File size: 7,340 Bytes
478fb4a
 
 
ba3daf8
478fb4a
 
ba3daf8
478fb4a
 
a92ee6d
478fb4a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ba3daf8
 
986dc0b
478fb4a
 
 
 
b858b8c
478fb4a
78b3d77
478fb4a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
78b3d77
478fb4a
 
78b3d77
ba3daf8
478fb4a
 
 
 
 
 
5c854fe
478fb4a
78b3d77
ba3daf8
478fb4a
 
 
 
 
 
 
 
 
6404fdb
a92ee6d
478fb4a
 
986dc0b
478fb4a
 
 
 
 
 
 
30d8bff
478fb4a
 
 
 
 
ae658d3
a2eb370
478fb4a
 
a2eb370
ae658d3
478fb4a
 
a2eb370
 
478fb4a
 
 
a2eb370
 
ae658d3
478fb4a
 
 
 
c0f8583
478fb4a
 
 
 
 
 
 
 
 
 
 
 
 
 
ba3daf8
 
 
 
 
 
a92ee6d
5c854fe
ba3daf8
646dfe5
8808a61
ba3daf8
 
48e6885
ba3daf8
93e0813
ba3daf8
 
93e0813
ba3daf8
 
 
 
 
93e0813
 
ba3daf8
c5edc51
 
ba3daf8
 
c5edc51
 
ba3daf8
 
c5edc51
 
ba3daf8
 
c5edc51
ba3daf8
c5edc51
ba3daf8
 
 
 
a92ee6d
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
# -*- coding: utf-8 -*-
"""aphantasia_drawing_dataset.ipynb

Automatically generated by Colab.

Original file is located at
    https://colab.research.google.com/drive/1DYVroeFqoNK7DDiw_3OIczPeqEME-rbh
"""



# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.


import pandas as pd
import numpy as np
import io
from typing import List
import datasets
import logging
from PIL import Image


_CITATION = """\
@misc{Bainbridge_Pounder_Eardley_Baker_2023,
title={Quantifying Aphantasia through drawing: Those without visual imagery show deficits in object but not spatial memory},
url={osf.io/cahyd},
publisher={OSF},
author={Bainbridge, Wilma A and Pounder, Zoë and Eardley, Alison and Baker, Chris I},
year={2023},
month={Sep}
}
"""

_DESCRIPTION = """\
This dataset comes from the Brain Bridge Lab from the University of Chicago.
It is from an online memory drawing experiment with 61 individuals with aphantasia
and 52 individuals with normal imagery. In the experiment participants 1) studied 3 separate
scene photographs presented one after the other, 2)  then drew them from memory,
3) completed a recognition task, 4) copied the images while viewing them, 5) filled out
a VVIQ and OSIQ questionnaire and also demographics questions. The data from the experiment
was made available on the OSF website linked above. It was created July 31, 2020 and last
updated September 27, 2023.
"""


_HOMEPAGE = "https://osf.io/cahyd/"


url = "https://drive.google.com/file/d/1v1oaZog5j5dD_vIElOEWLCZUrXvJ3jzx/view?usp=drive_link"

def _get_drive_url(url):
        base_url = 'https://drive.google.com/uc?id='
        split_url = url.split('/')
        return base_url + split_url[5]

_URL = {"train": _get_drive_url(url)}



class AphantasiaDrawingDataset(datasets.GeneratorBasedBuilder):

    _URL = _URL
    VERSION = datasets.Version("1.1.0")

    def _info(self):
      return datasets.DatasetInfo(
          description=_DESCRIPTION,
          features=datasets.Features({
                  "subject_id": datasets.Value("int32"),
                  "treatment": datasets.Value("string"),
                  "demographics": {
                      "country": datasets.Value("string"),
                      "age": datasets.Value("int32"),
                      "gender": datasets.Value("string"),
                      "occupation": datasets.Value("string"),
                      "art_ability": datasets.Value("int32"),
                      "art_experience": datasets.Value("string"),
                      "device": datasets.Value("string"),
                      "input": datasets.Value("string"),
                      "difficult": datasets.Value("string"),
                      "diff_explanation": datasets.Value("string"),
                      "vviq_score": datasets.Value("int32"),
                      "osiq_score": datasets.Value("int32")
                  },
                  "drawings": {
                      "kitchen": {
                         "perception": datasets.Image(decode=True),
                         "memory": datasets.Image(decode=True)
                      },
                      "livingroom": {
                          "perception": datasets.Image(decode=True),
                          "memory": datasets.Image(decode=True)
                      },
                      "bedroom": {
                          "perception": datasets.Image(decode=True),
                          "memory": datasets.Image(decode=True)
                      }
                  },
                  "image": {
                      "kitchen": datasets.Image(decode=True),
                      "livingroom": datasets.Image(decode=True),
                      "bedroom": datasets.Image(decode = True)
                  }
          }),
          supervised_keys=None,
          homepage=_HOMEPAGE,
          citation=_CITATION
      )

    def _split_generators(self, dl_manager: datasets.DownloadManager) -> List[datasets.SplitGenerator]:
      url_to_download = self._URL
      downloaded_file = dl_manager.download_and_extract(url_to_download)
      return [
          datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={
              "filepath": downloaded_file["train"]
              })
      ]

    def _generate_examples(self, filepath):
      """This function returns the examples in the raw (text) form."""
      logging.info("generating examples from = %s", filepath)
      def byt_to_image(image_bytes):
        if image_bytes is not None:
          image_buffer = io.BytesIO(image_bytes)
          image = Image.open(image_buffer)
          return image
        return None

      with open(filepath, "rb") as subjects_file:
        subjects_data = pd.read_parquet(subjects_file)
        for idx, sub_row in subjects_data.iterrows():
          yield idx, {
              "subject_id": sub_row["subject_id"],
              "treatment": sub_row["treatment"],
              "demographics": {
                  "country": sub_row["demographics.country"],
                  "age": sub_row["demographics.age"],
                  "gender": sub_row["demographics.gender"],
                  "occupation": sub_row["demographics.occupation"],
                  "art_ability": sub_row["demographics.art_ability"],
                  "art_experience": sub_row["demographics.art_experience"],
                  "device": sub_row["demographics.device"],
                  "input": sub_row["demographics.input"],
                  "difficult": sub_row["demographics.difficult"],
                  "diff_explanation": sub_row["demographics.diff_explanation"],
                  "vviq_score": sub_row["demographics.vviq_score"],
                  "osiq_score": sub_row["demographics.osiq_score"]
                  },
              "drawings": {
                  "kitchen": {
                      "perception": byt_to_image(sub_row["drawings.kitchen.perception"]),
                      "memory": byt_to_image(sub_row["drawings.kitchen.memory"])
                      },
                  "livingroom": {
                      "perception": byt_to_image(sub_row["drawings.livingroom.perception"]),
                      "memory": byt_to_image(sub_row["drawings.livingroom.memory"])
                      },
                  "bedroom": {
                      "perception": byt_to_image(sub_row["drawings.bedroom.perception"]),
                      "memory": byt_to_image(sub_row["drawings.bedroom.memory"])
                      }
                  },
              "image": {
                  "kitchen": byt_to_image(sub_row["image.kitchen"]),
                  "livingroom": byt_to_image(sub_row["image.livingroom"]),
                  "bedroom": byt_to_image(sub_row["image.bedroom"])
                  }
              }