# coding=utf-8 # Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Indo-Aryan Language Identification Shared Task Dataset""" import datasets _CITATION = """\ @proceedings{ws-2018-nlp-similar, title = "Proceedings of the Fifth Workshop on {NLP} for Similar Languages, Varieties and Dialects ({V}ar{D}ial 2018)", editor = {Zampieri, Marcos and Nakov, Preslav and Ljube{\v{s}}i{\'c}, Nikola and Tiedemann, J{\"o}rg and Malmasi, Shervin and Ali, Ahmed}, month = aug, year = "2018", address = "Santa Fe, New Mexico, USA", publisher = "Association for Computational Linguistics", url = "https://www.aclweb.org/anthology/W18-3900", } """ _DESCRIPTION = """\ This dataset is introduced in a task which aimed at identifying 5 closely-related languages of Indo-Aryan language family – Hindi (also known as Khari Boli), Braj Bhasha, Awadhi, Bhojpuri, and Magahi. """ _URL = "https://raw.githubusercontent.com/kmi-linguistics/vardial2018/master/dataset/{}.txt" class Ilist(datasets.GeneratorBasedBuilder): def _info(self): return datasets.DatasetInfo( description=_DESCRIPTION, features=datasets.Features( { "language_id": datasets.ClassLabel(names=["AWA", "BRA", "MAG", "BHO", "HIN"]), "text": datasets.Value("string"), } ), supervised_keys=None, homepage="https://github.com/kmi-linguistics/vardial2018", citation=_CITATION, ) def _split_generators(self, dl_manager): filepaths = dl_manager.download_and_extract( { "train": _URL.format("train"), "test": _URL.format("gold"), "dev": _URL.format("dev"), } ) return [ datasets.SplitGenerator( name=datasets.Split.TRAIN, # These kwargs will be passed to _generate_examples gen_kwargs={ "filepath": filepaths["train"], }, ), datasets.SplitGenerator( name=datasets.Split.TEST, # These kwargs will be passed to _generate_examples gen_kwargs={ "filepath": filepaths["test"], }, ), datasets.SplitGenerator( name=datasets.Split.VALIDATION, # These kwargs will be passed to _generate_examples gen_kwargs={ "filepath": filepaths["dev"], }, ), ] def _generate_examples(self, filepath): """Yields examples.""" with open(filepath, "r", encoding="utf-8") as file: for idx, row in enumerate(file): row = row.strip("\n").split("\t") if len(row) == 1: continue yield idx, {"language_id": row[1], "text": row[0]}