
[Needs More Information]
|
121 |
+
|
122 |
+
### Annotations
|
123 |
+
|
124 |
+
#### Annotation process
|
125 |
+
|
126 |
+
[Needs More Information]
|
127 |
+
|
128 |
+
#### Who are the annotators?
|
129 |
+
|
130 |
+
[Needs More Information]
|
131 |
+
|
132 |
+
### Personal and Sensitive Information
|
133 |
+
|
134 |
+
[Needs More Information]
|
135 |
+
|
136 |
+
## Considerations for Using the Data
|
137 |
+
|
138 |
+
### Social Impact of Dataset
|
139 |
+
|
140 |
+
[Needs More Information]
|
141 |
+
|
142 |
+
### Discussion of Biases
|
143 |
+
|
144 |
+
[Needs More Information]
|
145 |
+
|
146 |
+
### Other Known Limitations
|
147 |
+
|
148 |
+
[Needs More Information]
|
149 |
+
|
150 |
+
## Additional Information
|
151 |
+
|
152 |
+
### Dataset Curators
|
153 |
+
|
154 |
+
[Needs More Information]
|
155 |
+
|
156 |
+
### Licensing Information
|
157 |
+
|
158 |
+
[Needs More Information]
|
159 |
+
|
160 |
+
### Citation Information
|
161 |
+
|
162 |
+
```
|
163 |
+
@article{DBLP:journals/corr/abs-1912-09723,
|
164 |
+
author = {Pavel Efimov and
|
165 |
+
Leonid Boytsov and
|
166 |
+
Pavel Braslavski},
|
167 |
+
title = {SberQuAD - Russian Reading Comprehension Dataset: Description and
|
168 |
+
Analysis},
|
169 |
+
journal = {CoRR},
|
170 |
+
volume = {abs/1912.09723},
|
171 |
+
year = {2019},
|
172 |
+
url = {http://arxiv.org/abs/1912.09723},
|
173 |
+
eprinttype = {arXiv},
|
174 |
+
eprint = {1912.09723},
|
175 |
+
timestamp = {Fri, 03 Jan 2020 16:10:45 +0100},
|
176 |
+
biburl = {https://dblp.org/rec/journals/corr/abs-1912-09723.bib},
|
177 |
+
bibsource = {dblp computer science bibliography, https://dblp.org}
|
178 |
+
}
|
179 |
+
```
|
180 |
+
|
181 |
+
### Contributions
|
182 |
+
|
183 |
+
Thanks to [@alenusch](https://github.com/Alenush) for adding this dataset.
|
dataset_infos.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"sberquad": {"description": "Sber Question Answering Dataset (SberQuAD) is a reading comprehension dataset, consisting of questions posed by crowdworkers on a set of Wikipedia articles, where the answer to every question is a segment of text, or span, from the corresponding reading passage, or the question might be unanswerable. Russian original analogue presented in Sberbank Data Science Journey 2017.\n", "citation": "@article{Efimov_2020,\n title={SberQuAD \u2013 Russian Reading Comprehension Dataset: Description and Analysis},\n ISBN={9783030582197},\n ISSN={1611-3349},\n url={http://dx.doi.org/10.1007/978-3-030-58219-7_1},\n DOI={10.1007/978-3-030-58219-7_1},\n journal={Experimental IR Meets Multilinguality, Multimodality, and Interaction},\n publisher={Springer International Publishing},\n author={Efimov, Pavel and Chertok, Andrey and Boytsov, Leonid and Braslavski, Pavel},\n year={2020},\n pages={3\u201315}\n}\n ", "homepage": "", "license": "", "features": {"id": {"dtype": "int32", "id": null, "_type": "Value"}, "title": {"dtype": "string", "id": null, "_type": "Value"}, "context": {"dtype": "string", "id": null, "_type": "Value"}, "question": {"dtype": "string", "id": null, "_type": "Value"}, "answers": {"feature": {"text": {"dtype": "string", "id": null, "_type": "Value"}, "answer_start": {"dtype": "int32", "id": null, "_type": "Value"}}, "length": -1, "id": null, "_type": "Sequence"}}, "post_processed": null, "supervised_keys": null, "task_templates": [{"task": "question-answering-extractive", "question_column": "question", "context_column": "context", "answers_column": "answers"}], "builder_name": "sberquad", "config_name": "sberquad", "version": {"version_str": "1.0.0", "description": null, "major": 1, "minor": 0, "patch": 0}, "splits": {"train": {"name": "train", "num_bytes": 71631661, "num_examples": 45328, "dataset_name": "sberquad"}, "validation": {"name": "validation", "num_bytes": 7972977, "num_examples": 5036, "dataset_name": "sberquad"}, "test": {"name": "test", "num_bytes": 36397848, "num_examples": 23936, "dataset_name": "sberquad"}}, "download_checksums": {"https://sc.link/PNWl": {"num_bytes": 38616884, "checksum": "861b55219f1549139e64b2eed325b54ce9c9c63b792a2c2b3cfbec997aa3d88e"}, "https://sc.link/W6oX": {"num_bytes": 8807953, "checksum": "247bede36a27f076f607117632f39eedb9bb1d80c34d93bbfaeda71fd30fd382"}, "https://sc.link/VOn9": {"num_bytes": 18622439, "checksum": "7793d389208271a76ab38a5dba5cebc98e72f45e99196a99e14b5a37c401c66f"}}, "download_size": 66047276, "post_processing_size": null, "dataset_size": 116002486, "size_in_bytes": 182049762}}
|
dummy/sberquad/1.0.0/dummy_data.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:e1bffceb9f4759941a6b08ff3ae5ebe24f047b2411bb7280c788b76ee9780853
|
3 |
+
size 1276
|
sberquad.py
ADDED
@@ -0,0 +1,103 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
"""SberQUAD: Sber Question Answering Dataset."""
|
3 |
+
|
4 |
+
import json
|
5 |
+
|
6 |
+
import datasets
|
7 |
+
from datasets.tasks import QuestionAnsweringExtractive
|
8 |
+
|
9 |
+
|
10 |
+
logger = datasets.logging.get_logger(__name__)
|
11 |
+
|
12 |
+
_CITATION = """\
|
13 |
+
@article{Efimov_2020,
|
14 |
+
title={SberQuAD – Russian Reading Comprehension Dataset: Description and Analysis},
|
15 |
+
ISBN={9783030582197},
|
16 |
+
ISSN={1611-3349},
|
17 |
+
url={http://dx.doi.org/10.1007/978-3-030-58219-7_1},
|
18 |
+
DOI={10.1007/978-3-030-58219-7_1},
|
19 |
+
journal={Experimental IR Meets Multilinguality, Multimodality, and Interaction},
|
20 |
+
publisher={Springer International Publishing},
|
21 |
+
author={Efimov, Pavel and Chertok, Andrey and Boytsov, Leonid and Braslavski, Pavel},
|
22 |
+
year={2020},
|
23 |
+
pages={3–15}
|
24 |
+
}
|
25 |
+
"""
|
26 |
+
|
27 |
+
|
28 |
+
_DESCRIPTION = """\
|
29 |
+
Sber Question Answering Dataset (SberQuAD) is a reading comprehension \
|
30 |
+
dataset, consisting of questions posed by crowdworkers on a set of Wikipedia \
|
31 |
+
articles, where the answer to every question is a segment of text, or span, \
|
32 |
+
from the corresponding reading passage, or the question might be unanswerable. \
|
33 |
+
Russian original analogue presented in Sberbank Data Science Journey 2017.
|
34 |
+
"""
|
35 |
+
|
36 |
+
_URLS = {"train": "https://sc.link/PNWl", "dev": "https://sc.link/W6oX", "test": "https://sc.link/VOn9"}
|
37 |
+
|
38 |
+
|
39 |
+
class Sberquad(datasets.GeneratorBasedBuilder):
|
40 |
+
"""SberQUAD: Sber Question Answering Dataset. Version 1.0."""
|
41 |
+
|
42 |
+
VERSION = datasets.Version("1.0.0")
|
43 |
+
BUILDER_CONFIGS = [datasets.BuilderConfig(name="sberquad", version=VERSION, description=_DESCRIPTION)]
|
44 |
+
|
45 |
+
def _info(self):
|
46 |
+
return datasets.DatasetInfo(
|
47 |
+
description=_DESCRIPTION,
|
48 |
+
features=datasets.Features(
|
49 |
+
{
|
50 |
+
"id": datasets.Value("int32"),
|
51 |
+
"title": datasets.Value("string"),
|
52 |
+
"context": datasets.Value("string"),
|
53 |
+
"question": datasets.Value("string"),
|
54 |
+
"answers": datasets.features.Sequence(
|
55 |
+
{
|
56 |
+
"text": datasets.Value("string"),
|
57 |
+
"answer_start": datasets.Value("int32"),
|
58 |
+
}
|
59 |
+
),
|
60 |
+
}
|
61 |
+
),
|
62 |
+
supervised_keys=None,
|
63 |
+
homepage="",
|
64 |
+
citation=_CITATION,
|
65 |
+
task_templates=[
|
66 |
+
QuestionAnsweringExtractive(
|
67 |
+
question_column="question", context_column="context", answers_column="answers"
|
68 |
+
)
|
69 |
+
],
|
70 |
+
)
|
71 |
+
|
72 |
+
def _split_generators(self, dl_manager):
|
73 |
+
downloaded_files = dl_manager.download_and_extract(_URLS)
|
74 |
+
return [
|
75 |
+
datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"filepath": downloaded_files["train"]}),
|
76 |
+
datasets.SplitGenerator(name=datasets.Split.VALIDATION, gen_kwargs={"filepath": downloaded_files["dev"]}),
|
77 |
+
datasets.SplitGenerator(name=datasets.Split.TEST, gen_kwargs={"filepath": downloaded_files["test"]}),
|
78 |
+
]
|
79 |
+
|
80 |
+
def _generate_examples(self, filepath):
|
81 |
+
"""This function returns the examples in the raw (text) form."""
|
82 |
+
logger.info("generating examples from = %s", filepath)
|
83 |
+
key = 0
|
84 |
+
with open(filepath, encoding="utf-8") as f:
|
85 |
+
squad = json.load(f)
|
86 |
+
for article in squad["data"]:
|
87 |
+
title = article.get("title", "")
|
88 |
+
for paragraph in article["paragraphs"]:
|
89 |
+
context = paragraph["context"]
|
90 |
+
for qa in paragraph["qas"]:
|
91 |
+
answer_starts = [answer["answer_start"] for answer in qa["answers"]]
|
92 |
+
answers = [answer["text"] for answer in qa["answers"]]
|
93 |
+
yield key, {
|
94 |
+
"title": title,
|
95 |
+
"context": context,
|
96 |
+
"question": qa["question"],
|
97 |
+
"id": qa["id"],
|
98 |
+
"answers": {
|
99 |
+
"answer_start": answer_starts,
|
100 |
+
"text": answers,
|
101 |
+
},
|
102 |
+
}
|
103 |
+
key += 1
|