Datasets:

Modalities:
Tabular
Text
Formats:
csv
ArXiv:
Libraries:
Datasets
pandas
License:
kellycyy commited on
Commit
985325b
·
verified ·
1 Parent(s): 2413b3c

update readme

Browse files
Files changed (1) hide show
  1. README.md +53 -11
README.md CHANGED
@@ -1,17 +1,59 @@
1
  ---
2
- license: apache-2.0
3
  dataset_info: null
4
  configs:
5
- - config_name: CulturalBench-Hard
6
- default: true
7
- data_files:
8
- - split: test
9
- path: CulturalBench-Hard.csv
10
- - config_name: CulturalBench-Easy
11
- data_files:
12
- - split: test
13
- path: CulturalBench-Easy.csv
14
  size_categories:
15
- - 1K<n<10K
16
  pretty_name: CulturalBench
17
  ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  ---
2
+ license: cc-by-4.0
3
  dataset_info: null
4
  configs:
5
+ - config_name: CulturalBench-Hard
6
+ default: true
7
+ data_files:
8
+ - split: test
9
+ path: CulturalBench-Hard.csv
10
+ - config_name: CulturalBench-Easy
11
+ data_files:
12
+ - split: test
13
+ path: CulturalBench-Easy.csv
14
  size_categories:
15
+ - 1K<n<10K
16
  pretty_name: CulturalBench
17
  ---
18
+ # CulturalBench - a Robust, Diverse and Challenging Benchmark on Measuring the (Lack of) Cultural Knowledge of LLMs
19
+ - CulturalBench is a set of 1,227 human-written and human-verified questions for effectively assessing LLMs’ cultural knowledge, covering 45 global regions including the underrepresented ones like Bangladesh, Zimbabwe, and Peru.
20
+ - We evaluate models on two setups: CulturalBench-Easy and CulturalBench-Hard which share the same questions but asked differently.
21
+ 1. CulturalBench-Easy: multiple-choice questions (Output: one out of four options i.e. A,B,C,D). Evaluate model accuracy at question level (i.e. per `question_idx`). There are 1,227 questions in total.
22
+ 2. CulturalBench-Hard: binary (Output: one out of two possibilties i.e. True/False). Evaluate model accuracy at question level (i.e. per `question_idx`). There are 1,227x4=4908 binary judgements in total with 1,227 questions provided.
23
+
24
+ - See details on CulturalBench paper at [https://arxiv.org/pdf/2410.02677](https://arxiv.org/pdf/2410.02677).
25
+ - Examples of questions in two setups:
26
+ ![image/png](https://cdn-uploads.huggingface.co/production/uploads/65fcaae6e5dc5b0ec1b726cf/4LU3Ofl9lzeJGVME3yBMp.png)
27
+
28
+ - Country distribution
29
+ | Continent | Num of questions | Included Country/Region |
30
+ |-----------------------|------------------|----------------------------------------------------------------|
31
+ | North America | 27 | Canada; United States |
32
+ | South America | 150 | Argentina; Brazil; Chile; Mexico; Peru |
33
+ | East Europe | 115 | Czech Republic; Poland; Romania; Ukraine; Russia |
34
+ | South Europe | 76 | Spain; Italy |
35
+ | West Europe | 96 | France; Germany; Netherlands; United Kingdom |
36
+ | Africa | 134 | Egypt; Morocco; Nigeria; South Africa; Zimbabwe |
37
+ | Middle East/West Asia | 127 | Iran; Israel; Lebanon; Saudi Arabia; Turkey |
38
+ | South Asia | 106 | Bangladesh; India; Nepal; Pakistan |
39
+ | Southeast Asia | 159 | Indonesia; Malaysia; Philippines; Singapore; Thailand; Vietnam |
40
+ | East Asia | 211 | China; Hong Kong; Japan; South Korea; Taiwan |
41
+ | Oceania | 26 | Australia; New Zealand |
42
+
43
+
44
+ ## Leaderboard of CulturalBench
45
+ - We evaluated 30 frontier LLMs (update: 2024-10-04 13:20:58) and hosted the leaderboard at [https://huggingface.co/spaces/kellycyy/CulturalBench](https://huggingface.co/spaces/kellycyy/CulturalBench).
46
+ - We find that LLMs are sensitive to such difference in setups (e.g., GPT-4o with 27.3% difference).
47
+ - Compared to human performance (92.6% accuracy), CULTURALBENCH-Hard is more challenging for frontier LLMs with the best performing model (GPT-4o) at only 61.5% and the worst (Llama3-8b) at 21.4%.
48
+
49
+
50
+
51
+ ## How to load the datasets
52
+
53
+ ```
54
+ from datasets import load_dataset
55
+
56
+ ds_hard = load_dataset("kellycyy/CulturalBench", "CulturalBench-Hard")
57
+ ds_easy = load_dataset("kellycyy/CulturalBench", "CulturalBench-Easy")
58
+
59
+ ```