File size: 9,262 Bytes
427cb1c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
# coding=utf-8
# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""The Pile dataset."""

import json

import datasets


_CITATION = """\
@misc{gao2020pile,
      title={The Pile: An 800GB Dataset of Diverse Text for Language Modeling},
      author={Leo Gao and Stella Biderman and Sid Black and Laurence Golding and Travis Hoppe and Charles Foster and Jason Phang and Horace He and Anish Thite and Noa Nabeshima and Shawn Presser and Connor Leahy},
      year={2020},
      eprint={2101.00027},
      archivePrefix={arXiv},
      primaryClass={cs.CL}
}
"""

_DESCRIPTION = """\
The Pile is a 825 GiB diverse, open source language modelling data set that consists of 22 smaller, high-quality
datasets combined together.
"""

_HOMEPAGE = "https://pile.eleuther.ai/"

_LICENSES = {
    "all": "Multiple: see each subset license",
    "enron_emails": "Unknown",
    "europarl": "Unknown",
    "free_law": "Unknown",
    "hacker_news": "Unknown",
    "nih_exporter": "Unknown",
    "pubmed": "Unknown",
    "pubmed_central": "Unknown",
    "ubuntu_irc": "Unknown",
    "uspto": "Unknown",
}

_HOST_URL = "https://mystic.the-eye.eu"
_DATA_URLS = {
    "all": {
        "train": [f"{_HOST_URL}/public/AI/pile/train/{i:0>2}.jsonl.zst" for i in range(30)],
        "validation": [f"{_HOST_URL}/public/AI/pile/val.jsonl.zst"],
        "test": [f"{_HOST_URL}/public/AI/pile/test.jsonl.zst"],
    },
    "enron_emails": "https://www.cs.cmu.edu/~enron/enron_mail_20150507.tar.gz",
    "europarl": f"{_HOST_URL}/public/AI/pile_preliminary_components/EuroParliamentProceedings_1996_2011.jsonl.zst",
    "free_law": f"{_HOST_URL}/public/AI/pile_preliminary_components/FreeLaw_Opinions.jsonl.zst",
    "hacker_news": f"{_HOST_URL}/public/AI/pile_preliminary_components/hn.tar.gz",
    "nih_exporter": f"{_HOST_URL}/public/AI/pile_preliminary_components/NIH_ExPORTER_awarded_grant_text.jsonl.zst",
    "pubmed": f"{_HOST_URL}/public/AI/pile_preliminary_components/PUBMED_title_abstracts_2019_baseline.jsonl.zst",
    "pubmed_central": f"{_HOST_URL}/public/AI/pile_preliminary_components/PMC_extracts.tar.gz",
    "ubuntu_irc": f"{_HOST_URL}/public/AI/pile_preliminary_components/ubuntu_irc_until_2020_9_1.jsonl.zst",
    "uspto": f"{_HOST_URL}/public/AI/pile_preliminary_components/pile_uspto.tar",
}

_FEATURES = {
    "all": datasets.Features(
        {
            "text": datasets.Value("string"),
            "meta": {"pile_set_name": datasets.Value("string")},
        }
    ),
    "enron_emails": datasets.Features(
        {
            "text": datasets.Value("string"),
            "meta": datasets.Value("string"),
        }
    ),
    "europarl": datasets.Features(
        {
            "text": datasets.Value("string"),
            "meta": datasets.Value("string"),
        }
    ),
    "free_law": datasets.Features(
        {
            "text": datasets.Value("string"),
            "meta": datasets.Value("string"),
        }
    ),
    "hacker_news": datasets.Features(
        {
            "text": datasets.Value("string"),
            "meta": datasets.Value("string"),
        }
    ),
    "nih_exporter": datasets.Features(
        {
            "text": datasets.Value("string"),
            "meta": datasets.Value("string"),
        }
    ),
    "pubmed": datasets.Features(
        {
            "text": datasets.Value("string"),
            "meta": datasets.Value("string"),
        }
    ),
    "pubmed_central": datasets.Features(
        {
            "text": datasets.Value("string"),
            "meta": datasets.Value("string"),
        }
    ),
    "ubuntu_irc": datasets.Features(
        {
            "text": datasets.Value("string"),
            "meta": datasets.Value("string"),
        }
    ),
    "uspto": datasets.Features(
        {
            "text": datasets.Value("string"),
            "meta": datasets.Value("string"),
        }
    ),
}


class ThePileConfig(datasets.BuilderConfig):
    """BuilderConfig for The Pile."""

    def __init__(self, *args, subsets, **kwargs):
        """BuilderConfig for The Pile.

        Args:
            subsets (:obj:`List[str]`): List of subsets to load.
            **kwargs: keyword arguments forwarded to super.
        """
        super().__init__(
            *args,
            name="+".join(subsets),
            **kwargs,
        )
        self.subsets = subsets


class ThePile(datasets.GeneratorBasedBuilder):
    """The Pile dataset."""

    VERSION = datasets.Version("1.1.0")

    BUILDER_CONFIG_CLASS = ThePileConfig
    BUILDER_CONFIGS = [ThePileConfig(subsets=[subset]) for subset in _DATA_URLS]
    DEFAULT_CONFIG_NAME = "all"

    def _info(self):
        """Give information and typings for the dataset."""
        return datasets.DatasetInfo(
            # This is the description that will appear on the datasets page.
            description=_DESCRIPTION,
            # This defines the different columns of the dataset and their types
            features=_FEATURES.get(self.config.name),
            # If there's a common (input, target) tuple from the features,
            # specify them here. They'll be used if as_supervised=True in
            # builder.as_dataset.
            supervised_keys=None,
            # Homepage of the dataset for documentation
            homepage=_HOMEPAGE,
            # License for the dataset if available
            license=_LICENSES.get(self.config.name, "Multiple: see each subset license"),
            # Citation for the dataset
            citation=_CITATION,
        )

    def _split_generators(self, dl_manager):
        """Return SplitGenerators."""
        if self.config.name == "all":
            data_dir = dl_manager.download(_DATA_URLS[self.config.name])
            return [
                datasets.SplitGenerator(
                    name=split,
                    gen_kwargs={
                        "files": data_dir[split],
                    },
                )
                for split in [datasets.Split.TRAIN, datasets.Split.VALIDATION, datasets.Split.TEST]
            ]
        else:
            data_urls = {subset: _DATA_URLS[subset] for subset in self.config.subsets}
            archive = dl_manager.download(data_urls)
            return [
                datasets.SplitGenerator(
                    name=datasets.Split.TRAIN,
                    gen_kwargs={
                        "files": {
                            subset: dl_manager.iter_archive(archive[subset])
                            if ".tar" in data_urls[subset]
                            else archive[subset]
                            for subset in self.config.subsets
                        },
                    },
                ),
            ]

    def _generate_examples(self, files):
        """Yield examples as (key, example) tuples."""
        key = 0
        if isinstance(files, list):
            import zstandard as zstd

            for path in files:
                with zstd.open(open(path, "rb"), "rt", encoding="utf-8") as f:
                    for row in f:
                        data = json.loads(row)
                        yield key, data
                        key += 1
        else:
            for subset in files:
                if subset in {"europarl", "free_law", "nih_exporter", "pubmed", "ubuntu_irc"}:
                    import zstandard as zstd

                    with zstd.open(open(files[subset], "rb"), "rt", encoding="utf-8") as f:
                        for row in f:
                            data = json.loads(row)
                            yield key, data
                            key += 1
                elif subset in {"enron_emails", "hacker_news", "pubmed_central"}:
                    for path, file in files[subset]:
                        if subset == "enron_emails":
                            meta = {"file": path}
                        else:
                            id_ = path.split("/")[-1].split(".")[0]
                            meta = {"id": id_}
                        text = file.read().decode("utf-8", errors="ignore")  # encoding errors in enron_emails
                        yield key, {
                            "text": text,
                            "meta": meta,
                        }
                        key += 1
                elif subset == "uspto":
                    import zstandard as zstd

                    for path, file in files[subset]:
                        with zstd.open(file, "rt", encoding="utf-8") as f:
                            for row in f:
                                data = json.loads(row)
                                yield key, data
                                key += 1