|
import os |
|
import pandas as pd |
|
import datasets |
|
|
|
_DATA_URLS = { |
|
"train": "./ko_wiki_v1_squad.json", |
|
} |
|
_VERSION = "0.0.0" |
|
_LICENSE = "" |
|
_CITATION = "" |
|
_HOMEPAGE = "" |
|
_DESCRIPTION = "" |
|
|
|
|
|
class CommonSenseMRCConfig(datasets.BuilderConfig): |
|
def __init__(self, data_url, features, **kwargs): |
|
super().__init__(version=datasets.Version(_VERSION, ""), **kwargs) |
|
self.features = features |
|
self.data_url = data_url |
|
|
|
|
|
class CommonSenseMRC(datasets.GeneratorBasedBuilder): |
|
DEFAULT_CONFIG_NAME = "common_sense" |
|
BUILDER_CONFIGS = [ |
|
CommonSenseMRCConfig( |
|
name="common_sense", |
|
data_url=_DATA_URLS, |
|
features=datasets.Features( |
|
{ |
|
"answers": datasets.Sequence( |
|
feature={ |
|
"text": datasets.Value(dtype="string"), |
|
"answer_start": datasets.Value(dtype="int32"), |
|
}, |
|
), |
|
"context": datasets.Value(dtype="string"), |
|
"guid": datasets.Value(dtype="string"), |
|
"question": datasets.Value(dtype="string"), |
|
"title": datasets.Value(dtype="string"), |
|
} |
|
) |
|
), |
|
] |
|
|
|
def _info(self): |
|
return datasets.DatasetInfo( |
|
features=self.config.features, |
|
description=_DESCRIPTION, |
|
homepage=_HOMEPAGE, |
|
citation=_CITATION, |
|
license=_LICENSE, |
|
) |
|
|
|
def _split_generators(self, dl_manager): |
|
data_path = dl_manager.download_and_extract(self.config.data_url) |
|
return [ |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TRAIN, |
|
|
|
gen_kwargs={"data_file": data_path["train"]} |
|
), |
|
] |
|
|
|
def _generate_examples(self, data_file: str): |
|
idx = 0 |
|
common_sense_mrc = pd.read_json(data_file) |
|
for example in common_sense_mrc["data"].tolist(): |
|
paragraphs = example["paragraphs"] |
|
title = example["title"] |
|
for paragraph in paragraphs: |
|
qas = paragraph["qas"] |
|
context = paragraph["context"] |
|
for qa in qas: |
|
text = [answers["text"] for answers in qa["answers"]] |
|
answer_start = [answers["answer_start"] for answers in qa["answers"]] |
|
features = { |
|
"guid": str(qa["id"]), |
|
"question": qa["question"], |
|
"answers": {"text": text, "answer_start": answer_start}, |
|
"context": context, |
|
"title": title, |
|
} |
|
yield idx, features |
|
idx += 1 |