Datasets:
Tasks:
Text Classification
Modalities:
Text
Formats:
parquet
Size:
10K - 100K
Tags:
language-identification
License:
# coding=utf-8 | |
# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
"""Indo-Aryan Language Identification Shared Task Dataset""" | |
import datasets | |
_CITATION = """\ | |
@proceedings{ws-2018-nlp-similar, | |
title = "Proceedings of the Fifth Workshop on {NLP} for Similar Languages, Varieties and Dialects ({V}ar{D}ial 2018)", | |
editor = {Zampieri, Marcos and | |
Nakov, Preslav and | |
Ljube{\v{s}}i{\'c}, Nikola and | |
Tiedemann, J{\"o}rg and | |
Malmasi, Shervin and | |
Ali, Ahmed}, | |
month = aug, | |
year = "2018", | |
address = "Santa Fe, New Mexico, USA", | |
publisher = "Association for Computational Linguistics", | |
url = "https://www.aclweb.org/anthology/W18-3900", | |
} | |
""" | |
_DESCRIPTION = """\ | |
This dataset is introduced in a task which aimed at identifying 5 closely-related languages of Indo-Aryan language family – | |
Hindi (also known as Khari Boli), Braj Bhasha, Awadhi, Bhojpuri, and Magahi. | |
""" | |
_URL = "https://raw.githubusercontent.com/kmi-linguistics/vardial2018/master/dataset/{}.txt" | |
class Ilist(datasets.GeneratorBasedBuilder): | |
def _info(self): | |
return datasets.DatasetInfo( | |
description=_DESCRIPTION, | |
features=datasets.Features( | |
{ | |
"language_id": datasets.ClassLabel(names=["AWA", "BRA", "MAG", "BHO", "HIN"]), | |
"text": datasets.Value("string"), | |
} | |
), | |
supervised_keys=None, | |
homepage="https://github.com/kmi-linguistics/vardial2018", | |
citation=_CITATION, | |
) | |
def _split_generators(self, dl_manager): | |
filepaths = dl_manager.download_and_extract( | |
{ | |
"train": _URL.format("train"), | |
"test": _URL.format("gold"), | |
"dev": _URL.format("dev"), | |
} | |
) | |
return [ | |
datasets.SplitGenerator( | |
name=datasets.Split.TRAIN, | |
# These kwargs will be passed to _generate_examples | |
gen_kwargs={ | |
"filepath": filepaths["train"], | |
}, | |
), | |
datasets.SplitGenerator( | |
name=datasets.Split.TEST, | |
# These kwargs will be passed to _generate_examples | |
gen_kwargs={ | |
"filepath": filepaths["test"], | |
}, | |
), | |
datasets.SplitGenerator( | |
name=datasets.Split.VALIDATION, | |
# These kwargs will be passed to _generate_examples | |
gen_kwargs={ | |
"filepath": filepaths["dev"], | |
}, | |
), | |
] | |
def _generate_examples(self, filepath): | |
"""Yields examples.""" | |
with open(filepath, "r", encoding="utf-8") as file: | |
for idx, row in enumerate(file): | |
row = row.strip("\n").split("\t") | |
if len(row) == 1: | |
continue | |
yield idx, {"language_id": row[1], "text": row[0]} | |