khalidalt commited on
Commit
a56b673
·
1 Parent(s): 1a9413c

Update tydiqa-goldp.py

Browse files
Files changed (1) hide show
  1. tydiqa-goldp.py +8 -31
tydiqa-goldp.py CHANGED
@@ -28,44 +28,21 @@ the use of translation (unlike MLQA and XQuAD).
28
 
29
  _LANG = ["arabic", "bengali", "english", "finnish", "indonesian", "japanese", "korean", "russian", "swahili", "telugu", "thai"]
30
 
31
- _PRIMARY_URLS = "https://huggingface.co/datasets/khalidalt/tydiqa-goldp/resolve/main/primary_tasks/{split}/{language}-{split}.jsonl"
32
- _Secondary_URLS = "https://huggingface.co/datasets/khalidalt/tydiqa-goldp/resolve/main/{split}/{language}-{split}.jsonl"
33
-
34
  _VERSION = datasets.Version("1.1.0", "")
35
 
36
 
37
  class tydiqa_GoldP(datasets.GeneratorBasedBuilder):
38
  BUILDER_CONFIGS = [
39
- TydiqaConfig(
40
- name="primary_task",
41
- description=textwrap.dedent(
42
- """\
43
- Passage selection task (SelectP): Given a list of the passages in the article, return either (a) the index of
44
- the passage that answers the question or (b) NULL if no such passage exists.
45
- Minimal answer span task (MinSpan): Given the full text of an article, return one of (a) the start and end
46
- byte indices of the minimal span that completely answers the question; (b) YES or NO if the question requires
47
- a yes/no answer and we can draw a conclusion from the passage; (c) NULL if it is not possible to produce a
48
- minimal answer for this question."""
49
- ),
50
- ),
51
- TydiqaConfig(
52
- name="secondary_task",
53
- description=textwrap.dedent(
54
- """Gold passage task (GoldP): Given a passage that is guaranteed to contain the
55
- answer, predict the single contiguous span of characters that answers the question. This is more similar to
56
- existing reading comprehension datasets (as opposed to the information-seeking task outlined above).
57
- This task is constructed with two goals in mind: (1) more directly comparing with prior work and (2) providing
58
- a simplified way for researchers to use TyDi QA by providing compatibility with existing code for SQuAD 1.1,
59
- XQuAD, and MLQA. Toward these goals, the gold passage task differs from the primary task in several ways:
60
- only the gold answer passage is provided rather than the entire Wikipedia article;
61
- unanswerable questions have been discarded, similar to MLQA and XQuAD;
62
- we evaluate with the SQuAD 1.1 metrics like XQuAD; and
63
- Thai and Japanese are removed since the lack of whitespace breaks some tools.
64
- """
65
- ),
66
  )
67
  for lang in _LANG
68
  ]
 
 
69
  def _info(self):
70
  # TODO(tydiqa): Specifies the datasets.DatasetInfo object
71
 
@@ -108,7 +85,7 @@ class tydiqa_GoldP(datasets.GeneratorBasedBuilder):
108
  splits = {datasets.Split.TRAIN: "train", datasets.Split.VALIDATION: "dev"}
109
 
110
  data_urls = {
111
- split: _Secondary_URLS.format(language=language, split=splits[split]) for split in splits
112
  }
113
 
114
  dl_paths = dl_manager.download(data_urls)
 
28
 
29
  _LANG = ["arabic", "bengali", "english", "finnish", "indonesian", "japanese", "korean", "russian", "swahili", "telugu", "thai"]
30
 
31
+ _URL = "https://huggingface.co/datasets/khalidalt/tydiqa-goldp/resolve/main/{split}/{language}-{split}.jsonl"
 
 
32
  _VERSION = datasets.Version("1.1.0", "")
33
 
34
 
35
  class tydiqa_GoldP(datasets.GeneratorBasedBuilder):
36
  BUILDER_CONFIGS = [
37
+ datasets.BuilderConfig(
38
+ name=lang,
39
+ description=f"tydiqa-GoldP language {lang}",
40
+ version=_VERSION,
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
41
  )
42
  for lang in _LANG
43
  ]
44
+
45
+
46
  def _info(self):
47
  # TODO(tydiqa): Specifies the datasets.DatasetInfo object
48
 
 
85
  splits = {datasets.Split.TRAIN: "train", datasets.Split.VALIDATION: "dev"}
86
 
87
  data_urls = {
88
+ split: _URL.format(language=language, split=splits[split]) for split in splits
89
  }
90
 
91
  dl_paths = dl_manager.download(data_urls)