Datasets:

Modalities:
Text
Formats:
parquet
Sub-tasks:
extractive-qa
Languages:
Russian
ArXiv:
Libraries:
Datasets
pandas
License:
system HF staff commited on
Commit
358bdfe
0 Parent(s):

Update files from the datasets library (from 1.13.0)

Browse files

Release notes: https://github.com/huggingface/datasets/releases/tag/1.13.0

.gitattributes ADDED
@@ -0,0 +1,27 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ *.7z filter=lfs diff=lfs merge=lfs -text
2
+ *.arrow filter=lfs diff=lfs merge=lfs -text
3
+ *.bin filter=lfs diff=lfs merge=lfs -text
4
+ *.bin.* filter=lfs diff=lfs merge=lfs -text
5
+ *.bz2 filter=lfs diff=lfs merge=lfs -text
6
+ *.ftz filter=lfs diff=lfs merge=lfs -text
7
+ *.gz filter=lfs diff=lfs merge=lfs -text
8
+ *.h5 filter=lfs diff=lfs merge=lfs -text
9
+ *.joblib filter=lfs diff=lfs merge=lfs -text
10
+ *.lfs.* filter=lfs diff=lfs merge=lfs -text
11
+ *.model filter=lfs diff=lfs merge=lfs -text
12
+ *.msgpack filter=lfs diff=lfs merge=lfs -text
13
+ *.onnx filter=lfs diff=lfs merge=lfs -text
14
+ *.ot filter=lfs diff=lfs merge=lfs -text
15
+ *.parquet filter=lfs diff=lfs merge=lfs -text
16
+ *.pb filter=lfs diff=lfs merge=lfs -text
17
+ *.pt filter=lfs diff=lfs merge=lfs -text
18
+ *.pth filter=lfs diff=lfs merge=lfs -text
19
+ *.rar filter=lfs diff=lfs merge=lfs -text
20
+ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
21
+ *.tar.* filter=lfs diff=lfs merge=lfs -text
22
+ *.tflite filter=lfs diff=lfs merge=lfs -text
23
+ *.tgz filter=lfs diff=lfs merge=lfs -text
24
+ *.xz filter=lfs diff=lfs merge=lfs -text
25
+ *.zip filter=lfs diff=lfs merge=lfs -text
26
+ *.zstandard filter=lfs diff=lfs merge=lfs -text
27
+ *tfevents* filter=lfs diff=lfs merge=lfs -text
README.md ADDED
@@ -0,0 +1,183 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ pretty_name: SberQuAD
3
+ annotations_creators:
4
+ - crowdsourced
5
+ language_creators:
6
+ - found
7
+ - crowdsourced
8
+ languages:
9
+ - ru
10
+ licenses:
11
+ - unknown
12
+ multilinguality:
13
+ - monolingual
14
+ size_categories:
15
+ - 10K<n<100K
16
+ source_datasets:
17
+ - original
18
+ task_categories:
19
+ - question-answering
20
+ task_ids:
21
+ - extractive-qa
22
+ paperswithcode_id: sberquad
23
+ ---
24
+
25
+
26
+ # Dataset Card for sberquad
27
+
28
+ ## Table of Contents
29
+ - [Dataset Description](#dataset-description)
30
+ - [Dataset Summary](#dataset-summary)
31
+ - [Supported Tasks](#supported-tasks-and-leaderboards)
32
+ - [Languages](#languages)
33
+ - [Dataset Structure](#dataset-structure)
34
+ - [Data Instances](#data-instances)
35
+ - [Data Fields](#data-instances)
36
+ - [Data Splits](#data-instances)
37
+ - [Dataset Creation](#dataset-creation)
38
+ - [Curation Rationale](#curation-rationale)
39
+ - [Source Data](#source-data)
40
+ - [Annotations](#annotations)
41
+ - [Personal and Sensitive Information](#personal-and-sensitive-information)
42
+ - [Considerations for Using the Data](#considerations-for-using-the-data)
43
+ - [Social Impact of Dataset](#social-impact-of-dataset)
44
+ - [Discussion of Biases](#discussion-of-biases)
45
+ - [Other Known Limitations](#other-known-limitations)
46
+ - [Additional Information](#additional-information)
47
+ - [Dataset Curators](#dataset-curators)
48
+ - [Licensing Information](#licensing-information)
49
+ - [Citation Information](#citation-information)
50
+ - [Contributions](#contributions)
51
+
52
+ ## Dataset Description
53
+
54
+ - **Homepage:** [Needs More Information]
55
+ - **Repository:** https://github.com/sberbank-ai/data-science-journey-2017
56
+ - **Paper:** https://arxiv.org/abs/1912.09723
57
+ - **Leaderboard:** [Needs More Information]
58
+ - **Point of Contact:** [Needs More Information]
59
+
60
+ ### Dataset Summary
61
+
62
+ Sber Question Answering Dataset (SberQuAD) is a reading comprehension dataset, consisting of questions posed by crowdworkers on a set of Wikipedia articles, where the answer to every question is a segment of text, or span, from the corresponding reading passage, or the question might be unanswerable.
63
+ Russian original analogue presented in Sberbank Data Science Journey 2017.
64
+
65
+ ### Supported Tasks and Leaderboards
66
+
67
+ [Needs More Information]
68
+
69
+ ### Languages
70
+
71
+ Russian
72
+
73
+ ## Dataset Structure
74
+
75
+ ### Data Instances
76
+ ```
77
+ {
78
+ "context": "Первые упоминания о строении человеческого тела встречаются в Древнем Египте...",
79
+ "id": 14754,
80
+ "qas": [
81
+ {
82
+ "id": 60544,
83
+ "question": "Где встречаются первые упоминания о строении человеческого тела?",
84
+ "answers": [{"answer_start": 60, "text": "в Древнем Египте"}],
85
+ }
86
+ ]
87
+ }
88
+ ```
89
+
90
+ ### Data Fields
91
+
92
+ - id: a int32 feature
93
+ - title: a string feature
94
+ - context: a string feature
95
+ - question: a string feature
96
+ - answers: a dictionary feature containing:
97
+ - text: a string feature
98
+ - answer_start: a int32 feature
99
+
100
+ ### Data Splits
101
+
102
+ | name |train |validation|test |
103
+ |----------|-----:|---------:|-----|
104
+ |plain_text|45328 | 5036 |23936|
105
+
106
+ ## Dataset Creation
107
+
108
+ ### Curation Rationale
109
+
110
+ [Needs More Information]
111
+
112
+ ### Source Data
113
+
114
+ #### Initial Data Collection and Normalization
115
+
116
+ [Needs More Information]
117
+
118
+ #### Who are the source language producers?
119
+
120
+ [Needs More Information]
121
+
122
+ ### Annotations
123
+
124
+ #### Annotation process
125
+
126
+ [Needs More Information]
127
+
128
+ #### Who are the annotators?
129
+
130
+ [Needs More Information]
131
+
132
+ ### Personal and Sensitive Information
133
+
134
+ [Needs More Information]
135
+
136
+ ## Considerations for Using the Data
137
+
138
+ ### Social Impact of Dataset
139
+
140
+ [Needs More Information]
141
+
142
+ ### Discussion of Biases
143
+
144
+ [Needs More Information]
145
+
146
+ ### Other Known Limitations
147
+
148
+ [Needs More Information]
149
+
150
+ ## Additional Information
151
+
152
+ ### Dataset Curators
153
+
154
+ [Needs More Information]
155
+
156
+ ### Licensing Information
157
+
158
+ [Needs More Information]
159
+
160
+ ### Citation Information
161
+
162
+ ```
163
+ @article{DBLP:journals/corr/abs-1912-09723,
164
+ author = {Pavel Efimov and
165
+ Leonid Boytsov and
166
+ Pavel Braslavski},
167
+ title = {SberQuAD - Russian Reading Comprehension Dataset: Description and
168
+ Analysis},
169
+ journal = {CoRR},
170
+ volume = {abs/1912.09723},
171
+ year = {2019},
172
+ url = {http://arxiv.org/abs/1912.09723},
173
+ eprinttype = {arXiv},
174
+ eprint = {1912.09723},
175
+ timestamp = {Fri, 03 Jan 2020 16:10:45 +0100},
176
+ biburl = {https://dblp.org/rec/journals/corr/abs-1912-09723.bib},
177
+ bibsource = {dblp computer science bibliography, https://dblp.org}
178
+ }
179
+ ```
180
+
181
+ ### Contributions
182
+
183
+ Thanks to [@alenusch](https://github.com/Alenush) for adding this dataset.
dataset_infos.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"sberquad": {"description": "Sber Question Answering Dataset (SberQuAD) is a reading comprehension dataset, consisting of questions posed by crowdworkers on a set of Wikipedia articles, where the answer to every question is a segment of text, or span, from the corresponding reading passage, or the question might be unanswerable. Russian original analogue presented in Sberbank Data Science Journey 2017.\n", "citation": "@article{Efimov_2020,\n title={SberQuAD \u2013 Russian Reading Comprehension Dataset: Description and Analysis},\n ISBN={9783030582197},\n ISSN={1611-3349},\n url={http://dx.doi.org/10.1007/978-3-030-58219-7_1},\n DOI={10.1007/978-3-030-58219-7_1},\n journal={Experimental IR Meets Multilinguality, Multimodality, and Interaction},\n publisher={Springer International Publishing},\n author={Efimov, Pavel and Chertok, Andrey and Boytsov, Leonid and Braslavski, Pavel},\n year={2020},\n pages={3\u201315}\n}\n ", "homepage": "", "license": "", "features": {"id": {"dtype": "int32", "id": null, "_type": "Value"}, "title": {"dtype": "string", "id": null, "_type": "Value"}, "context": {"dtype": "string", "id": null, "_type": "Value"}, "question": {"dtype": "string", "id": null, "_type": "Value"}, "answers": {"feature": {"text": {"dtype": "string", "id": null, "_type": "Value"}, "answer_start": {"dtype": "int32", "id": null, "_type": "Value"}}, "length": -1, "id": null, "_type": "Sequence"}}, "post_processed": null, "supervised_keys": null, "task_templates": [{"task": "question-answering-extractive", "question_column": "question", "context_column": "context", "answers_column": "answers"}], "builder_name": "sberquad", "config_name": "sberquad", "version": {"version_str": "1.0.0", "description": null, "major": 1, "minor": 0, "patch": 0}, "splits": {"train": {"name": "train", "num_bytes": 71631661, "num_examples": 45328, "dataset_name": "sberquad"}, "validation": {"name": "validation", "num_bytes": 7972977, "num_examples": 5036, "dataset_name": "sberquad"}, "test": {"name": "test", "num_bytes": 36397848, "num_examples": 23936, "dataset_name": "sberquad"}}, "download_checksums": {"https://sc.link/PNWl": {"num_bytes": 38616884, "checksum": "861b55219f1549139e64b2eed325b54ce9c9c63b792a2c2b3cfbec997aa3d88e"}, "https://sc.link/W6oX": {"num_bytes": 8807953, "checksum": "247bede36a27f076f607117632f39eedb9bb1d80c34d93bbfaeda71fd30fd382"}, "https://sc.link/VOn9": {"num_bytes": 18622439, "checksum": "7793d389208271a76ab38a5dba5cebc98e72f45e99196a99e14b5a37c401c66f"}}, "download_size": 66047276, "post_processing_size": null, "dataset_size": 116002486, "size_in_bytes": 182049762}}
dummy/sberquad/1.0.0/dummy_data.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e1bffceb9f4759941a6b08ff3ae5ebe24f047b2411bb7280c788b76ee9780853
3
+ size 1276
sberquad.py ADDED
@@ -0,0 +1,103 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # coding=utf-8
2
+ """SberQUAD: Sber Question Answering Dataset."""
3
+
4
+ import json
5
+
6
+ import datasets
7
+ from datasets.tasks import QuestionAnsweringExtractive
8
+
9
+
10
+ logger = datasets.logging.get_logger(__name__)
11
+
12
+ _CITATION = """\
13
+ @article{Efimov_2020,
14
+ title={SberQuAD – Russian Reading Comprehension Dataset: Description and Analysis},
15
+ ISBN={9783030582197},
16
+ ISSN={1611-3349},
17
+ url={http://dx.doi.org/10.1007/978-3-030-58219-7_1},
18
+ DOI={10.1007/978-3-030-58219-7_1},
19
+ journal={Experimental IR Meets Multilinguality, Multimodality, and Interaction},
20
+ publisher={Springer International Publishing},
21
+ author={Efimov, Pavel and Chertok, Andrey and Boytsov, Leonid and Braslavski, Pavel},
22
+ year={2020},
23
+ pages={3–15}
24
+ }
25
+ """
26
+
27
+
28
+ _DESCRIPTION = """\
29
+ Sber Question Answering Dataset (SberQuAD) is a reading comprehension \
30
+ dataset, consisting of questions posed by crowdworkers on a set of Wikipedia \
31
+ articles, where the answer to every question is a segment of text, or span, \
32
+ from the corresponding reading passage, or the question might be unanswerable. \
33
+ Russian original analogue presented in Sberbank Data Science Journey 2017.
34
+ """
35
+
36
+ _URLS = {"train": "https://sc.link/PNWl", "dev": "https://sc.link/W6oX", "test": "https://sc.link/VOn9"}
37
+
38
+
39
+ class Sberquad(datasets.GeneratorBasedBuilder):
40
+ """SberQUAD: Sber Question Answering Dataset. Version 1.0."""
41
+
42
+ VERSION = datasets.Version("1.0.0")
43
+ BUILDER_CONFIGS = [datasets.BuilderConfig(name="sberquad", version=VERSION, description=_DESCRIPTION)]
44
+
45
+ def _info(self):
46
+ return datasets.DatasetInfo(
47
+ description=_DESCRIPTION,
48
+ features=datasets.Features(
49
+ {
50
+ "id": datasets.Value("int32"),
51
+ "title": datasets.Value("string"),
52
+ "context": datasets.Value("string"),
53
+ "question": datasets.Value("string"),
54
+ "answers": datasets.features.Sequence(
55
+ {
56
+ "text": datasets.Value("string"),
57
+ "answer_start": datasets.Value("int32"),
58
+ }
59
+ ),
60
+ }
61
+ ),
62
+ supervised_keys=None,
63
+ homepage="",
64
+ citation=_CITATION,
65
+ task_templates=[
66
+ QuestionAnsweringExtractive(
67
+ question_column="question", context_column="context", answers_column="answers"
68
+ )
69
+ ],
70
+ )
71
+
72
+ def _split_generators(self, dl_manager):
73
+ downloaded_files = dl_manager.download_and_extract(_URLS)
74
+ return [
75
+ datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"filepath": downloaded_files["train"]}),
76
+ datasets.SplitGenerator(name=datasets.Split.VALIDATION, gen_kwargs={"filepath": downloaded_files["dev"]}),
77
+ datasets.SplitGenerator(name=datasets.Split.TEST, gen_kwargs={"filepath": downloaded_files["test"]}),
78
+ ]
79
+
80
+ def _generate_examples(self, filepath):
81
+ """This function returns the examples in the raw (text) form."""
82
+ logger.info("generating examples from = %s", filepath)
83
+ key = 0
84
+ with open(filepath, encoding="utf-8") as f:
85
+ squad = json.load(f)
86
+ for article in squad["data"]:
87
+ title = article.get("title", "")
88
+ for paragraph in article["paragraphs"]:
89
+ context = paragraph["context"]
90
+ for qa in paragraph["qas"]:
91
+ answer_starts = [answer["answer_start"] for answer in qa["answers"]]
92
+ answers = [answer["text"] for answer in qa["answers"]]
93
+ yield key, {
94
+ "title": title,
95
+ "context": context,
96
+ "question": qa["question"],
97
+ "id": qa["id"],
98
+ "answers": {
99
+ "answer_start": answer_starts,
100
+ "text": answers,
101
+ },
102
+ }
103
+ key += 1