script name changed
Browse files- CoarseWSD-20.py +22 -52
- coarsewsd_20.py +0 -86
CoarseWSD-20.py
CHANGED
@@ -1,5 +1,5 @@
|
|
1 |
|
2 |
-
# @title Gold cwsd20
|
3 |
import json
|
4 |
import datasets
|
5 |
|
@@ -22,25 +22,15 @@ to provide an ideal setting for evaluating WSD models (e.g. no senses in test se
|
|
22 |
from training), both quantitavely and qualitatively.
|
23 |
"""
|
24 |
|
25 |
-
path = "data/apple/train.data.txt"
|
26 |
|
27 |
-
_PATHS = {
|
28 |
-
"train_examples": "/content/train/train.data.txt",
|
29 |
-
"train_labels": "/content/train/train.gold.txt",
|
30 |
-
"dev_examples": "/content/dev/dev.data.txt",
|
31 |
-
"dev_labels": "/content/dev/dev.gold.txt",
|
32 |
-
"test_examples": "/content/test/test.data.txt",
|
33 |
-
"test_labels": "/content/test/test.gold.txt",
|
34 |
-
}
|
35 |
|
36 |
-
def normalize_text(text):
|
37 |
-
return text.replace(' .', '.').replace(' ,', ',').replace(" '", "'").replace(" ?", "?").replace(" !", "!")
|
38 |
|
39 |
class CWSD20(datasets.GeneratorBasedBuilder):
|
40 |
"""TODO(WiCTSV): Short description of my dataset."""
|
41 |
|
42 |
# TODO(WiCTSV): Set up version.
|
43 |
-
VERSION = datasets.Version("
|
44 |
|
45 |
def _info(self):
|
46 |
# TODO(WiCTSV): Specifies the datasets.DatasetInfo object
|
@@ -50,15 +40,15 @@ class CWSD20(datasets.GeneratorBasedBuilder):
|
|
50 |
# datasets.features.FeatureConnectors
|
51 |
features=datasets.Features(
|
52 |
{
|
53 |
-
"sentence1": datasets.Value("string"),
|
54 |
-
"sentence2": datasets.Value("string"),
|
55 |
"idx": datasets.Value("int32"),
|
56 |
-
"
|
57 |
-
"
|
58 |
-
"
|
59 |
-
"
|
60 |
-
"
|
61 |
-
"
|
|
|
|
|
62 |
}
|
63 |
),
|
64 |
# If there's a common (input, target) tuple from the features,
|
@@ -76,41 +66,21 @@ class CWSD20(datasets.GeneratorBasedBuilder):
|
|
76 |
# dl_manager is a datasets.download.DownloadManager that can be used to
|
77 |
# download and extract URLs
|
78 |
# urls_to_download = _URLS
|
79 |
-
dl =
|
80 |
|
81 |
-
return [
|
82 |
-
|
83 |
-
gen_kwargs={"ex": dl["train_examples"], "lb":dl["train_labels"]}),
|
84 |
-
datasets.SplitGenerator(name=datasets.Split.TEST,
|
85 |
-
gen_kwargs={"ex": dl["test_examples"], "lb":dl["test_labels"]}),
|
86 |
-
datasets.SplitGenerator(name=datasets.Split.VALIDATION,
|
87 |
-
gen_kwargs={"ex": dl["dev_examples"], "lb":dl["dev_labels"]}),
|
88 |
-
]
|
89 |
|
90 |
-
def _generate_examples(self, ex
|
91 |
"""Yields examples."""
|
92 |
with open(ex, encoding="utf-8") as exf:
|
93 |
-
|
94 |
-
for id_, (exi, lbi) in enumerate(zip(exf, lbf)):
|
95 |
example = {}
|
96 |
# 'word', 'sentence1', 'sentence2', 'start1', 'start2', 'end1', 'end2', 'idx', 'label'
|
97 |
-
|
98 |
-
|
99 |
-
|
100 |
-
|
101 |
-
|
102 |
-
|
103 |
-
sentence1b = normalize_text(' '.join(tokens1[:pos1]))
|
104 |
-
sentence1a = normalize_text(' '.join(tokens1[pos1+1:]))
|
105 |
-
example["sentence1"] = normalize_text(' '.join(tokens1))
|
106 |
-
sentence2b = normalize_text(' '.join(tokens2[:pos2]))
|
107 |
-
sentence2a = normalize_text(' '.join(tokens2[pos2+1:]))
|
108 |
-
example["sentence2"] = normalize_text(' '.join(tokens2))
|
109 |
-
example["start1"] = 0 if pos1 == 0 else len(sentence1b) + 1
|
110 |
-
example["start2"] = 0 if pos2 == 0 else len(sentence2b) + 1
|
111 |
-
example["end1"] = example["start1"] + len(tokens1[pos1])
|
112 |
-
example["end2"] = example["start2"] + len(tokens2[pos2])
|
113 |
-
example["idx"] = id_
|
114 |
-
example["word"] = word
|
115 |
-
example["label"] = 1 if lbi.strip() == 'T' else 0
|
116 |
yield id_, example
|
|
|
1 |
|
2 |
+
# @title Gold cwsd20 temp
|
3 |
import json
|
4 |
import datasets
|
5 |
|
|
|
22 |
from training), both quantitavely and qualitatively.
|
23 |
"""
|
24 |
|
25 |
+
path = "/content/CoarseWSD-20/data/apple/train.data.txt"
|
26 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
27 |
|
|
|
|
|
28 |
|
29 |
class CWSD20(datasets.GeneratorBasedBuilder):
|
30 |
"""TODO(WiCTSV): Short description of my dataset."""
|
31 |
|
32 |
# TODO(WiCTSV): Set up version.
|
33 |
+
VERSION = datasets.Version("1.0.0")
|
34 |
|
35 |
def _info(self):
|
36 |
# TODO(WiCTSV): Specifies the datasets.DatasetInfo object
|
|
|
40 |
# datasets.features.FeatureConnectors
|
41 |
features=datasets.Features(
|
42 |
{
|
|
|
|
|
43 |
"idx": datasets.Value("int32"),
|
44 |
+
"sentence": datasets.Value("string"),
|
45 |
+
# "idx": datasets.Value("int32"),
|
46 |
+
# "word": datasets.Value("string"),
|
47 |
+
# "start1": datasets.Value("int32"),
|
48 |
+
# "start2": datasets.Value("int32"),
|
49 |
+
# "end1": datasets.Value("int32"),
|
50 |
+
# "end2": datasets.Value("int32"),
|
51 |
+
# "label": datasets.Value("int32")
|
52 |
}
|
53 |
),
|
54 |
# If there's a common (input, target) tuple from the features,
|
|
|
66 |
# dl_manager is a datasets.download.DownloadManager that can be used to
|
67 |
# download and extract URLs
|
68 |
# urls_to_download = _URLS
|
69 |
+
dl = path
|
70 |
|
71 |
+
return [datasets.SplitGenerator(name=datasets.Split.TRAIN,
|
72 |
+
gen_kwargs={"ex": dl})]
|
|
|
|
|
|
|
|
|
|
|
|
|
73 |
|
74 |
+
def _generate_examples(self, ex):
|
75 |
"""Yields examples."""
|
76 |
with open(ex, encoding="utf-8") as exf:
|
77 |
+
for id_, exi in enumerate(exf):
|
|
|
78 |
example = {}
|
79 |
# 'word', 'sentence1', 'sentence2', 'start1', 'start2', 'end1', 'end2', 'idx', 'label'
|
80 |
+
parts = exi.split("\t")
|
81 |
+
idx = parts[0]
|
82 |
+
sent = parts[1]
|
83 |
+
example["sentence"] = sent
|
84 |
+
example["idx"] = idx
|
85 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
86 |
yield id_, example
|
coarsewsd_20.py
DELETED
@@ -1,86 +0,0 @@
|
|
1 |
-
|
2 |
-
# @title Gold cwsd20 temp
|
3 |
-
import json
|
4 |
-
import datasets
|
5 |
-
|
6 |
-
|
7 |
-
_CITATION = """\
|
8 |
-
@misc{loureiro2021analysis,
|
9 |
-
title={Analysis and Evaluation of Language Models for Word Sense Disambiguation},
|
10 |
-
author={Daniel Loureiro and Kiamehr Rezaee and Mohammad Taher Pilehvar and Jose Camacho-Collados},
|
11 |
-
year={2021},
|
12 |
-
eprint={2008.11608},
|
13 |
-
archivePrefix={arXiv},
|
14 |
-
primaryClass={cs.CL}
|
15 |
-
}
|
16 |
-
"""
|
17 |
-
|
18 |
-
_DESCRIPTION = """\
|
19 |
-
The CoarseWSD-20 dataset is a coarse-grained sense disambiguation built from Wikipedia
|
20 |
-
(nouns only) targetting 2 to 5 senses of 20 ambiguous words. It was specifically designed
|
21 |
-
to provide an ideal setting for evaluating WSD models (e.g. no senses in test sets missing
|
22 |
-
from training), both quantitavely and qualitatively.
|
23 |
-
"""
|
24 |
-
|
25 |
-
path = "/content/CoarseWSD-20/data/apple/train.data.txt"
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
class CWSD20(datasets.GeneratorBasedBuilder):
|
30 |
-
"""TODO(WiCTSV): Short description of my dataset."""
|
31 |
-
|
32 |
-
# TODO(WiCTSV): Set up version.
|
33 |
-
VERSION = datasets.Version("1.0.0")
|
34 |
-
|
35 |
-
def _info(self):
|
36 |
-
# TODO(WiCTSV): Specifies the datasets.DatasetInfo object
|
37 |
-
return datasets.DatasetInfo(
|
38 |
-
# This is the description that will appear on the datasets page.
|
39 |
-
description=_DESCRIPTION,
|
40 |
-
# datasets.features.FeatureConnectors
|
41 |
-
features=datasets.Features(
|
42 |
-
{
|
43 |
-
"idx": datasets.Value("int32"),
|
44 |
-
"sentence": datasets.Value("string"),
|
45 |
-
# "idx": datasets.Value("int32"),
|
46 |
-
# "word": datasets.Value("string"),
|
47 |
-
# "start1": datasets.Value("int32"),
|
48 |
-
# "start2": datasets.Value("int32"),
|
49 |
-
# "end1": datasets.Value("int32"),
|
50 |
-
# "end2": datasets.Value("int32"),
|
51 |
-
# "label": datasets.Value("int32")
|
52 |
-
}
|
53 |
-
),
|
54 |
-
# If there's a common (input, target) tuple from the features,
|
55 |
-
# specify them here. They'll be used if as_supervised=True in
|
56 |
-
# builder.as_dataset.
|
57 |
-
supervised_keys=None,
|
58 |
-
# Homepage of the dataset for documentation
|
59 |
-
homepage="https://github.com/google-research-datasets/boolean-questions",
|
60 |
-
citation=_CITATION,
|
61 |
-
)
|
62 |
-
|
63 |
-
def _split_generators(self, dl_manager):
|
64 |
-
"""Returns SplitGenerators."""
|
65 |
-
# TODO(WiCTSV): Downloads the data and defines the splits
|
66 |
-
# dl_manager is a datasets.download.DownloadManager that can be used to
|
67 |
-
# download and extract URLs
|
68 |
-
# urls_to_download = _URLS
|
69 |
-
dl = path
|
70 |
-
|
71 |
-
return [datasets.SplitGenerator(name=datasets.Split.TRAIN,
|
72 |
-
gen_kwargs={"ex": dl})]
|
73 |
-
|
74 |
-
def _generate_examples(self, ex):
|
75 |
-
"""Yields examples."""
|
76 |
-
with open(ex, encoding="utf-8") as exf:
|
77 |
-
for id_, exi in enumerate(exf):
|
78 |
-
example = {}
|
79 |
-
# 'word', 'sentence1', 'sentence2', 'start1', 'start2', 'end1', 'end2', 'idx', 'label'
|
80 |
-
parts = exi.split("\t")
|
81 |
-
idx = parts[0]
|
82 |
-
sent = parts[1]
|
83 |
-
example["sentence"] = sent
|
84 |
-
example["idx"] = idx
|
85 |
-
|
86 |
-
yield id_, example
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|