|
import datasets |
|
import pandas as pd |
|
|
|
_DATA_URLS = { |
|
"train": "https://korquad.github.io/dataset/KorQuAD_v1.0_train.json", |
|
"dev": "https://korquad.github.io/dataset/KorQuAD_v1.0_dev.json", |
|
} |
|
_VERSION = "0.0.0" |
|
_LICENSE = "CC BY-ND 2.0 KR" |
|
_CITATION = """\ |
|
@misc{lim2019korquad1.0, |
|
title={KorQuAD1.0: Korean QA Dataset for Machine Reading Comprehension}, |
|
author={Seungyoung Lim, Myungji Kim, Jooyoul Lee}, |
|
year={2019}, |
|
eprint={1909.07005}, |
|
archivePrefix={arXiv}, |
|
primaryClass={cs.CL} |
|
} |
|
""" |
|
_HOMEPAGE = "https://korquad.github.io/KorQuad%201.0/" |
|
_DESCRIPTION = """\ |
|
KorQuAD 1.0 (Korean Question Answering Dataset v1.0) |
|
KorQuAD 1.0 is a dataset created for Korean Machine Reading Comprehension. |
|
The answers to all your questions are made up of some subareas in the corresponding Wikipedia article paragraphs. |
|
It is structured in the same way as the Stanford Question Answering Dataset (SQuAD) v1.0. |
|
""" |
|
|
|
|
|
class KorQuADV1Config(datasets.BuilderConfig): |
|
def __init__(self, data_url, features, **kwargs): |
|
super().__init__(version=datasets.Version(_VERSION, ""), **kwargs) |
|
self.features = features |
|
self.data_url = data_url |
|
|
|
|
|
class KorQuADV1(datasets.GeneratorBasedBuilder): |
|
DEFAULT_CONFIG_NAME = "korquad" |
|
BUILDER_CONFIGS = [ |
|
KorQuADV1Config( |
|
name="korquad", |
|
data_url=_DATA_URLS, |
|
features=datasets.Features( |
|
{ |
|
"answers": datasets.Sequence( |
|
feature={ |
|
"text": datasets.Value(dtype="string"), |
|
"answer_start": datasets.Value(dtype="int32"), |
|
}, |
|
), |
|
"context": datasets.Value(dtype="string"), |
|
"guid": datasets.Value(dtype="string"), |
|
"question": datasets.Value(dtype="string"), |
|
"title": datasets.Value(dtype="string"), |
|
} |
|
) |
|
), |
|
] |
|
|
|
def _info(self): |
|
return datasets.DatasetInfo( |
|
features=self.config.features, |
|
description=_DESCRIPTION, |
|
homepage=_HOMEPAGE, |
|
citation=_CITATION, |
|
license=_LICENSE, |
|
) |
|
|
|
def _split_generators(self, dl_manager): |
|
data_path = dl_manager.download(self.config.data_url) |
|
return [ |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TRAIN, |
|
|
|
gen_kwargs={"data_file": data_path["train"]} |
|
), |
|
datasets.SplitGenerator( |
|
name=datasets.Split.VALIDATION, |
|
|
|
gen_kwargs={"data_file": data_path["dev"]} |
|
), |
|
] |
|
|
|
def _generate_examples(self, data_file: str): |
|
idx = 0 |
|
korquad = pd.read_json(data_file) |
|
for example in korquad["data"].tolist(): |
|
paragraphs = example["paragraphs"] |
|
title = example["title"] |
|
for paragraph in paragraphs: |
|
qas = paragraph["qas"] |
|
context = paragraph["context"] |
|
for qa in qas: |
|
text = [answers["text"] for answers in qa["answers"]] |
|
answer_start = [answers["answer_start"] for answers in qa["answers"]] |
|
features = { |
|
"guid": qa["id"], |
|
"question": qa["question"], |
|
"answers": {"text": text, "answer_start": answer_start}, |
|
"context": context, |
|
"title": title, |
|
} |
|
yield idx, features |
|
idx += 1 |