Datasets:

Modalities:
Text
Formats:
parquet
Libraries:
Datasets
pandas
License:
dave-kudo commited on
Commit
6c94d9c
·
1 Parent(s): 72cdd2c

Create README.md

Browse files
Files changed (1) hide show
  1. README.md +201 -0
README.md ADDED
@@ -0,0 +1,201 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+
3
+ YAML tags:
4
+
5
+ annotations_creators:
6
+ - other
7
+ language_creators:
8
+ - other
9
+ languages:
10
+ - en-US
11
+ - es-ES
12
+ licenses:
13
+ - cc-by-nc-nd-4.0
14
+ multilinguality:
15
+ - translation
16
+ pretty_name: must-c_en-es_text-only
17
+ size_categories:
18
+ - unknown
19
+ source_datasets: []
20
+ task_categories:
21
+ - conditional-text-generation
22
+ task_ids:
23
+ - machine-translation
24
+
25
+ ---
26
+
27
+ # Dataset Card for kudo-research/mustc-en-es-text-only
28
+
29
+ ## Table of Contents
30
+ - [Table of Contents](#table-of-contents)
31
+ - [Dataset Description](#dataset-description)
32
+ - [Dataset Summary](#dataset-summary)
33
+ - [Supported Tasks and Leaderboards](#supported-tasks-and-leaderboards)
34
+ - [Languages](#languages)
35
+ - [Dataset Structure](#dataset-structure)
36
+ - [Data Instances](#data-instances)
37
+ - [Data Fields](#data-fields)
38
+ - [Data Splits](#data-splits)
39
+ - [Dataset Creation](#dataset-creation)
40
+ - [Curation Rationale](#curation-rationale)
41
+ - [Source Data](#source-data)
42
+ - [Initial Data Collection and Normalization](#initial-data-collection-and-normalization)
43
+ - [Who are the source language producers?](#who-are-the-source-language-producers)
44
+ - [Annotations](#annotations)
45
+ - [Annotation process](#annotation-process)
46
+ - [Who are the annotators?](#who-are-the-annotators)
47
+ - [Personal and Sensitive Information](#personal-and-sensitive-information)
48
+ - [Considerations for Using the Data](#considerations-for-using-the-data)
49
+ - [Social Impact of Dataset](#social-impact-of-dataset)
50
+ - [Discussion of Biases](#discussion-of-biases)
51
+ - [Other Known Limitations](#other-known-limitations)
52
+ - [Additional Information](#additional-information)
53
+ - [Dataset Curators](#dataset-curators)
54
+ - [Licensing Information](#licensing-information)
55
+ - [Citation Information](#citation-information)
56
+ - [Contributions](#contributions)
57
+
58
+ ## Dataset Description
59
+
60
+ - **Homepage:** [https://ict.fbk.eu/must-c-release-v1-2/](https://ict.fbk.eu/must-c-release-v1-2/)
61
+ - **Repository:** n/a
62
+ - **Paper:** [MuST-C: A multilingual corpus for end-to-end speech translation](https://www.sciencedirect.com/science/article/abs/pii/S0885230820300887)
63
+ - **Leaderboard:** n/a
64
+ - **Point of Contact:** Roldano Cattoni <[email protected]>; Marco Turchi <[email protected]>
65
+
66
+ ### Dataset Summary
67
+
68
+ This dataset is a selection of text only (English-Spanish) from the MuST-C corpus.
69
+
70
+ MuST-C is a multilingual speech translation corpus whose size and quality will facilitate the training of end-to-end systems for SLT from English into 14 languages (Arabic, Chinese, Czech, Dutch, French, German, Italian, Persian, Portuguese, Romanian, Russian, Spanish, Turkish and Vietnamese).
71
+ For each target language, MuST-C comprises several hundred hours of audio recordings from English TED Talks, which are automatically aligned at the sentence level with their manual transcriptions and translations.
72
+
73
+ ### Supported Tasks and Leaderboards
74
+
75
+ - `machine-translation`: The dataset can be used to train a model for machine-translation.
76
+ [More Information Needed]
77
+
78
+ ### Languages
79
+
80
+ - en-US
81
+ - es-ES
82
+
83
+ ## Dataset Structure
84
+
85
+ ### Data Instances
86
+
87
+ Dataset example:
88
+
89
+ ```
90
+ {
91
+ "translation": {
92
+ "en": "I'll tell you one quick story to illustrate what that's been like for me.",
93
+ "es": "Les diré una rápida historia para ilustrar lo que ha sido para mí."
94
+ }
95
+ }
96
+ ```
97
+
98
+ ### Data Fields
99
+
100
+ The fields are:
101
+
102
+ - `translation`: an object containing two items, constructed as key-value pairs:
103
+ - language code (key)
104
+ - text (value)
105
+
106
+
107
+ ### Data Splits
108
+
109
+ More Information Needed...
110
+
111
+ | | Tain | Valid | Test |
112
+ |-------------------------|---------|-------|------|
113
+ | Input Sentences | 265,625 | 1316 | 2502 |
114
+ | Average Sentence Length | n/a | n/a | n/a |
115
+
116
+ ## Dataset Creation
117
+
118
+ ### Curation Rationale
119
+
120
+ [More Information Needed]
121
+
122
+ ### Source Data
123
+
124
+ TED Talks
125
+
126
+ #### Initial Data Collection and Normalization
127
+
128
+ [More Information Needed]
129
+
130
+ #### Who are the source language producers?
131
+
132
+ [More Information Needed]
133
+
134
+ ### Annotations
135
+
136
+ [More Information Needed]
137
+
138
+ #### Annotation process
139
+
140
+ [More Information Needed]
141
+
142
+ #### Who are the annotators?
143
+
144
+ [More Information Needed]
145
+
146
+ ### Personal and Sensitive Information
147
+
148
+ [More Information Needed]
149
+
150
+ ## Considerations for Using the Data
151
+
152
+ ### Social Impact of Dataset
153
+
154
+ [More Information Needed]
155
+
156
+ ### Discussion of Biases
157
+
158
+ [More Information Needed]
159
+
160
+ ### Other Known Limitations
161
+
162
+ [More Information Needed]
163
+
164
+ ## Additional Information
165
+
166
+ ### Dataset Curators
167
+
168
+ FBK - Fondazione Bruno Kessler, Trento, Italy
169
+ - Roldano Cattoni, Mattia Antonino Di Gangi, Luisa Bentivogli, Matteo Negri, Marco Turchi
170
+
171
+ ### Licensing Information
172
+
173
+ - TED talks are copyrighted by TED Conference LLC and licensed under a
174
+ Creative Commons Attribution-NonCommercial-NoDerivs 4.0
175
+ (cfr. https://www.ted.com/about/our-organization/our-policies-terms/ted-talks-usage-policy)
176
+
177
+ - the MuST-C corpus is released under the same Creative Commons
178
+ Attribution-NonCommercial-NoDerivs 4.0 License.
179
+ ### Citation Information
180
+
181
+ Bibtex reference:
182
+ ```
183
+ @article{CATTONI2021101155,
184
+ title = {MuST-C: A multilingual corpus for end-to-end speech translation},
185
+ journal = {Computer Speech & Language},
186
+ volume = {66},
187
+ pages = {101155},
188
+ year = {2021},
189
+ issn = {0885-2308},
190
+ doi = {https://doi.org/10.1016/j.csl.2020.101155},
191
+ url = {https://www.sciencedirect.com/science/article/pii/S0885230820300887},
192
+ author = {Roldano Cattoni and Mattia Antonino {Di Gangi} and Luisa Bentivogli and Matteo Negri and Marco Turchi},
193
+ keywords = {Spoken language translation, Multilingual corpus},
194
+ abstract = {End-to-end spoken language translation (SLT) has recently gained popularity thanks to the advancement of sequence to sequence learning in its two parent tasks: automatic speech recognition (ASR) and machine translation (MT). However, research in the field has to confront with the scarcity of publicly available corpora to train data-hungry neural networks. Indeed, while traditional cascade solutions can build on sizable ASR and MT training data for a variety of languages, the available SLT corpora suitable for end-to-end training are few, typically small and of limited language coverage. We contribute to fill this gap by presenting MuST-C, a large and freely available Multilingual Speech Translation Corpus built from English TED Talks. Its unique features include: i) language coverage and diversity (from English into 14 languages from different families), ii) size (at least 237 hours of transcribed recordings per language, 430 on average), iii) variety of topics and speakers, and iv) data quality. Besides describing the corpus creation methodology and discussing the outcomes of empirical and manual quality evaluations, we present baseline results computed with strong systems on each language direction covered by MuST-C.}
195
+ }```
196
+
197
+ [DOI available here](https://doi.org/10.1016/j.csl.2020.101155)
198
+
199
+ ### Contributions
200
+
201
+ Thanks to [@dblandan](https://github.com/dblandan) for adding this dataset.