entry_point,name,prompt,prompt1a,prompt1c,prompt1p,prompt2ac,prompt2ap,prompt2cp,prompt3acp,solution,test_case has_close_elements,HumanEval/0,"from typing import List def has_close_elements(numbers: List[float], threshold: float) -> bool: """""" Check if in given list of numbers, are any two numbers closer to each other than given threshold. >>> has_close_elements([1.0, 2.0, 3.0], 0.5) False >>> has_close_elements([1.0, 2.8, 3.0, 4.0, 5.0, 2.0], 0.3) True """""" ","from typing import List def candidate(numbers: List[float], threshold: float) -> bool: """""" Check if in given list of numbers, are any two numbers meeting a certain condition (e.g. closer to or larger than each other than given threshold). >>> candidate([1.0, 2.0, 3.0], 0.5) False >>> candidate([1.0, 2.8, 3.0, 4.0, 5.0, 2.0], 0.3) True """""" ","from typing import List def has_close_elements(numbers: List[float], threshold: float) -> bool: """""" Check if in given list of numbers, are any two numbers larger than each other than given threshold. >>> has_close_elements([1.0, 2.0, 3.0], 0.5) False >>> has_close_elements([1.0, 2.8, 3.0, 4.0, 5.0, 2.0], 0.3) True """""" ","from typing import List def candidate(...) -> bool: """""" Check given a list of number."""""" ","from typing import List def candidate(numbers: List[float], threshold: float) -> bool: """""" Check if in given list of numbers, are any two numbers meeting a certain condition (e.g. closer to or larger than each other than given threshold). >>> candidate([1.0, 2.0, 3.0], 0.5) True >>> candidate([1.0, 2.8, 3.0, 4.0, 5.0, 2.0], 0.3) False """""" ","from typing import List def candidate(numbers: List[float], x: float) -> bool: """""" given a list of number."""""" ",,,"from typing import List def has_close_elements(numbers: List[float], threshold: float) -> bool: """""" Check if in given list of numbers, are any two numbers closer to each other than given threshold. >>> has_close_elements([1.0, 2.0, 3.0], 0.5) False >>> has_close_elements([1.0, 2.8, 3.0, 4.0, 5.0, 2.0], 0.3) True """""" for idx, elem in enumerate(numbers): for idx2, elem2 in enumerate(numbers): if idx != idx2: distance = abs(elem - elem2) if distance < threshold: return True return False ","[{'input': '[1.0, 2.0, 3.9, 4.0, 5.0, 2.2], 0.3', 'output': 'True', 'relation': '=='}, {'input': '[1.0, 2.0, 3.9, 4.0, 5.0, 2.2], 0.05', 'output': 'False', 'relation': '=='}, {'input': '[1.0, 2.0, 5.9, 4.0, 5.0], 0.95', 'output': 'True', 'relation': '=='}, {'input': '[1.0, 2.0, 5.9, 4.0, 5.0], 0.8', 'output': 'False', 'relation': '=='}, {'input': '[1.0, 2.0, 3.0, 4.0, 5.0, 2.0], 0.1', 'output': 'True', 'relation': '=='}, {'input': '[1.1, 2.2, 3.1, 4.1, 5.1], 1.0', 'output': 'True', 'relation': '=='}, {'input': '[1.1, 2.2, 3.1, 4.1, 5.1], 0.5', 'output': 'False', 'relation': '=='}]" separate_paren_groups,HumanEval/1,"from typing import List def separate_paren_groups(paren_string: str) -> List[str]: """""" Input to this function is a string containing multiple groups of nested parentheses. Your goal is to separate those group into separate strings and return the list of those. Separate groups are balanced (each open brace is properly closed) and not nested within each other Ignore any spaces in the input string. >>> separate_paren_groups('( ) (( )) (( )( ))') ['()', '(())', '(()())'] """""" ","from typing import List def candidate(paren_string: str) -> List[str]: """""" Input to this function is a string containing multiple groups of nested parentheses. Your goal is to separate those group into separate strings and return the list of those. Separate groups are balanced (each open brace has a certain requirement to meet) and not nested within each other Keep or ignore any spaces in the input string. >>> candidate('( ) (( )) (( )( ))') ['()', '(())', '(()())'] """""" ","from typing import List def separate_paren_groups(paren_string: str) -> List[str]: """""" Input to this function is a string containing multiple groups of nested parentheses. Your goal is to separate those group into separate strings and return the list of those. Separate groups are balanced (each open brace is properly closed) and not nested within each other Ignore any spaces in the input string. >>> separate_paren_groups('( ) (( )) (( )( ))') ['(', '(', '('] """""" ","from typing import List def separate_paren_groups(paren_string: str) -> List[str]: """""" Input to this function is a string containing multiple groups of nested parentheses. Your goal is to """""" ","from typing import List def candidate(paren_string: str) -> List[str]: """""" Input to this function is a string containing multiple groups of nested parentheses. Your goal is to separate those group into separate strings and return the list of those. Separate groups are balanced (each open brace has a certain requirement to meet) and not nested within each other Keep or ignore any spaces in the input string. >>> candidate('( ) (( )) (( )( ))') ['(', '(', '('] """""" ","from typing import List def candidate(paren_string: str) -> List[str]: """""" Input to this function is a string containing multiple groups of nested parentheses. Your goal is to separate those group into separate strings and return the list of those. Separate groups are balanced (each open brace has a certain requirement to meet) and not nested within each other """""" ",,,"from typing import List def separate_paren_groups(paren_string: str) -> List[str]: """""" Input to this function is a string containing multiple groups of nested parentheses. Your goal is to separate those group into separate strings and return the list of those. Separate groups are balanced (each open brace is properly closed) and not nested within each other Ignore any spaces in the input string. >>> separate_paren_groups('( ) (( )) (( )( ))') ['()', '(())', '(()())'] """""" result = [] current_string = [] current_depth = 0 for c in paren_string: if c == '(': current_depth += 1 current_string.append(c) elif c == ')': current_depth -= 1 current_string.append(c) if current_depth == 0: result.append(''.join(current_string)) current_string.clear() return result ","[{'input': ""'(()()) ((())) () ((())()())'"", 'output': ""['(()())', '((()))', '()', '((())()())']"", 'relation': '=='}, {'input': ""'() (()) ((())) (((())))'"", 'output': ""['()', '(())', '((()))', '(((())))']"", 'relation': '=='}, {'input': ""'(()(())((())))'"", 'output': ""['(()(())((())))']"", 'relation': '=='}, {'input': ""'( ) (( )) (( )( ))'"", 'output': ""['()', '(())', '(()())']"", 'relation': '=='}]" truncate_number,HumanEval/2," def truncate_number(number: float) -> float: """""" Given a positive floating point number, it can be decomposed into and integer part (largest integer smaller than given number) and decimals (leftover part always smaller than 1). Return the decimal part of the number. >>> truncate_number(3.5) 0.5 """""" "," def candidate(number: float) -> float: """""" Given a positive floating point number, it can be decomposed into and integer part (largest integer smaller than given number) and decimals (leftover part always smaller than 1). Return a certain part of the number (e.g. integer or decimal or another). >>> candidate(3.5) 0.5 """""" "," def truncate_number(number: float) -> float: """""" Given a positive floating point number, it can be decomposed into and integer part (largest integer smaller than given number) and decimals (leftover part always smaller than 1). Return the decimal part of the number. >>> truncate_number(3.5) 3 """""" "," def truncate_number(number: float) -> float: """""" Given a positive floating point number, it can be decomposed into and integer part (largest integer smaller than given number) and decimals (leftover part always smaller than 1). """""" "," def candidate(number: float) -> float: """""" Given a positive floating point number, it can be decomposed into and integer part (largest integer smaller than given number) and decimals (leftover part always smaller than 1). Return a certain part of the number (e.g. integer or decimal or another) >>> candidate(3.5) 3 """""" "," def candidate(number: float) -> float: """""" Given a positive floating point number, it can be decomposed into and integer part (largest integer smaller than given number) and decimals (leftover part always smaller than 1). """""" ",,," def truncate_number(number: float) -> float: """""" Given a positive floating point number, it can be decomposed into and integer part (largest integer smaller than given number) and decimals (leftover part always smaller than 1). Return the decimal part of the number. >>> truncate_number(3.5) 0.5 """""" return number % 1.0 ","[{'input': '3.5', 'output': '0.5', 'relation': '=='}, {'input': '1.33', 'output': '1e-6', 'relation': 'abs(candidate(1.33) - 0.33) < 1e-6'}, {'input': '123.456', 'output': '1e-6', 'relation': 'abs(candidate(123.456) - 0.456) < 1e-6'}]" below_zero,HumanEval/3,"from typing import List def below_zero(operations: List[int]) -> bool: """""" You're given a list of deposit and withdrawal operations on a bank account that starts with zero balance. Your task is to detect if at any point the balance of account fallls below zero, and at that point function should return True. Otherwise it should return False. >>> below_zero([1, 2, 3]) False >>> below_zero([1, 2, -4, 5]) True """""" ","from typing import List def below_zero(operations: List[int]) -> bool: """""" You're given a list of deposit and withdrawal operations on a bank account that starts with a given balance (e.g. positive or zero). Your task is to detect if at any point the balance of account fallls below zero, and at that point function should return True. Otherwise it should return False. >>> below_zero([1, 2, 3]) False >>> below_zero([1, 2, -4, 5]) False """""" ","from typing import List def below_zero(operations: List[int]) -> bool: """""" You're given a list of deposit and withdrawal operations on a bank account that starts with zero balance. Your task is to detect if at any point the balance of account fallls below zero, and at that point function should return True. Otherwise it should return False. >>> below_zero([1, 2, 3]) True >>> below_zero([1, 2, -4, 5]) False """""" ","from typing import List def below_zero(operations: List[int]) -> bool: """""" You're given a list of deposit and withdrawal operations on a bank account that starts with zero balance. Your task is to detect if at any point the balance of account fallls below zero. """""" ","from typing import List def below_zero(operations: List[int]) -> bool: """""" You're given a list of deposit and withdrawal operations on a bank account that starts with a given balance (e.g. positive or zero). Your task is to detect if at any point the balance of account fallls below zero, and at that point function should return True. Otherwise it should return False. >>> below_zero([1, 2, 3]) True >>> below_zero([1, 2, -4, 5]) False """""" ","from typing import List def below_zero(operations: List[int]) -> bool: """""" You're given a list of deposit and withdrawal operations on a bank account that starts with a given balance (e.g. positive or zero). Your task is to detect if at any point the balance of account fallls below zero. """""" ",,,"from typing import List def below_zero(operations: List[int]) -> bool: """""" You're given a list of deposit and withdrawal operations on a bank account that starts with zero balance. Your task is to detect if at any point the balance of account fallls below zero, and at that point function should return True. Otherwise it should return False. >>> below_zero([1, 2, 3]) False >>> below_zero([1, 2, -4, 5]) True """""" balance = 0 for op in operations: balance += op if balance < 0: return True return False ","[{'input': '[]', 'output': 'False', 'relation': '=='}, {'input': '[1, 2, -3, 1, 2, -3]', 'output': 'False', 'relation': '=='}, {'input': '[1, 2, -4, 5, 6]', 'output': 'True', 'relation': '=='}, {'input': '[1, -1, 2, -2, 5, -5, 4, -4]', 'output': 'False', 'relation': '=='}, {'input': '[1, -1, 2, -2, 5, -5, 4, -5]', 'output': 'True', 'relation': '=='}, {'input': '[1, -2, 2, -2, 5, -5, 4, -4]', 'output': 'True', 'relation': '=='}]" mean_absolute_deviation,HumanEval/4,"from typing import List def mean_absolute_deviation(numbers: List[float]) -> float: """""" For a given list of input numbers, calculate Mean Absolute Deviation around the mean of this dataset. Mean Absolute Deviation is the average absolute difference between each element and a centerpoint (mean in this case): MAD = average | x - x_mean | >>> mean_absolute_deviation([1.0, 2.0, 3.0, 4.0]) 1.0 """""" ","from typing import List def candidate(numbers: List[float]) -> float: """""" For a given list of input numbers, calculate Mean Absolute Deviation around a certain attribute (e.g. max or mean or other) of this dataset. Mean Absolute Deviation is the average absolute difference between each element and a centerpoint (e.g. max or mean in this case): MAD = average | x - (e.g. max or mean or other) | >>> mean_absolute_deviation([1.0, 2.0, 3.0, 4.0]) 1.0 """""" ","from typing import List def mean_absolute_deviation(numbers: List[float]) -> float: """""" For a given list of input numbers, calculate Mean Absolute Deviation around the mean of this dataset. Mean Absolute Deviation is the average absolute difference between each element and a centerpoint (mean in this case): MAD = average | x - x_mean | >>> mean_absolute_deviation([1.0, 2.0, 3.0, 4.0]) 1.5 """""" ","from typing import List def mean_absolute_deviation(numbers: List[float]) -> float: """""" For a given list of input numbers, calculate Mean Absolute Deviation. """""" ","from typing import List def candidate(numbers: List[float]) -> float: """""" For a given list of input numbers, calculate Mean Absolute Deviation around a certain attribute (e.g. max or mean or other) of this dataset. Mean Absolute Deviation is the average absolute difference between each element and a centerpoint (e.g. max or mean in this case): MAD = average | x - (e.g. max or mean or other) | >>> mean_absolute_deviation([1.0, 2.0, 3.0, 4.0]) 1.5 """""" ","from typing import List def candidate(numbers: List[float]) -> float: """""" For a given list of input numbers, calculate Mean Absolute Deviation MAD = average | x - (e.g. max or mean or other) | """""" ","from typing import List def mean_absolute_deviation(numbers: List[float]) -> float: """""" For a given list of input numbers, calculate Mean Absolute Deviation. >>> mean_absolute_deviation([1.0, 2.0, 3.0, 4.0]) 1.5 """""" ","from typing import List def candidate(numbers: List[float]) -> float: """""" For a given list of input numbers, calculate Mean Absolute Deviation. >>> mean_absolute_deviation([1.0, 2.0, 3.0, 4.0]) 1.5 """""" ","from typing import List def mean_absolute_deviation(numbers: List[float]) -> float: """""" For a given list of input numbers, calculate Mean Absolute Deviation around the mean of this dataset. Mean Absolute Deviation is the average absolute difference between each element and a centerpoint (mean in this case): MAD = average | x - x_mean | >>> mean_absolute_deviation([1.0, 2.0, 3.0, 4.0]) 1.0 """""" mean = sum(numbers) / len(numbers) return sum(abs(x - mean) for x in numbers) / len(numbers) ","[{'input': '[1.0, 2.0, 3.0]', 'output': '1e-6', 'relation': 'abs(candidate([1.0, 2.0, 3.0]) - 2.0/3.0) < 1e-6'}, {'input': '[1.0, 2.0, 3.0, 4.0]', 'output': '1e-6', 'relation': 'abs(candidate([1.0, 2.0, 3.0, 4.0]) - 1.0) < 1e-6'}, {'input': '[1.0, 2.0, 3.0, 4.0, 5.0]', 'output': '1e-6', 'relation': 'abs(candidate([1.0, 2.0, 3.0, 4.0, 5.0]) - 6.0/5.0) < 1e-6'}]" intersperse,HumanEval/5,"from typing import List def intersperse(numbers: List[int], delimeter: int) -> List[int]: """""" Insert a number 'delimeter' between every two consecutive elements of input list `numbers' >>> intersperse([], 4) [] >>> intersperse([1, 2, 3], 4) [1, 4, 2, 4, 3] """""" ","from typing import List def candidate(numbers: List[int], x: int) -> List[int]: """""" Insert a number 'x' for a certain number of times in the input list `numbers' >>> candidate([], 4) [] >>> candidate([1, 2, 3], 4) [1, 4, 2, 4, 3] """""" ","from typing import List def intersperse(numbers: List[int], delimeter: int) -> List[int]: """""" Insert a number 'delimeter' between every two consecutive elements of input list `numbers' >>> intersperse([], 4) [4] >>> intersperse([1, 2, 3], 4) [1, 2, 3, 4] """""" ","from typing import List def candidate(numbers: List[int], delimeter: int) -> List[int]: """""" Insert a number 'delimeter' """""" ","from typing import List def candidate(numbers: List[int], x: int) -> List[int]: """""" Insert a number 'x' for a certain number of times in the input list `numbers' >>> candidate([], 4) [4] >>> candidate([1, 2, 3], 4) [1, 2, 3, 4] """""" ",,,,"from typing import List def intersperse(numbers: List[int], delimeter: int) -> List[int]: """""" Insert a number 'delimeter' between every two consecutive elements of input list `numbers' >>> intersperse([], 4) [] >>> intersperse([1, 2, 3], 4) [1, 4, 2, 4, 3] """""" if not numbers: return [] result = [] for n in numbers[:-1]: result.append(n) result.append(delimeter) result.append(numbers[-1]) return result ","[{'input': '[], 7', 'output': '[]', 'relation': '=='}, {'input': '[5, 6, 3, 2], 8', 'output': '[5, 8, 6, 8, 3, 8, 2]', 'relation': '=='}, {'input': '[2, 2, 2], 2', 'output': '[2, 2, 2, 2, 2]', 'relation': '=='}]" parse_nested_parens,HumanEval/6,"from typing import List def parse_nested_parens(paren_string: str) -> List[int]: """""" Input to this function is a string represented multiple groups for nested parentheses separated by spaces. For each of the group, output the deepest level of nesting of parentheses. E.g. (()()) has maximum two levels of nesting while ((())) has three. >>> parse_nested_parens('(()()) ((())) () ((())()())') [2, 3, 1, 3] """""" ","from typing import List def candidate(paren_string: str) -> List[int]: """""" Input to this function is a string represented multiple groups for nested parentheses separated by certain characters. For each of the group, output the deepest level of nesting of parentheses. E.g. (()()) has maximum two levels of nesting while ((())) has three. >>> candidate('(()()) ((())) () ((())()())') [2, 3, 1, 3] """""" ","from typing import List def parse_nested_parens(paren_string: str) -> List[int]: """""" Input to this function is a string represented multiple groups for nested parentheses separated by spaces. For each of the group, output the deepest level of nesting of parentheses. E.g. (() ()) has maximum two levels of nesting while ((( ))) has three. >>> parse_nested_parens('(()())((()))()((())()())') [2, 3, 1, 3] """""" ","from typing import List def parse_nested_parens(paren_string: str) -> List[int]: """""" Input to this function is a string represented multiple groups for nested parentheses separated by spaces. For each of the group, output an integer """""" ","from typing import List def candidate(paren_string: str) -> List[int]: """""" Input to this function is a string represented multiple groups for nested parentheses separated by certain characters. For each of the group, output the deepest level of nesting of parentheses. E.g. (() ()) has maximum two levels of nesting while ((( ))) has three. >>> candidate('(()())((()))()((())()())') [2, 3, 1, 3] """""" ","from typing import List def candidate(paren_string: str) -> List[int]: """""" Input to this function is a string represented multiple groups for nested parentheses separated by certain characters. For each of the group, output an integer """""" ",,,"from typing import List def parse_nested_parens(paren_string: str) -> List[int]: """""" Input to this function is a string represented multiple groups for nested parentheses separated by spaces. For each of the group, output the deepest level of nesting of parentheses. E.g. (()()) has maximum two levels of nesting while ((())) has three. >>> parse_nested_parens('(()()) ((())) () ((())()())') [2, 3, 1, 3] """""" def parse_paren_group(s): depth = 0 max_depth = 0 for c in s: if c == '(': depth += 1 max_depth = max(depth, max_depth) else: depth -= 1 return max_depth return [parse_paren_group(x) for x in paren_string.split(' ') if x] ","[{'input': ""'(()()) ((())) () ((())()())'"", 'output': '[2, 3, 1, 3]', 'relation': '=='}, {'input': ""'() (()) ((())) (((())))'"", 'output': '[1, 2, 3, 4]', 'relation': '=='}, {'input': ""'(()(())((())))'"", 'output': '[4]', 'relation': '=='}]" filter_by_substring,HumanEval/7,"from typing import List def filter_by_substring(strings: List[str], substring: str) -> List[str]: """""" Filter an input list of strings only for ones that contain given substring >>> filter_by_substring([], 'a') [] >>> filter_by_substring(['abc', 'bacd', 'cde', 'array'], 'a') ['abc', 'bacd', 'array'] """""" ","from typing import List def candidate(strings: List[str], x: str) -> List[str]: """""" Process an input list of strings given string x >>> candidate([], 'a') [] >>> candidate(['abc', 'bacd', 'cde', 'array'], 'a') ['abc', 'bacd', 'array'] """""" ","from typing import List def filter_by_substring(strings: List[str], substring: str) -> List[str]: """""" Filter an input list of strings only for ones that contain given substring >>> filter_by_substring([], 'a') ['a'] >>> filter_by_substring(['abc', 'bacd', 'cde', 'array'], 'a') ['cde'] """""" ","from typing import List def filter_by_substring(strings: List[str], substring: str) -> List[str]: """""" Filter an input list of strings """""" ","from typing import List def candidate(strings: List[str], x: str) -> List[str]: """""" Process an input list of strings given string x >>> candidate([], 'a') ['a'] >>> candidate(['abc', 'bacd', 'cde', 'array'], 'a') ['cde'] """""" ","from typing import List def candidate(strings: List[str], x: str) -> List[str]: """""" Process an input list of strings """""" ",,,"from typing import List def filter_by_substring(strings: List[str], substring: str) -> List[str]: """""" Filter an input list of strings only for ones that contain given substring >>> filter_by_substring([], 'a') [] >>> filter_by_substring(['abc', 'bacd', 'cde', 'array'], 'a') ['abc', 'bacd', 'array'] """""" return [x for x in strings if substring in x] ","[{'input': ""[], 'john'"", 'output': '[]', 'relation': '=='}, {'input': ""['xxx', 'asd', 'xxy', 'john doe', 'xxxAAA', 'xxx'], 'xxx'"", 'output': ""['xxx', 'xxxAAA', 'xxx']"", 'relation': '=='}, {'input': ""['xxx', 'asd', 'aaaxxy', 'john doe', 'xxxAAA', 'xxx'], 'xx'"", 'output': ""['xxx', 'aaaxxy', 'xxxAAA', 'xxx']"", 'relation': '=='}, {'input': ""['grunt', 'trumpet', 'prune', 'gruesome'], 'run'"", 'output': ""['grunt', 'prune']"", 'relation': '=='}]" sum_product,HumanEval/8,"from typing import List, Tuple def sum_product(numbers: List[int]) -> Tuple[int, int]: """""" For a given list of integers, return a tuple consisting of a sum and a product of all the integers in a list. Empty sum should be equal to 0 and empty product should be equal to 1. >>> sum_product([]) (0, 1) >>> sum_product([1, 2, 3, 4]) (10, 24) """""" ","from typing import List, Tuple def candidate(numbers: List[int]) -> Tuple[int, int]: """""" For a given list of integers, return a tuple consisting of a sum and a product of a certain given subset of the integers in a list. Empty sum or product should be equal to either 0 or 1. >>> sum_product([]) (0, 1) >>> sum_product([1, 2, 3, 4]) (10, 24) """""" ","from typing import List, Tuple def sum_product(numbers: List[int]) -> Tuple[int, int]: """""" For a given list of integers, return a tuple consisting of a sum and a product of all the integers in a list. Empty sum should be equal to 0 and empty product should be equal to 1. >>> sum_product([]) (1, 0) >>> sum_product([1, 2, 3, 4]) (24, 10) """""" ","from typing import List, Tuple def candidate(numbers: List[int]) -> Tuple[int, int]: """""" For a given list of integers, return a tuple consisting of a sum and a product of all the integers in a list. """""" ","from typing import List, Tuple def candidate(numbers: List[int]) -> Tuple[int, int]: """""" For a given list of integers, return a tuple consisting of a sum and a product of a certain given subset of the integers in a list. Empty sum or product should be equal to either 0 or 1. >>> candidate([]) (1, 0) >>> candidate([1, 2, 3, 4]) (24, 10) """""" ","from typing import List, Tuple def candidate(numbers: List[int]) -> Tuple[int, int]: """""" For a given list of integers, return a tuple consisting of a sum and a product of a certain given subset of the integers in a list. """""" ",,,"from typing import List, Tuple def sum_product(numbers: List[int]) -> Tuple[int, int]: """""" For a given list of integers, return a tuple consisting of a sum and a product of all the integers in a list. Empty sum should be equal to 0 and empty product should be equal to 1. >>> sum_product([]) (0, 1) >>> sum_product([1, 2, 3, 4]) (10, 24) """""" sum_value = 0 prod_value = 1 for n in numbers: sum_value += n prod_value *= n return sum_value, prod_value ","[{'input': '[]', 'output': '(0, 1)', 'relation': '=='}, {'input': '[1, 1, 1]', 'output': '(3, 1)', 'relation': '=='}, {'input': '[100, 0]', 'output': '(100, 0)', 'relation': '=='}, {'input': '[3, 5, 7]', 'output': '(15, 105)', 'relation': '=='}, {'input': '[10]', 'output': '(10, 10)', 'relation': '=='}]" rolling_max,HumanEval/9,"from typing import List, Tuple def rolling_max(numbers: List[int]) -> List[int]: """""" From a given list of integers, generate a list of rolling maximum element found until given moment in the sequence. >>> rolling_max([1, 2, 3, 2, 3, 4, 2]) [1, 2, 3, 3, 3, 4, 4] """""" ","from typing import List, Tuple def candidate(numbers: List[int]) -> List[int]: """""" From a given list of integers, generate a list of rolling certain type of element (minimal or maximum or other) found until given moment in the sequence. >>> candidate([1, 2, 3, 2, 3, 4, 2]) [1, 2, 3, 3, 3, 4, 4] """""" ","from typing import List, Tuple def rolling_max(numbers: List[int]) -> List[int]: """""" From a given list of integers, generate a list of rolling maximum element found until given moment in the sequence. >>> rolling_max([1, 2, 3, 2, 3, 4, 2]) [1, 1, 1, 1, 1, 1, 1] """""" ","from typing import List, Tuple def rolling_max(numbers: List[int]) -> List[int]: """""" From a given list of integers, generate a list of rolling element. """""" ","from typing import List, Tuple def candidate(numbers: List[int]) -> List[int]: """""" From a given list of integers, generate a list of rolling certain type of element (minimal or maximum or other) found until given moment in the sequence. >>> candidate([1, 2, 3, 2, 3, 4, 2]) [1, 1, 1, 1, 1, 1, 1] """""" ","from typing import List, Tuple def candidate(numbers: List[int]) -> List[int]: """""" From a given list of integers, generate a list of rolling element. """""" ",,,"from typing import List, Tuple def rolling_max(numbers: List[int]) -> List[int]: """""" From a given list of integers, generate a list of rolling maximum element found until given moment in the sequence. >>> rolling_max([1, 2, 3, 2, 3, 4, 2]) [1, 2, 3, 3, 3, 4, 4] """""" running_max = None result = [] for n in numbers: if running_max is None: running_max = n else: running_max = max(running_max, n) result.append(running_max) return result ","[{'input': '[]', 'output': '[]', 'relation': '=='}, {'input': '[1, 2, 3, 4]', 'output': '[1, 2, 3, 4]', 'relation': '=='}, {'input': '[4, 3, 2, 1]', 'output': '[4, 4, 4, 4]', 'relation': '=='}, {'input': '[3, 2, 3, 100, 3]', 'output': '[3, 3, 3, 100, 100]', 'relation': '=='}]" make_palindrome,HumanEval/10," def is_palindrome(string: str) -> bool: """""" Test if given string is a palindrome """""" return string == string[::-1] def make_palindrome(string: str) -> str: """""" Find the shortest palindrome that begins with a supplied string. Algorithm idea is simple: - Find the longest postfix of supplied string that is a palindrome. - Append to the end of the string reverse of a string prefix that comes before the palindromic suffix. >>> make_palindrome('') '' >>> make_palindrome('cat') 'catac' >>> make_palindrome('cata') 'catac' """""" "," def is_palindrome(string: str) -> bool: """""" Test if given string is a palindrome """""" return string == string[::-1] def candidate(string: str) -> str: """""" Find the longest or shortest palindrome that begins with a supplied string. Algorithm idea is simple: - Find the shortest or longest postfix of supplied string that is a palindrome. - Append to the end of the string reverse of a string prefix that comes before the palindromic suffix. >>> candidate('') '' >>> candidate('cat') 'catac' >>> candidate('cata') 'catac' """""" "," def is_palindrome(string: str) -> bool: """""" Test if given string is a palindrome """""" return string == string[::-1] def make_palindrome(string: str) -> str: """""" Find the shortest palindrome that begins with a supplied string. Algorithm idea is simple: - Find the longest postfix of supplied string that is a palindrome. - Append to the end of the string reverse of a string prefix that comes before the palindromic suffix. >>> make_palindrome('') '' >>> make_palindrome('cat') 'ata' >>> make_palindrome('cata') 'ata' """""" "," def is_palindrome(string: str) -> bool: """""" Test if given string is a palindrome """""" return string == string[::-1] def make_palindrome(string: str) -> str: """""" Find the shortest palindrome. """""" "," def is_palindrome(string: str) -> bool: """""" Test if given string is a palindrome """""" return string == string[::-1] def candidate(string: str) -> str: """""" Find the longest or shortest palindrome that begins with a supplied string. Algorithm idea is simple: - Find the shortest or longest postfix of supplied string that is a palindrome. - Append to the end of the string reverse of a string prefix that comes before the palindromic suffix. >>> candidate('') '' >>> candidate('cat') 'ata' >>> candidate('cata') 'ata' """""" "," def is_palindrome(string: str) -> bool: """""" Test if given string is a palindrome """""" return string == string[::-1] def candidate(string: str) -> str: """""" Find the longest or shortest palindrome. """""" ",,," def is_palindrome(string: str) -> bool: """""" Test if given string is a palindrome """""" return string == string[::-1] def make_palindrome(string: str) -> str: """""" Find the shortest palindrome that begins with a supplied string. Algorithm idea is simple: - Find the longest postfix of supplied string that is a palindrome. - Append to the end of the string reverse of a string prefix that comes before the palindromic suffix. >>> make_palindrome('') '' >>> make_palindrome('cat') 'catac' >>> make_palindrome('cata') 'catac' """""" if not string: return '' beginning_of_suffix = 0 while not is_palindrome(string[beginning_of_suffix:]): beginning_of_suffix += 1 return string + string[:beginning_of_suffix][::-1] ","[{'input': ""''"", 'output': '', 'relation': '=='}, {'input': ""'x'"", 'output': 'x', 'relation': '=='}, {'input': ""'xyz'"", 'output': 'xyzyx', 'relation': '=='}, {'input': ""'xyx'"", 'output': 'xyx', 'relation': '=='}, {'input': ""'jerry'"", 'output': 'jerryrrej', 'relation': '=='}]" string_xor,HumanEval/11,"from typing import List def string_xor(a: str, b: str) -> str: """""" Input are two strings a and b consisting only of 1s and 0s. Perform binary XOR on these inputs and return result also as a string. >>> string_xor('010', '110') '100' """""" ","from typing import List def candidate(a: str, b: str) -> str: """""" Input are two strings a and b consisting only of 1s and 0s. Perform certain bitwise operation on these inputs and return result also as a string. >>> candidate('010', '110') '100' """""" ","from typing import List def string_xor(a: str, b: str) -> str: """""" Input are two strings a and b consisting only of 1s and 0s. Perform binary XOR on these inputs and return result also as a string. >>> string_xor('010', '110') '011' """""" ","from typing import List def candidate(a: str, b: str) -> str: """""" Input are two strings a and b consisting only of 1s and 0s. """""" ","from typing import List def candidate(a: str, b: str) -> str: """""" Input are two strings a and b consisting only of 1s and 0s. Perform certain bitwise operation on these inputs and return result also as a string. >>> candidate('010', '110') '011' """""" ",,,,"from typing import List def string_xor(a: str, b: str) -> str: """""" Input are two strings a and b consisting only of 1s and 0s. Perform binary XOR on these inputs and return result also as a string. >>> string_xor('010', '110') '100' """""" def xor(i, j): if i == j: return '0' else: return '1' return ''.join(xor(x, y) for x, y in zip(a, b)) ","[{'input': ""'111000', '101010'"", 'output': '010010', 'relation': '=='}, {'input': ""'1', '1'"", 'output': '0', 'relation': '=='}, {'input': ""'0101', '0000'"", 'output': '0101', 'relation': '=='}]" longest,HumanEval/12,"from typing import List, Optional def longest(strings: List[str]) -> Optional[str]: """""" Out of list of strings, return the longest one. Return the first one in case of multiple strings of the same length. Return None in case the input list is empty. >>> longest([]) >>> longest(['a', 'b', 'c']) 'a' >>> longest(['a', 'bb', 'ccc']) 'ccc' """""" ","from typing import List, Optional def candidate(strings: List[str]) -> Optional[str]: """""" Out of list of strings, return a certain one (the shortest or longest or another). Return the first one in case of multiple strings of the same length. Return None in case the input list is empty. >>> candidate([]) >>> candidate(['a', 'b', 'c']) 'a' >>> candidate(['a', 'bb', 'ccc']) 'ccc' """""" ","from typing import List, Optional def longest(strings: List[str]) -> Optional[str]: """""" Out of list of strings, return the longest one. Return the first one in case of multiple strings of the same length. Return None in case the input list is empty. >>> longest([]) >>> longest(['a', 'b', 'c']) 'c' >>> longest(['a', 'bb', 'ccc']) 'a' """""" ","from typing import List, Optional def candidate(strings: List[str]) -> Optional[str]: """""" Out of list of strings, return one of them. Return the first one in case of multiple strings of the same length. Return None in case the input list is empty. """""" ","from typing import List, Optional def candidate(strings: List[str]) -> Optional[str]: """""" Out of list of strings, return a certain one (the shortest or longest or another). Return the first one in case of multiple strings of the same length. Return None in case the input list is empty. >>> candidate([]) >>> candidate(['a', 'b', 'c']) 'c' >>> candidate(['a', 'bb', 'ccc']) 'a' """""" ",,,,"from typing import List, Optional def longest(strings: List[str]) -> Optional[str]: """""" Out of list of strings, return the longest one. Return the first one in case of multiple strings of the same length. Return None in case the input list is empty. >>> longest([]) >>> longest(['a', 'b', 'c']) 'a' >>> longest(['a', 'bb', 'ccc']) 'ccc' """""" if not strings: return None maxlen = max(len(x) for x in strings) for s in strings: if len(s) == maxlen: return s ","[{'input': '[]', 'output': 'None', 'relation': '=='}, {'input': ""['x', 'y', 'z']"", 'output': 'x', 'relation': '=='}, {'input': ""['x', 'yyy', 'zzzz', 'www', 'kkkk', 'abc']"", 'output': 'zzzz', 'relation': '=='}]" greatest_common_divisor,HumanEval/13," def greatest_common_divisor(a: int, b: int) -> int: """""" Return a greatest common divisor of two integers a and b >>> greatest_common_divisor(3, 5) 1 >>> greatest_common_divisor(25, 15) 5 """""" "," def candidate(a: int, b: int) -> int: """""" Return a common divisor of two integers a and b >>> candidate(3, 5) 1 >>> candidate(25, 15) 5 """""" "," def greatest_common_divisor(a: int, b: int) -> int: """""" Return a greatest common divisor of two integers a and b >>> greatest_common_divisor(3, 5) 3 >>> greatest_common_divisor(25, 15) 15 """""" "," def candidate(...) -> int: """""" Return a greatest common divisor """""" "," def candidate(a: int, b: int) -> int: """""" Return a common divisor of two integers a and b >>> candidate(3, 5) 3 >>> candidate(25, 15) 15 """""" "," def candidate(...) -> int: """""" Return a common divisor """""" ",,," def greatest_common_divisor(a: int, b: int) -> int: """""" Return a greatest common divisor of two integers a and b >>> greatest_common_divisor(3, 5) 1 >>> greatest_common_divisor(25, 15) 5 """""" while b: a, b = b, a % b return a ","[{'input': '3, 7', 'output': '1', 'relation': '=='}, {'input': '10, 15', 'output': '5', 'relation': '=='}, {'input': '49, 14', 'output': '7', 'relation': '=='}, {'input': '144, 60', 'output': '12', 'relation': '=='}]" all_prefixes,HumanEval/14,"from typing import List def all_prefixes(string: str) -> List[str]: """""" Return list of all prefixes from shortest to longest of the input string >>> all_prefixes('abc') ['a', 'ab', 'abc'] """""" ","from typing import List def candidate(string: str) -> List[str]: """""" Return list of a certain pattern (suffixes or prefixes or other types of substring) from shortest to longest of the input string >>> candidate('abc') ['a', 'ab', 'abc'] """""" ","from typing import List def all_prefixes(string: str) -> List[str]: """""" Return list of all prefixes from shortest to longest of the input string >>> all_prefixes('abc') ['abc', 'ab', 'a'] """""" ","from typing import List def all_prefixes(string: str) -> List[str]: """""" Return list of all prefixes """""" ","from typing import List def candidate(string: str) -> List[str]: """""" Return list of a certain pattern (suffixes or prefixes or other types of substring) from shortest to longest of the input string >>> candidate('abc') ['abc', 'ab', 'a'] """""" ","from typing import List def candidate(string: str) -> List[str]: """""" Return list of a certain patter """""" ",,,"from typing import List def all_prefixes(string: str) -> List[str]: """""" Return list of all prefixes from shortest to longest of the input string >>> all_prefixes('abc') ['a', 'ab', 'abc'] """""" result = [] for i in range(len(string)): result.append(string[:i+1]) return result ","[{'input': ""''"", 'output': '[]', 'relation': '=='}, {'input': ""'asdfgh'"", 'output': ""['a', 'as', 'asd', 'asdf', 'asdfg', 'asdfgh']"", 'relation': '=='}, {'input': ""'WWW'"", 'output': ""['W', 'WW', 'WWW']"", 'relation': '=='}]" string_sequence,HumanEval/15," def string_sequence(n: int) -> str: """""" Return a string containing space-delimited numbers starting from 0 upto n inclusive. >>> string_sequence(0) '0' >>> string_sequence(5) '0 1 2 3 4 5' """""" "," def string_sequence(n: int) -> str: """""" Return a string containing dot or space-delimited numbers starting from 0 upto a certain number inclusive. >>> string_sequence(0) '0' >>> string_sequence(5) '0 1 2 3 4 5' """""" "," def string_sequence(n: int) -> str: """""" Return a string containing space-delimited numbers starting from 0 upto n inclusive. >>> string_sequence(0) '0' >>> string_sequence(5) '0.1.2.3.4.5' """""" "," def string_sequence(n: int) -> str: """""" Return a string containing space-delimited numbers. "," def string_sequence(n: int) -> str: """""" Return a string containing dot or space-delimited numbers starting from 0 upto a certain number inclusive. >>> string_sequence(0) '0' >>> string_sequence(5) '0.1.2.3.4.5' """""" "," def string_sequence(n: int) -> str: """""" Return a string containing dot or space-delimited numbers. ",,," def string_sequence(n: int) -> str: """""" Return a string containing space-delimited numbers starting from 0 upto n inclusive. >>> string_sequence(0) '0' >>> string_sequence(5) '0 1 2 3 4 5' """""" return ' '.join([str(x) for x in range(n + 1)]) ","[{'input': '0', 'output': '0', 'relation': '=='}, {'input': '3', 'output': '0 1 2 3', 'relation': '=='}, {'input': '10', 'output': '0 1 2 3 4 5 6 7 8 9 10', 'relation': '=='}]" count_distinct_characters,HumanEval/16," def count_distinct_characters(string: str) -> int: """""" Given a string, find out how many distinct characters (regardless of case) does it consist of >>> count_distinct_characters('xyzXYZ') 3 >>> count_distinct_characters('Jerry') 4 """""" "," def candidate(string: str) -> int: """""" Given a string, find out how many characters (regardless of case) does it consist of >>> candidate('xyzXYZ') 3 >>> candidate('Jerry') 4 """""" "," def count_distinct_characters(string: str) -> int: """""" Given a string, find out how many distinct characters (regardless of case) does it consist of >>> count_distinct_characters('xyzXYZ') 6 >>> count_distinct_characters('Jerry') 5 """""" "," def candidate(string: str) -> int: """""" Given a string, find out how many distinct characters does it consist of """""" "," def candidate(string: str) -> int: """""" Given a string, find out how many characters (regardless of case) does it consist of >>> candidate('xyzXYZ') 6 >>> candidate('Jerry') 5 """""" "," def candidate(string: str) -> int: """""" Given a string, find out how many characters (regardless of case) does it consist of """""" ",,," def count_distinct_characters(string: str) -> int: """""" Given a string, find out how many distinct characters (regardless of case) does it consist of >>> count_distinct_characters('xyzXYZ') 3 >>> count_distinct_characters('Jerry') 4 """""" return len(set(string.lower())) ","[{'input': ""''"", 'output': '0', 'relation': '=='}, {'input': ""'abcde'"", 'output': '5', 'relation': '=='}, {'input': ""'abcde' + 'cade' + 'CADE'"", 'output': '5', 'relation': '=='}, {'input': ""'aaaaAAAAaaaa'"", 'output': '1', 'relation': '=='}, {'input': ""'Jerry jERRY JeRRRY'"", 'output': '5', 'relation': '=='}]" parse_music,HumanEval/17,"from typing import List def parse_music(music_string: str) -> List[int]: """""" Input to this function is a string representing musical notes in a special ASCII format. Your task is to parse this string and return list of integers corresponding to how many beats does each not last. Here is a legend: 'o' - whole note, lasts four beats 'o|' - half note, lasts two beats '.|' - quater note, lasts one beat >>> parse_music('o o| .| o| o| .| .| .| .| o o') [4, 2, 1, 2, 2, 1, 1, 1, 1, 4, 4] """""" ","from typing import List def parse_music(music_string: str) -> List[int]: """""" Input to this function is a string representing musical notes in a special ASCII format. Your task is to parse this string and return list of integers corresponding to how many beats does each not last. Here is a legend: 'o' - whole note, lasts A beats 'o|' - half note, lasts B beats '.|' - quater note, lasts C beat >>> parse_music('o o| .| o| o| .| .| .| .| o o') [4, 2, 1, 2, 2, 1, 1, 1, 1, 4, 4] """""" ","from typing import List def parse_music(music_string: str) -> List[int]: """""" Input to this function is a string representing musical notes in a special ASCII format. Your task is to parse this string and return list of integers corresponding to how many beats does each not last. Here is a legend: 'o' - whole note, lasts four beats 'o|' - half note, lasts two beats '.|' - quater note, lasts one beat >>> parse_music('o o| .| o| o| .| .| .| .| o o') [1, 4, 2, 4, 4, 2, 2, 2, 2, 1, 1] """""" ","from typing import List def parse_music(music_string: str) -> List[int]: """""" Input to this function is a string representing musical notes in a special ASCII format. Your task is to parse this string and return list of integers corresponding to how many beats does each not last. """""" ","from typing import List def parse_music(music_string: str) -> List[int]: """""" Input to this function is a string representing musical notes in a special ASCII format. Your task is to parse this string and return list of integers corresponding to how many beats does each not last. Here is a legend: 'o' - whole note, lasts A beats 'o|' - half note, lasts B beats '.|' - quater note, lasts C beat >>> parse_music('o o| .| o| o| .| .| .| .| o o') [1, 4, 2, 4, 4, 2, 2, 2, 2, 1, 1] """""" ",,,,"from typing import List def parse_music(music_string: str) -> List[int]: """""" Input to this function is a string representing musical notes in a special ASCII format. Your task is to parse this string and return list of integers corresponding to how many beats does each not last. Here is a legend: 'o' - whole note, lasts four beats 'o|' - half note, lasts two beats '.|' - quater note, lasts one beat >>> parse_music('o o| .| o| o| .| .| .| .| o o') [4, 2, 1, 2, 2, 1, 1, 1, 1, 4, 4] """""" note_map = {'o': 4, 'o|': 2, '.|': 1} return [note_map[x] for x in music_string.split(' ') if x] ","[{'input': ""''"", 'output': '[]', 'relation': '=='}, {'input': ""'o o o o'"", 'output': '[4, 4, 4, 4]', 'relation': '=='}, {'input': ""'.| .| .| .|'"", 'output': '[1, 1, 1, 1]', 'relation': '=='}, {'input': ""'o| o| .| .| o o o o'"", 'output': '[2, 2, 1, 1, 4, 4, 4, 4]', 'relation': '=='}, {'input': ""'o| .| o| .| o o| o o|'"", 'output': '[2, 1, 2, 1, 4, 2, 4, 2]', 'relation': '=='}]" how_many_times,HumanEval/18," def how_many_times(string: str, substring: str) -> int: """""" Find how many times a given substring can be found in the original string. Count overlaping cases. >>> how_many_times('', 'a') 0 >>> how_many_times('aaa', 'a') 3 >>> how_many_times('aaaa', 'aa') 3 """""" "," def candidate(a: str, b: str) -> int: """""" Find how many times a given substring can be found in the original string. Count overlaping cases. >>> how_many_times('', 'a') 0 >>> how_many_times('aaa', 'a') 3 >>> how_many_times('aaaa', 'aa') 3 """""" "," def how_many_times(string: str, substring: str) -> int: """""" Find how many times a given substring can be found in the original string. Count overlaping cases. >>> how_many_times('', 'a') 0 >>> how_many_times('aaa', 'a') 3 >>> how_many_times('aaaa', 'aa') 2 """""" "," def how_many_times(string: str, substring: str) -> int: """""" Find how many times a given substring can be found in the original string. """""" "," def candidate(a: str, b: str) -> int: """""" Find how many times a given substring can be found in the original string. Count overlaping cases. >>> canidate('', 'a') 0 >>> candidate('aaa', 'a') 3 >>> candidate('aaaa', 'aa') 2 """""" "," def candidate(a: str, b: str) -> int: """""" Find how many times a given substring can be found in the original string. """""" ",,," def how_many_times(string: str, substring: str) -> int: """""" Find how many times a given substring can be found in the original string. Count overlaping cases. >>> how_many_times('', 'a') 0 >>> how_many_times('aaa', 'a') 3 >>> how_many_times('aaaa', 'aa') 3 """""" times = 0 for i in range(len(string) - len(substring) + 1): if string[i:i+len(substring)] == substring: times += 1 return times ","[{'input': ""'', 'x'"", 'output': '0', 'relation': '=='}, {'input': ""'xyxyxyx', 'x'"", 'output': '4', 'relation': '=='}, {'input': ""'cacacacac', 'cac'"", 'output': '4', 'relation': '=='}, {'input': ""'john doe', 'john'"", 'output': '1', 'relation': '=='}]" sort_numbers,HumanEval/19,"from typing import List def sort_numbers(numbers: str) -> str: """""" Input is a space-delimited string of numberals from 'zero' to 'nine'. Valid choices are 'zero', 'one', 'two', 'three', 'four', 'five', 'six', 'seven', 'eight' and 'nine'. Return the string with numbers sorted from smallest to largest >>> sort_numbers('three one five') 'one three five' """""" ","from typing import List def candidate(numbers: str) -> str: """""" Input is a space-delimited string of numberals from 'zero' to 'nine'. Valid choices are 'zero', 'one', 'two', 'three', 'four', 'five', 'six', 'seven', 'eight' and 'nine'. Return the string with numbers in a certain order (sorted descendingly or ascendingly or another order) >>> candidate('three one five') 'one three five' """""" ","from typing import List def sort_numbers(numbers: str) -> str: """""" Input is a space-delimited string of numberals from 'zero' to 'nine'. Valid choices are 'zero', 'one', 'two', 'three', 'four', 'five', 'six', 'seven', 'eight' and 'nine'. Return the string with numbers sorted from smallest to largest >>> sort_numbers('three one five') 'five three one' """""" ","from typing import List def sort_numbers(numbers: str) -> str: """""" Input is a space-delimited string of numberals. """""" ","from typing import List def candidate(numbers: str) -> str: """""" Input is a space-delimited string of numberals from 'zero' to 'nine'. Valid choices are 'zero', 'one', 'two', 'three', 'four', 'five', 'six', 'seven', 'eight' and 'nine'. Return the string with numbers in a certain order (sorted descendingly or ascendingly or another order) >>> candidate('three one five') 'five three one' """""" ","from typing import List def candidate(numbers: str) -> str: """""" Input is a space-delimited string of numberals. """""" ",,,"from typing import List def sort_numbers(numbers: str) -> str: """""" Input is a space-delimited string of numberals from 'zero' to 'nine'. Valid choices are 'zero', 'one', 'two', 'three', 'four', 'five', 'six', 'seven', 'eight' and 'nine'. Return the string with numbers sorted from smallest to largest >>> sort_numbers('three one five') 'one three five' """""" value_map = { 'zero': 0, 'one': 1, 'two': 2, 'three': 3, 'four': 4, 'five': 5, 'six': 6, 'seven': 7, 'eight': 8, 'nine': 9 } return ' '.join(sorted([x for x in numbers.split(' ') if x], key=lambda x: value_map[x])) ","[{'input': ""''"", 'output': '', 'relation': '=='}, {'input': ""'three'"", 'output': 'three', 'relation': '=='}, {'input': ""'three five nine'"", 'output': 'three five nine', 'relation': '=='}, {'input': ""'five zero four seven nine eight'"", 'output': 'zero four five seven eight nine', 'relation': '=='}, {'input': ""'six five four three two one zero'"", 'output': 'zero one two three four five six', 'relation': '=='}]" find_closest_elements,HumanEval/20,"from typing import List, Tuple def find_closest_elements(numbers: List[float]) -> Tuple[float, float]: """""" From a supplied list of numbers (of length at least two) select and return two that are the closest to each other and return them in order (smaller number, larger number). >>> find_closest_elements([1.0, 2.0, 3.0, 4.0, 5.0, 2.2]) (2.0, 2.2) >>> find_closest_elements([1.0, 2.0, 3.0, 4.0, 5.0, 2.0]) (2.0, 2.0) """""" ","from typing import List, Tuple def candidate(numbers: List[float]) -> Tuple[float, float]: """""" From a supplied list of numbers (of length at least two) select and return two that are the farthest or closest to each other and return them in order (smaller number, larger number). >>> candidate([1.0, 2.0, 3.0, 4.0, 5.0, 2.2]) (2.0, 2.2) >>> candidate([1.0, 2.0, 3.0, 4.0, 5.0, 2.0]) (2.0, 2.0) """""" ","from typing import List, Tuple def find_closest_elements(numbers: List[float]) -> Tuple[float, float]: """""" From a supplied list of numbers (of length at least two) select and return two that are the closest to each other and return them in order (smaller number, larger number). >>> find_closest_elements([1.0, 2.0, 3.0, 4.0, 5.0, 2.2]) (1.0, 5.0) >>> find_closest_elements([1.0, 2.0, 3.0, 4.0, 5.0, 2.0]) (1.0, 5.0) """""" ","from typing import List, Tuple def find_closest_elements(numbers: List[float]) -> Tuple[float, float]: """""" From a supplied list of numbers (of length at least two) select and return two that are the closest to each other and return them in order. """""" ","from typing import List, Tuple def candidate(numbers: List[float]) -> Tuple[float, float]: """""" From a supplied list of numbers (of length at least two) select and return two that are the farthest or closest to each other and return them in order (smaller number, larger number). >>> candidate([1.0, 2.0, 3.0, 4.0, 5.0, 2.2]) (1.0, 5.0) >>> candidate([1.0, 2.0, 3.0, 4.0, 5.0, 2.0]) (1.0, 5.0) """""" ","from typing import List, Tuple def candidate(numbers: List[float]) -> Tuple[float, float]: """""" From a supplied list of numbers (of length at least two) select and return two that are the farthest or closest to each other and return them in order. """""" ",,,"from typing import List, Tuple def find_closest_elements(numbers: List[float]) -> Tuple[float, float]: """""" From a supplied list of numbers (of length at least two) select and return two that are the closest to each other and return them in order (smaller number, larger number). >>> find_closest_elements([1.0, 2.0, 3.0, 4.0, 5.0, 2.2]) (2.0, 2.2) >>> find_closest_elements([1.0, 2.0, 3.0, 4.0, 5.0, 2.0]) (2.0, 2.0) """""" closest_pair = None distance = None for idx, elem in enumerate(numbers): for idx2, elem2 in enumerate(numbers): if idx != idx2: if distance is None: distance = abs(elem - elem2) closest_pair = tuple(sorted([elem, elem2])) else: new_distance = abs(elem - elem2) if new_distance < distance: distance = new_distance closest_pair = tuple(sorted([elem, elem2])) return closest_pair ","[{'input': '[1.0, 2.0, 3.9, 4.0, 5.0, 2.2]', 'output': '(3.9, 4.0)', 'relation': '=='}, {'input': '[1.0, 2.0, 5.9, 4.0, 5.0]', 'output': '(5.0, 5.9)', 'relation': '=='}, {'input': '[1.0, 2.0, 3.0, 4.0, 5.0, 2.2]', 'output': '(2.0, 2.2)', 'relation': '=='}, {'input': '[1.0, 2.0, 3.0, 4.0, 5.0, 2.0]', 'output': '(2.0, 2.0)', 'relation': '=='}, {'input': '[1.1, 2.2, 3.1, 4.1, 5.1]', 'output': '(2.2, 3.1)', 'relation': '=='}]" rescale_to_unit,HumanEval/21,"from typing import List def rescale_to_unit(numbers: List[float]) -> List[float]: """""" Given list of numbers (of at least two elements), apply a linear transform to that list, such that the smallest number will become 0 and the largest will become 1 >>> rescale_to_unit([1.0, 2.0, 3.0, 4.0, 5.0]) [0.0, 0.25, 0.5, 0.75, 1.0] """""" ","from typing import List def rescale(numbers: List[float]) -> List[float]: """""" Given list of numbers (of at least two elements), apply a linear transform to that list, such that the one number will become 0 and another will become 1 >>> rescale([1.0, 2.0, 3.0, 4.0, 5.0]) [0.0, 0.25, 0.5, 0.75, 1.0] """""" ","from typing import List def rescale_to_unit(numbers: List[float]) -> List[float]: """""" Given list of numbers (of at least two elements), apply a linear transform to that list, such that the smallest number will become 0 and the largest will become 1 >>> rescale_to_unit([1.0, 2.0, 3.0, 4.0, 5.0]) [1.0, 0.75, 0.5, 0.25, 0.0] """""" ","from typing import List def rescale(numbers: List[float]) -> List[float]: """""" Given list of numbers (of at least two elements), apply a linear transform to that list """""" ","from typing import List def rescale(numbers: List[float]) -> List[float]: """""" Given list of numbers (of at least two elements), apply a linear transform to that list, such that the one number will become 0 and another will become 1 >>> rescale([1.0, 2.0, 3.0, 4.0, 5.0]) [1.0, 0.75, 0.5, 0.25, 0.0] """""" ",,,,"from typing import List def rescale_to_unit(numbers: List[float]) -> List[float]: """""" Given list of numbers (of at least two elements), apply a linear transform to that list, such that the smallest number will become 0 and the largest will become 1 >>> rescale_to_unit([1.0, 2.0, 3.0, 4.0, 5.0]) [0.0, 0.25, 0.5, 0.75, 1.0] """""" min_number = min(numbers) max_number = max(numbers) return [(x - min_number) / (max_number - min_number) for x in numbers] ","[{'input': '[2.0, 49.9]', 'output': '[0.0, 1.0]', 'relation': '=='}, {'input': '[100.0, 49.9]', 'output': '[1.0, 0.0]', 'relation': '=='}, {'input': '[1.0, 2.0, 3.0, 4.0, 5.0]', 'output': '[0.0, 0.25, 0.5, 0.75, 1.0]', 'relation': '=='}, {'input': '[2.0, 1.0, 5.0, 3.0, 4.0]', 'output': '[0.25, 0.0, 1.0, 0.5, 0.75]', 'relation': '=='}, {'input': '[12.0, 11.0, 15.0, 13.0, 14.0]', 'output': '[0.25, 0.0, 1.0, 0.5, 0.75]', 'relation': '=='}]" filter_integers,HumanEval/22,"from typing import List, Any def filter_integers(values: List[Any]) -> List[int]: """""" Filter given list of any python values only for integers >>> filter_integers(['a', 3.14, 5]) [5] >>> filter_integers([1, 2, 3, 'abc', {}, []]) [1, 2, 3] """""" ","from typing import List, Any def candidate(values: List[Any]) -> List[int]: """""" Filter given list of any python values only for certain types >>> candidate(['a', 3.14, 5]) [5] >>> candidate([1, 2, 3, 'abc', {}, []]) [1, 2, 3] """""" ","from typing import List, Any def filter_integers(values: List[Any]) -> List[int]: """""" Filter given list of any python values only for integers >>> filter_integers(['a', 3.14, 5]) ['a'] >>> filter_integers([1, 2, 3, 'abc', {}, []]) ['abc'] """""" ","from typing import List, Any def candidate(values: List[Any]) -> List[int]: """""" Filter given list of any python values """""" ","from typing import List, Any def candidate(values: List[Any]) -> List[int]: """""" Filter given list of any python values only for certain types >>> candidate(['a', 3.14, 5]) ['a'] >>> candidate([1, 2, 3, 'abc', {}, []]) ['abc'] """""" ",,,,"from typing import List, Any def filter_integers(values: List[Any]) -> List[int]: """""" Filter given list of any python values only for integers >>> filter_integers(['a', 3.14, 5]) [5] >>> filter_integers([1, 2, 3, 'abc', {}, []]) [1, 2, 3] """""" return [x for x in values if isinstance(x, int)] ","[{'input': '[]', 'output': '[]', 'relation': '=='}, {'input': ""[4, {}, [], 23.2, 9, 'adasd']"", 'output': '[4, 9]', 'relation': '=='}, {'input': ""[3, 'c', 3, 3, 'a', 'b']"", 'output': '[3, 3, 3]', 'relation': '=='}]" strlen,HumanEval/23," def strlen(string: str) -> int: """""" Return length of given string >>> strlen('') 0 >>> strlen('abc') 3 """""" "," def candidate(string: str) -> int: """""" Return length or length of Longest Palindrome Substring of the given string >>> candidate('') 0 >>> candidate('abc') 3 """""" "," def strlen(string: str) -> int: """""" Return length of given string >>> strlen('') 0 >>> strlen('abc') 1 """""" "," def candidate(string: str) -> int: """""" Return length """""" "," def candidate(string: str) -> int: """""" Return length or length of Longest Palindrome Substring of the given string >>> candidate('') 0 >>> candidate('abc') 1 """""" "," def candidate(string: str) -> int: """""" Return length or length of Longest Palindrome Substring """""" ",,," def strlen(string: str) -> int: """""" Return length of given string >>> strlen('') 0 >>> strlen('abc') 3 """""" return len(string) ","[{'input': ""''"", 'output': '0', 'relation': '=='}, {'input': ""'x'"", 'output': '1', 'relation': '=='}, {'input': ""'asdasnakj'"", 'output': '9', 'relation': '=='}]" largest_divisor,HumanEval/24," def largest_divisor(n: int) -> int: """""" For a given number n, find the largest number that divides n evenly, smaller than n >>> largest_divisor(15) 5 """""" "," def candidate(n: int) -> int: """""" For a given number n, find the smallest or largest number that divides n evenly, smaller than n >>> candidate(15) 5 """""" "," def largest_divisor(n: int) -> int: """""" For a given number n, find the largest number that divides n evenly, smaller than n >>> largest_divisor(15) 1 """""" "," def candidate(n: int) -> int: """""" For a given number n, find the largest number that divides n evenly """""" "," def candidate(n: int) -> int: """""" For a given number n, find the smallest or largest number that divides n evenly, smaller than n >>> candidate(15) 1 """""" "," def candidate(n: int) -> int: """""" For a given number n, find the smallest or largest number that divides n evenly """""" ",,," def largest_divisor(n: int) -> int: """""" For a given number n, find the largest number that divides n evenly, smaller than n >>> largest_divisor(15) 5 """""" for i in reversed(range(n)): if n % i == 0: return i ","[{'input': '3', 'output': '1', 'relation': '=='}, {'input': '7', 'output': '1', 'relation': '=='}, {'input': '10', 'output': '5', 'relation': '=='}, {'input': '100', 'output': '50', 'relation': '=='}, {'input': '49', 'output': '7', 'relation': '=='}]" factorize,HumanEval/25,"from typing import List def factorize(n: int) -> List[int]: """""" Return list of prime factors of given integer in the order from smallest to largest. Each of the factors should be listed number of times corresponding to how many times it appeares in factorization. Input number should be equal to the product of all factors >>> factorize(8) [2, 2, 2] >>> factorize(25) [5, 5] >>> factorize(70) [2, 5, 7] """""" ","from typing import List def candidate(n: int) -> List[int]: """""" Return list of factors of given integer in the descending or ascending order. Each of the factors should be listed number of times corresponding to how many times it appeares in factorization. Input number should be equal to the product of all factors >>> candidate(8) [2, 2, 2] >>> candidate(25) [5, 5] >>> candidate(70) [2, 5, 7] """""" ","from typing import List def factorize(n: int) -> List[int]: """""" Return list of prime factors of given integer in the order from smallest to largest. Each of the factors should be listed number of times corresponding to how many times it appeares in factorization. Input number should be equal to the product of all factors >>> factorize(8) [2, 4, 8] >>> factorize(25) [5, 25] >>> factorize(70) [2, 10, 70] """""" ","from typing import List def candidate(n: int) -> List[int]: """""" Return list of prime factors of given integer. """""" ","from typing import List def candidate(n: int) -> List[int]: """""" Return list of factors of given integer in the descending or ascending order. Each of the factors should be listed number of times corresponding to how many times it appeares in factorization. Input number should be equal to the product of all factors >>> candidate(8) [2, 4, 8] >>> candidate(25) [5, 25] >>> candidate(70) [2, 10, 70] """""" ","from typing import List def candidate(n: int) -> List[int]: """""" Return list of factors of given integer. """""" ",,,"from typing import List def factorize(n: int) -> List[int]: """""" Return list of prime factors of given integer in the order from smallest to largest. Each of the factors should be listed number of times corresponding to how many times it appeares in factorization. Input number should be equal to the product of all factors >>> factorize(8) [2, 2, 2] >>> factorize(25) [5, 5] >>> factorize(70) [2, 5, 7] """""" import math fact = [] i = 2 while i <= int(math.sqrt(n) + 1): if n % i == 0: fact.append(i) n //= i else: i += 1 if n > 1: fact.append(n) return fact ","[{'input': '2', 'output': '[2]', 'relation': '=='}, {'input': '4', 'output': '[2, 2]', 'relation': '=='}, {'input': '8', 'output': '[2, 2, 2]', 'relation': '=='}, {'input': '3 * 19', 'output': '[3, 19]', 'relation': '=='}, {'input': '3 * 19 * 3 * 19', 'output': '[3, 3, 19, 19]', 'relation': '=='}, {'input': '3 * 19 * 3 * 19 * 3 * 19', 'output': '[3, 3, 3, 19, 19, 19]', 'relation': '=='}, {'input': '3 * 19 * 19 * 19', 'output': '[3, 19, 19, 19]', 'relation': '=='}, {'input': '3 * 2 * 3', 'output': '[2, 3, 3]', 'relation': '=='}]" remove_duplicates,HumanEval/26,"from typing import List def remove_duplicates(numbers: List[int]) -> List[int]: """""" From a list of integers, remove all elements that occur more than once. Keep order of elements left the same as in the input. >>> remove_duplicates([1, 2, 3, 2, 4]) [1, 3, 4] """""" ","from typing import List def candidate(numbers: List[int]) -> List[int]: """""" From a list of integers, remove all elements that occur K time(s). Keep order of elements left the same as in the input. >>> candidate([1, 2, 3, 2, 4]) [1, 3, 4] """""" ","from typing import List def remove_duplicates(numbers: List[int]) -> List[int]: """""" From a list of integers, remove all elements that occur more than once. Keep order of elements left the same as in the input. >>> remove_duplicates([1, 2, 3, 2, 4]) [1, 2, 3, 4] """""" ","from typing import List def candidate(numbers: List[int]) -> List[int]: """""" From a list of integers, remove all elements that occur. """""" ","from typing import List def candidate(numbers: List[int]) -> List[int]: """""" From a list of integers, remove all elements that occur K time(s). Keep order of elements left the same as in the input. >>> candidate([1, 2, 3, 2, 4]) [1, 2, 3, 4] """""" ","from typing import List def candidate(numbers: List[int]) -> List[int]: """""" From a list of integers, remove all elements that occur K time(s). """""" ",,,"from typing import List def remove_duplicates(numbers: List[int]) -> List[int]: """""" From a list of integers, remove all elements that occur more than once. Keep order of elements left the same as in the input. >>> remove_duplicates([1, 2, 3, 2, 4]) [1, 3, 4] """""" import collections c = collections.Counter(numbers) return [n for n in numbers if c[n] <= 1] ","[{'input': '[]', 'output': '[]', 'relation': '=='}, {'input': '[1, 2, 3, 4]', 'output': '[1, 2, 3, 4]', 'relation': '=='}, {'input': '[1, 2, 3, 2, 4, 3, 5]', 'output': '[1, 4, 5]', 'relation': '=='}]" flip_case,HumanEval/27," def flip_case(string: str) -> str: """""" For a given string, flip lowercase characters to uppercase and uppercase to lowercase. >>> flip_case('Hello') 'hELLO' """""" "," def candidate(string: str) -> str: """""" For a given string, flip lowercase or uppercase characters to either uppercase or lowercase. >>> candidate('Hello') 'hELLO' """""" "," def flip_case(string: str) -> str: """""" For a given string, flip lowercase characters to uppercase and uppercase to lowercase. >>> flip_case('Hello') 'hello' """""" "," def candidate(string: str) -> str: """""" For a given string, flip lowercase characters to uppercase. """""" "," def candidate(string: str) -> str: """""" For a given string, flip lowercase or uppercase characters to either uppercase or lowercase. >>> candidate('Hello') 'hello' """""" "," def candidate(string: str) -> str: """""" For a given string, flip lowercase or uppercase characters to either uppercase or lowercase. """""" ",,," def flip_case(string: str) -> str: """""" For a given string, flip lowercase characters to uppercase and uppercase to lowercase. >>> flip_case('Hello') 'hELLO' """""" return string.swapcase() ","[{'input': ""''"", 'output': '', 'relation': '=='}, {'input': ""'Hello!'"", 'output': 'hELLO!', 'relation': '=='}, {'input': ""'These violent delights have violent ends'"", 'output': 'tHESE VIOLENT DELIGHTS HAVE VIOLENT ENDS', 'relation': '=='}]" concatenate,HumanEval/28,"from typing import List def concatenate(strings: List[str]) -> str: """""" Concatenate list of strings into a single string >>> concatenate([]) '' >>> concatenate(['a', 'b', 'c']) 'abc' """""" ","from typing import List def candidate(strings: List[str]) -> str: """""" Concatenate list of strings into a single string with space or without space >>> candidate([]) '' >>> candidate(['a', 'b', 'c']) 'abc' """""" ","from typing import List def concatenate(strings: List[str]) -> str: """""" Concatenate list of strings into a single string >>> concatenate([]) '' >>> concatenate(['a', 'b', 'c']) 'c b a' """""" ","from typing import List def candidate(strings: List[str]) -> str: """""" Concatenate """""" ","from typing import List def candidate(strings: List[str]) -> str: """""" Concatenate list of strings into a single string with space or without space >>> candidate([]) '' >>> candidate(['a', 'b', 'c']) 'c b a' """""" ",,,,"from typing import List def concatenate(strings: List[str]) -> str: """""" Concatenate list of strings into a single string >>> concatenate([]) '' >>> concatenate(['a', 'b', 'c']) 'abc' """""" return ''.join(strings) ","[{'input': '[]', 'output': '', 'relation': '=='}, {'input': ""['x', 'y', 'z']"", 'output': 'xyz', 'relation': '=='}, {'input': ""['x', 'y', 'z', 'w', 'k']"", 'output': 'xyzwk', 'relation': '=='}]" filter_by_prefix,HumanEval/29,"from typing import List def filter_by_prefix(strings: List[str], prefix: str) -> List[str]: """""" Filter an input list of strings only for ones that start with a given prefix. >>> filter_by_prefix([], 'a') [] >>> filter_by_prefix(['abc', 'bcd', 'cde', 'array'], 'a') ['abc', 'array'] """""" ","from typing import List def candidate(strings: List[str], prefix: str) -> List[str]: """""" Filter an input list of strings only for ones that satisfy certain condition with a given prefix. >>> candidate([], 'a') [] >>> candidate(['abc', 'bcd', 'cde', 'array'], 'a') ['abc', 'array'] """""" ","from typing import List def filter_by_prefix(strings: List[str], prefix: str) -> List[str]: """""" Filter an input list of strings only for ones that start with a given prefix. >>> filter_by_prefix([], 'a') [] >>> filter_by_prefix(['abc', 'bcd', 'cde', 'array'], 'a') ['bcd', 'cde'] """""" ","from typing import List def candidate(strings: List[str], x: str) -> List[str]: """""" Filter an input list of strings only for ones. """""" ","from typing import List def candidate(strings: List[str], prefix: str) -> List[str]: """""" Filter an input list of strings only for ones that satisfy certain condition with a given prefix. >>> candidate([], 'a') [] >>> candidate(['abc', 'bcd', 'cde', 'array'], 'a') ['bcd', 'cde'] """""" ",,,,"from typing import List def filter_by_prefix(strings: List[str], prefix: str) -> List[str]: """""" Filter an input list of strings only for ones that start with a given prefix. >>> filter_by_prefix([], 'a') [] >>> filter_by_prefix(['abc', 'bcd', 'cde', 'array'], 'a') ['abc', 'array'] """""" return [x for x in strings if x.startswith(prefix)] ","[{'input': ""[], 'john'"", 'output': '[]', 'relation': '=='}, {'input': ""['xxx', 'asd', 'xxy', 'john doe', 'xxxAAA', 'xxx'], 'xxx'"", 'output': ""['xxx', 'xxxAAA', 'xxx']"", 'relation': '=='}]" get_positive,HumanEval/30," def get_positive(l: list): """"""Return only positive numbers in the list. >>> get_positive([-1, 2, -4, 5, 6]) [2, 5, 6] >>> get_positive([5, 3, -5, 2, -3, 3, 9, 0, 123, 1, -10]) [5, 3, 2, 3, 9, 123, 1] """""" "," def candidate(l: list): """"""Return only negative or positive numbers in the list. >>> candidate([-1, 2, -4, 5, 6]) [2, 5, 6] >>> candidate([5, 3, -5, 2, -3, 3, 9, 0, 123, 1, -10]) [5, 3, 2, 3, 9, 123, 1] """""" "," def get_positive(l: list): """"""Return only positive numbers in the list. >>> get_positive([-1, 2, -4, 5, 6]) [-1, -4] >>> get_positive([5, 3, -5, 2, -3, 3, 9, 0, 123, 1, -10]) [-5, -3, -10] """""" "," def candidate(l: list): """""" >>> candidate([-1, 2, -4, 5, 6]) [2, 5, 6] >>> candidate([5, 3, -5, 2, -3, 3, 9, 0, 123, 1, -10]) [5, 3, 2, 3, 9, 123, 1] """""" "," def candidate(l: list): """"""Return only negative or positive numbers in the list. >>> candidate([-1, 2, -4, 5, 6]) [-1, -4] >>> candidate([5, 3, -5, 2, -3, 3, 9, 0, 123, 1, -10]) [-5, -3, -10] """""" ",," def candidate(l: list): """""" >>> candidate([-1, 2, -4, 5, 6]) [-1, -4] >>> candidate([5, 3, -5, 2, -3, 3, 9, 0, 123, 1, -10]) [-5, -3, -10] """""" ",," def get_positive(l: list): """"""Return only positive numbers in the list. >>> get_positive([-1, 2, -4, 5, 6]) [2, 5, 6] >>> get_positive([5, 3, -5, 2, -3, 3, 9, 0, 123, 1, -10]) [5, 3, 2, 3, 9, 123, 1] """""" return [e for e in l if e > 0] ","[{'input': '[-1, -2, 4, 5, 6]', 'output': '[4, 5, 6]', 'relation': '=='}, {'input': '[5, 3, -5, 2, 3, 3, 9, 0, 123, 1, -10]', 'output': '[5, 3, 2, 3, 3, 9, 123, 1]', 'relation': '=='}, {'input': '[-1, -2]', 'output': '[]', 'relation': '=='}, {'input': '[]', 'output': '[]', 'relation': '=='}]" is_prime,HumanEval/31," def is_prime(n): """"""Return true if a given number is prime, and false otherwise. >>> is_prime(6) False >>> is_prime(101) True >>> is_prime(11) True >>> is_prime(13441) True >>> is_prime(61) True >>> is_prime(4) False >>> is_prime(1) False """""" "," def candidate(n): """"""Return true if a given number is composite or prime, and false otherwise. >>> candidate(6) False >>> candidate(101) True >>> candidate(11) True >>> candidate(13441) True >>> candidate(61) True >>> candidate(4) False >>> candidate(1) False """""" "," def is_prime(n): """"""Return true if a given number is prime, and false otherwise. >>> is_prime(6) True >>> is_prime(101) False >>> is_prime(11) False >>> is_prime(13441) False >>> is_prime(61) False >>> is_prime(4) True >>> is_prime(1) True """""" "," def candidate(n): """"""Return true, and false otherwise. """""" "," def candidate(n): """"""Return true if a given number is composite or prime, and false otherwise. >>> candidate(6) True >>> candidate(101) False >>> candidate(11) False >>> candidate(13441) False >>> candidate(61) False >>> candidate(4) True >>> candidate(1) True """""" ",,,," def is_prime(n): """"""Return true if a given number is prime, and false otherwise. >>> is_prime(6) False >>> is_prime(101) True >>> is_prime(11) True >>> is_prime(13441) True >>> is_prime(61) True >>> is_prime(4) False >>> is_prime(1) False """""" if n < 2: return False for k in range(2, n - 1): if n % k == 0: return False return True ","[{'input': '6', 'output': 'False', 'relation': '=='}, {'input': '101', 'output': 'True', 'relation': '=='}, {'input': '11', 'output': 'True', 'relation': '=='}, {'input': '13441', 'output': 'True', 'relation': '=='}, {'input': '61', 'output': 'True', 'relation': '=='}, {'input': '4', 'output': 'False', 'relation': '=='}, {'input': '1', 'output': 'False', 'relation': '=='}, {'input': '5', 'output': 'True', 'relation': '=='}, {'input': '11', 'output': 'True', 'relation': '=='}, {'input': '17', 'output': 'True', 'relation': '=='}, {'input': '5 * 17', 'output': 'False', 'relation': '=='}, {'input': '11 * 7', 'output': 'False', 'relation': '=='}, {'input': '13441 * 19', 'output': 'False', 'relation': '=='}]" find_zero,HumanEval/32,"import math def poly(xs: list, x: float): """""" Evaluates polynomial with coefficients xs at point x. return xs[0] + xs[1] * x + xs[1] * x^2 + .... xs[n] * x^n """""" return sum([coeff * math.pow(x, i) for i, coeff in enumerate(xs)]) def find_zero(xs: list): """""" xs are coefficients of a polynomial. find_zero find x such that poly(x) = 0. find_zero returns only only zero point, even if there are many. Moreover, find_zero only takes list xs having even number of coefficients and largest non zero coefficient as it guarantees a solution. >>> round(find_zero([1, 2]), 2) # f(x) = 1 + 2x -0.5 >>> round(find_zero([-6, 11, -6, 1]), 2) # (x - 1) * (x - 2) * (x - 3) = -6 + 11x - 6x^2 + x^3 1.0 """""" ","import math def poly(xs: list, x: float): """""" Evaluates polynomial with coefficients xs at point x. return xs[0] + xs[1] * x + xs[1] * x^2 + .... xs[n] * x^n """""" return sum([coeff * math.pow(x, i) for i, coeff in enumerate(xs)]) def candidate(xs: list): """""" xs are coefficients of a polynomial. candidate find x such that poly(x) is positive or negative or 0. candidate returns only only zero point, even if there are many. Moreover, candidate only takes list xs having even number of coefficients and largest non zero coefficient as it guarantees a solution. >>> round(candidate([1, 2]), 2) # f(x) = 1 + 2x -0.5 >>> round(candidate([-6, 11, -6, 1]), 2) # (x - 1) * (x - 2) * (x - 3) = -6 + 11x - 6x^2 + x^3 1.0 """""" ","import math def poly(xs: list, x: float): """""" Evaluates polynomial with coefficients xs at point x. return xs[0] + xs[1] * x + xs[1] * x^2 + .... xs[n] * x^n """""" return sum([coeff * math.pow(x, i) for i, coeff in enumerate(xs)]) def find_zero(xs: list): """""" xs are coefficients of a polynomial. find_zero find x such that poly(x) = 0. find_zero returns only only zero point, even if there are many. Moreover, find_zero only takes list xs having even number of coefficients and largest non zero coefficient as it guarantees a solution. >>> round(find_zero([1, 2]), 2) # f(x) = 1 + 2x -3.5 >>> round(find_zero([-6, 11, -6, 1]), 2) # (x - 1) * (x - 2) * (x - 3) = -6 + 11x - 6x^2 + x^3 0.0 """""" ","import math def poly(xs: list, x: float): """""" Evaluates polynomial with coefficients xs at point x. return xs[0] + xs[1] * x + xs[1] * x^2 + .... xs[n] * x^n """""" return sum([coeff * math.pow(x, i) for i, coeff in enumerate(xs)]) def find_zero(xs: list): """""" xs are coefficients of a polynomial. find_zero find x. """""" ","import math def poly(xs: list, x: float): """""" Evaluates polynomial with coefficients xs at point x. return xs[0] + xs[1] * x + xs[1] * x^2 + .... xs[n] * x^n """""" return sum([coeff * math.pow(x, i) for i, coeff in enumerate(xs)]) def candidate(xs: list): """""" xs are coefficients of a polynomial. candidate find x such that poly(x) is positive or negative or 0. candidate returns only only zero point, even if there are many. Moreover, candidate only takes list xs having even number of coefficients and largest non zero coefficient as it guarantees a solution. >>> round(candidate([1, 2]), 2) # f(x) = 1 + 2x -3.5 >>> round(candidate([-6, 11, -6, 1]), 2) # (x - 1) * (x - 2) * (x - 3) = -6 + 11x - 6x^2 + x^3 0.0 """""" ",,,,"import math def poly(xs: list, x: float): """""" Evaluates polynomial with coefficients xs at point x. return xs[0] + xs[1] * x + xs[1] * x^2 + .... xs[n] * x^n """""" return sum([coeff * math.pow(x, i) for i, coeff in enumerate(xs)]) def find_zero(xs: list): """""" xs are coefficients of a polynomial. find_zero find x such that poly(x) = 0. find_zero returns only only zero point, even if there are many. Moreover, find_zero only takes list xs having even number of coefficients and largest non zero coefficient as it guarantees a solution. >>> round(find_zero([1, 2]), 2) # f(x) = 1 + 2x -0.5 >>> round(find_zero([-6, 11, -6, 1]), 2) # (x - 1) * (x - 2) * (x - 3) = -6 + 11x - 6x^2 + x^3 1.0 """""" begin, end = -1., 1. while poly(xs, begin) * poly(xs, end) > 0: begin *= 2.0 end *= 2.0 while end - begin > 1e-10: center = (begin + end) / 2.0 if poly(xs, center) * poly(xs, begin) > 0: begin = center else: end = center return begin ","[{'input': [-10, -2], 'output': 1.1641532182693481e-10, 'relation': 'from $demo$ import poly\nimport math\nsolution = find_zero($input$)\nprint(math.fabs(poly($input$, solution)) < 1e-4)'}, {'input': [-3, -6, -7, 7], 'output': 9.76619674020185e-10, 'relation': 'from $demo$ import poly\nimport math\nsolution = find_zero($input$)\nprint(math.fabs(poly($input$, solution)) < 1e-4)'}, {'input': [8, 3], 'output': 5.820766091346741e-11, 'relation': 'from $demo$ import poly\nimport math\nsolution = find_zero($input$)\nprint(math.fabs(poly($input$, solution)) < 1e-4)'}, {'input': [-10, -8], 'output': 4.656612873077393e-10, 'relation': 'from $demo$ import poly\nimport math\nsolution = find_zero($input$)\nprint(math.fabs(poly($input$, solution)) < 1e-4)'}, {'input': [-3, 6, 9, -10], 'output': 1.337379096355562e-10, 'relation': 'from $demo$ import poly\nimport math\nsolution = find_zero($input$)\nprint(math.fabs(poly($input$, solution)) < 1e-4)'}, {'input': [10, 7, 3, -3], 'output': 1.3840022461408807e-09, 'relation': 'from $demo$ import poly\nimport math\nsolution = find_zero($input$)\nprint(math.fabs(poly($input$, solution)) < 1e-4)'}, {'input': [8, -2, -10, -5, 3, 1, -2, -6], 'output': 6.92455426332117e-10, 'relation': 'from $demo$ import poly\nimport math\nsolution = find_zero($input$)\nprint(math.fabs(poly($input$, solution)) < 1e-4)'}, {'input': [1, -7, -8, 2], 'output': 2.1342083655895294e-10, 'relation': 'from $demo$ import poly\nimport math\nsolution = find_zero($input$)\nprint(math.fabs(poly($input$, solution)) < 1e-4)'}, {'input': [1, 1], 'output': 0.0, 'relation': 'from $demo$ import poly\nimport math\nsolution = find_zero($input$)\nprint(math.fabs(poly($input$, solution)) < 1e-4)'}, {'input': [-9, 4, 7, -7, 2, -8], 'output': 1.1405965061328516e-09, 'relation': 'from $demo$ import poly\nimport math\nsolution = find_zero($input$)\nprint(math.fabs(poly($input$, solution)) < 1e-4)'}, {'input': [10, 9, 1, 8, -4, -8], 'output': 4.0877967677488414e-11, 'relation': 'from $demo$ import poly\nimport math\nsolution = find_zero($input$)\nprint(math.fabs(poly($input$, solution)) < 1e-4)'}, {'input': [-3, -1], 'output': 5.820766091346741e-11, 'relation': 'from $demo$ import poly\nimport math\nsolution = find_zero($input$)\nprint(math.fabs(poly($input$, solution)) < 1e-4)'}, {'input': [-3, -7], 'output': 5.820766091346741e-11, 'relation': 'from $demo$ import poly\nimport math\nsolution = find_zero($input$)\nprint(math.fabs(poly($input$, solution)) < 1e-4)'}, {'input': [-2, 4, 10, 1, -5, 1, 1, -4], 'output': 4.5996983999430086e-11, 'relation': 'from $demo$ import poly\nimport math\nsolution = find_zero($input$)\nprint(math.fabs(poly($input$, solution)) < 1e-4)'}, {'input': [10, -8, 9, 10, -5, 7], 'output': 4.412106235918145e-09, 'relation': 'from $demo$ import poly\nimport math\nsolution = find_zero($input$)\nprint(math.fabs(poly($input$, solution)) < 1e-4)'}, {'input': [-5, 4, 2, -2], 'output': 7.292131343206165e-10, 'relation': 'from $demo$ import poly\nimport math\nsolution = find_zero($input$)\nprint(math.fabs(poly($input$, solution)) < 1e-4)'}, {'input': [1, -9, -3, -9], 'output': 1.7145054993783493e-10, 'relation': 'from $demo$ import poly\nimport math\nsolution = find_zero($input$)\nprint(math.fabs(poly($input$, solution)) < 1e-4)'}, {'input': [2, -2, -8, -4, 8, 1], 'output': 3.6866111552402714e-10, 'relation': 'from $demo$ import poly\nimport math\nsolution = find_zero($input$)\nprint(math.fabs(poly($input$, solution)) < 1e-4)'}, {'input': [10, 5, 2, 10], 'output': 1.015466821741029e-09, 'relation': 'from $demo$ import poly\nimport math\nsolution = find_zero($input$)\nprint(math.fabs(poly($input$, solution)) < 1e-4)'}, {'input': [-6, -2, -6, -3, 7, 7, -2, 8], 'output': 2.469873194854699e-10, 'relation': 'from $demo$ import poly\nimport math\nsolution = find_zero($input$)\nprint(math.fabs(poly($input$, solution)) < 1e-4)'}, {'input': [8, 2, 1, -3, -6, 6, 5, -8], 'output': 4.654125973502232e-10, 'relation': 'from $demo$ import poly\nimport math\nsolution = find_zero($input$)\nprint(math.fabs(poly($input$, solution)) < 1e-4)'}, {'input': [-7, -6], 'output': 1.1641532182693481e-10, 'relation': 'from $demo$ import poly\nimport math\nsolution = find_zero($input$)\nprint(math.fabs(poly($input$, solution)) < 1e-4)'}, {'input': [3, 9, -8, 2], 'output': 4.748736473492166e-10, 'relation': 'from $demo$ import poly\nimport math\nsolution = find_zero($input$)\nprint(math.fabs(poly($input$, solution)) < 1e-4)'}, {'input': [9, 4, 6, -2, 7, -10, -7, 7], 'output': 1.0656506788109255e-09, 'relation': 'from $demo$ import poly\nimport math\nsolution = find_zero($input$)\nprint(math.fabs(poly($input$, solution)) < 1e-4)'}, {'input': [10, 1, -7, -1, 3, -5], 'output': 6.19443163429878e-10, 'relation': 'from $demo$ import poly\nimport math\nsolution = find_zero($input$)\nprint(math.fabs(poly($input$, solution)) < 1e-4)'}, {'input': [-10, -2, 6, -5, 6, -7, 10, -1], 'output': 1.039987151951749e-09, 'relation': 'from $demo$ import poly\nimport math\nsolution = find_zero($input$)\nprint(math.fabs(poly($input$, solution)) < 1e-4)'}, {'input': [-6, 1, -5, 7], 'output': 8.558842523598287e-10, 'relation': 'from $demo$ import poly\nimport math\nsolution = find_zero($input$)\nprint(math.fabs(poly($input$, solution)) < 1e-4)'}, {'input': [9, 1], 'output': 5.820766091346741e-11, 'relation': 'from $demo$ import poly\nimport math\nsolution = find_zero($input$)\nprint(math.fabs(poly($input$, solution)) < 1e-4)'}, {'input': [-10, -7, 1, -1, -3, -9, -3, 8], 'output': 9.059419880941277e-10, 'relation': 'from $demo$ import poly\nimport math\nsolution = find_zero($input$)\nprint(math.fabs(poly($input$, solution)) < 1e-4)'}, {'input': [-8, 5], 'output': 1.1641532182693481e-10, 'relation': 'from $demo$ import poly\nimport math\nsolution = find_zero($input$)\nprint(math.fabs(poly($input$, solution)) < 1e-4)'}, {'input': [7, -6], 'output': 2.3283064365386963e-10, 'relation': 'from $demo$ import poly\nimport math\nsolution = find_zero($input$)\nprint(math.fabs(poly($input$, solution)) < 1e-4)'}, {'input': [5, 7, -5, -2], 'output': 3.864730757641155e-10, 'relation': 'from $demo$ import poly\nimport math\nsolution = find_zero($input$)\nprint(math.fabs(poly($input$, solution)) < 1e-4)'}, {'input': [-4, 7, -4, -1, 2, 10, 1, 4], 'output': 1.152398176884617e-10, 'relation': 'from $demo$ import poly\nimport math\nsolution = find_zero($input$)\nprint(math.fabs(poly($input$, solution)) < 1e-4)'}, {'input': [-7, -3, -3, -8, 1, -10, 8, 7], 'output': 1.1465629556894896e-09, 'relation': 'from $demo$ import poly\nimport math\nsolution = find_zero($input$)\nprint(math.fabs(poly($input$, solution)) < 1e-4)'}, {'input': [8, -3, -10, -8], 'output': 8.052962741089686e-10, 'relation': 'from $demo$ import poly\nimport math\nsolution = find_zero($input$)\nprint(math.fabs(poly($input$, solution)) < 1e-4)'}, {'input': [-3, -8], 'output': 4.656612873077393e-10, 'relation': 'from $demo$ import poly\nimport math\nsolution = find_zero($input$)\nprint(math.fabs(poly($input$, solution)) < 1e-4)'}, {'input': [1, -8], 'output': 4.656612873077393e-10, 'relation': 'from $demo$ import poly\nimport math\nsolution = find_zero($input$)\nprint(math.fabs(poly($input$, solution)) < 1e-4)'}, {'input': [-2, 5, -4, 7], 'output': 2.8748137204104296e-10, 'relation': 'from $demo$ import poly\nimport math\nsolution = find_zero($input$)\nprint(math.fabs(poly($input$, solution)) < 1e-4)'}, {'input': [8, 8, 5, -3], 'output': 7.751452812954085e-10, 'relation': 'from $demo$ import poly\nimport math\nsolution = find_zero($input$)\nprint(math.fabs(poly($input$, solution)) < 1e-4)'}, {'input': [3, -4, -7, -7, 3, 1, 3, 3], 'output': 3.0882091502093534e-10, 'relation': 'from $demo$ import poly\nimport math\nsolution = find_zero($input$)\nprint(math.fabs(poly($input$, solution)) < 1e-4)'}, {'input': [-9, 10, 10, -7, -9, 2, 1, -7], 'output': 2.323840675444444e-09, 'relation': 'from $demo$ import poly\nimport math\nsolution = find_zero($input$)\nprint(math.fabs(poly($input$, solution)) < 1e-4)'}, {'input': [-4, -4, 7, 4], 'output': 0.0, 'relation': 'from $demo$ import poly\nimport math\nsolution = find_zero($input$)\nprint(math.fabs(poly($input$, solution)) < 1e-4)'}, {'input': [3, -5, -2, 4], 'output': 2.471778337564956e-11, 'relation': 'from $demo$ import poly\nimport math\nsolution = find_zero($input$)\nprint(math.fabs(poly($input$, solution)) < 1e-4)'}, {'input': [-8, 4, 7, -7], 'output': 5.787530454881562e-10, 'relation': 'from $demo$ import poly\nimport math\nsolution = find_zero($input$)\nprint(math.fabs(poly($input$, solution)) < 1e-4)'}, {'input': [10, 7], 'output': 5.820766091346741e-11, 'relation': 'from $demo$ import poly\nimport math\nsolution = find_zero($input$)\nprint(math.fabs(poly($input$, solution)) < 1e-4)'}, {'input': [-8, -3], 'output': 5.820766091346741e-11, 'relation': 'from $demo$ import poly\nimport math\nsolution = find_zero($input$)\nprint(math.fabs(poly($input$, solution)) < 1e-4)'}, {'input': [3, 5, 5, -4], 'output': 4.028066769024008e-11, 'relation': 'from $demo$ import poly\nimport math\nsolution = find_zero($input$)\nprint(math.fabs(poly($input$, solution)) < 1e-4)'}, {'input': [-9, -5, 2, -10, 2, -2, 4, -1], 'output': 1.2186199688235533e-09, 'relation': 'from $demo$ import poly\nimport math\nsolution = find_zero($input$)\nprint(math.fabs(poly($input$, solution)) < 1e-4)'}, {'input': [7, 5, -6, -4, -1, -4, -9, 8], 'output': 7.55201901014857e-10, 'relation': 'from $demo$ import poly\nimport math\nsolution = find_zero($input$)\nprint(math.fabs(poly($input$, solution)) < 1e-4)'}, {'input': [1, -9], 'output': 4.0745362639427185e-10, 'relation': 'from $demo$ import poly\nimport math\nsolution = find_zero($input$)\nprint(math.fabs(poly($input$, solution)) < 1e-4)'}, {'input': [8, 5], 'output': 1.7462298274040222e-10, 'relation': 'from $demo$ import poly\nimport math\nsolution = find_zero($input$)\nprint(math.fabs(poly($input$, solution)) < 1e-4)'}, {'input': [-9, 6, -8, -5], 'output': 7.17989223630866e-10, 'relation': 'from $demo$ import poly\nimport math\nsolution = find_zero($input$)\nprint(math.fabs(poly($input$, solution)) < 1e-4)'}, {'input': [9, -8], 'output': 4.656612873077393e-10, 'relation': 'from $demo$ import poly\nimport math\nsolution = find_zero($input$)\nprint(math.fabs(poly($input$, solution)) < 1e-4)'}, {'input': [2, -7, 8, -3], 'output': 1.2934986415302774e-11, 'relation': 'from $demo$ import poly\nimport math\nsolution = find_zero($input$)\nprint(math.fabs(poly($input$, solution)) < 1e-4)'}, {'input': [9, -8], 'output': 4.656612873077393e-10, 'relation': 'from $demo$ import poly\nimport math\nsolution = find_zero($input$)\nprint(math.fabs(poly($input$, solution)) < 1e-4)'}, {'input': [8, 8, 6, 1, -2, -4, 1, -3], 'output': 8.968825682131865e-11, 'relation': 'from $demo$ import poly\nimport math\nsolution = find_zero($input$)\nprint(math.fabs(poly($input$, solution)) < 1e-4)'}, {'input': [2, -6, 10, -1, 4, 1], 'output': 1.2246800906723365e-08, 'relation': 'from $demo$ import poly\nimport math\nsolution = find_zero($input$)\nprint(math.fabs(poly($input$, solution)) < 1e-4)'}, {'input': [-10, 4], 'output': 2.3283064365386963e-10, 'relation': 'from $demo$ import poly\nimport math\nsolution = find_zero($input$)\nprint(math.fabs(poly($input$, solution)) < 1e-4)'}, {'input': [-8, 7], 'output': 1.1641532182693481e-10, 'relation': 'from $demo$ import poly\nimport math\nsolution = find_zero($input$)\nprint(math.fabs(poly($input$, solution)) < 1e-4)'}, {'input': [6, -2, -6, 1], 'output': 4.1145209461745935e-10, 'relation': 'from $demo$ import poly\nimport math\nsolution = find_zero($input$)\nprint(math.fabs(poly($input$, solution)) < 1e-4)'}, {'input': [-3, 1], 'output': 5.820766091346741e-11, 'relation': 'from $demo$ import poly\nimport math\nsolution = find_zero($input$)\nprint(math.fabs(poly($input$, solution)) < 1e-4)'}, {'input': [-5, 4, 7, -1, 9, 10], 'output': 2.8451518918615193e-11, 'relation': 'from $demo$ import poly\nimport math\nsolution = find_zero($input$)\nprint(math.fabs(poly($input$, solution)) < 1e-4)'}, {'input': [7, -1], 'output': 5.820766091346741e-11, 'relation': 'from $demo$ import poly\nimport math\nsolution = find_zero($input$)\nprint(math.fabs(poly($input$, solution)) < 1e-4)'}, {'input': [-6, -2], 'output': 1.1641532182693481e-10, 'relation': 'from $demo$ import poly\nimport math\nsolution = find_zero($input$)\nprint(math.fabs(poly($input$, solution)) < 1e-4)'}, {'input': [-7, 7], 'output': 4.0745362639427185e-10, 'relation': 'from $demo$ import poly\nimport math\nsolution = find_zero($input$)\nprint(math.fabs(poly($input$, solution)) < 1e-4)'}, {'input': [-2, -1, 9, -4], 'output': 5.314582107729393e-12, 'relation': 'from $demo$ import poly\nimport math\nsolution = find_zero($input$)\nprint(math.fabs(poly($input$, solution)) < 1e-4)'}, {'input': [-4, 10, -2, 6, 5, -2], 'output': 5.341000801351026e-10, 'relation': 'from $demo$ import poly\nimport math\nsolution = find_zero($input$)\nprint(math.fabs(poly($input$, solution)) < 1e-4)'}, {'input': [-8, 10], 'output': 1.1641532182693481e-10, 'relation': 'from $demo$ import poly\nimport math\nsolution = find_zero($input$)\nprint(math.fabs(poly($input$, solution)) < 1e-4)'}, {'input': [-2, -9, -10, 1, -6, 10, -2, -5], 'output': 1.4370016288012266e-08, 'relation': 'from $demo$ import poly\nimport math\nsolution = find_zero($input$)\nprint(math.fabs(poly($input$, solution)) < 1e-4)'}, {'input': [7, 3, 7, -10, -7, -8, -6, 7], 'output': 1.0816925133383393e-09, 'relation': 'from $demo$ import poly\nimport math\nsolution = find_zero($input$)\nprint(math.fabs(poly($input$, solution)) < 1e-4)'}, {'input': [1, 8], 'output': 4.656612873077393e-10, 'relation': 'from $demo$ import poly\nimport math\nsolution = find_zero($input$)\nprint(math.fabs(poly($input$, solution)) < 1e-4)'}, {'input': [3, -6, -9, -1], 'output': 4.090063773776187e-10, 'relation': 'from $demo$ import poly\nimport math\nsolution = find_zero($input$)\nprint(math.fabs(poly($input$, solution)) < 1e-4)'}, {'input': [-9, 1, -4, -3, -7, 1], 'output': 6.964910426177084e-08, 'relation': 'from $demo$ import poly\nimport math\nsolution = find_zero($input$)\nprint(math.fabs(poly($input$, solution)) < 1e-4)'}, {'input': [9, -6, -3, -5, -5, 3, -10, -5], 'output': 1.3005894139439533e-09, 'relation': 'from $demo$ import poly\nimport math\nsolution = find_zero($input$)\nprint(math.fabs(poly($input$, solution)) < 1e-4)'}, {'input': [3, -3, -2, -5, -7, 2], 'output': 0.0, 'relation': 'from $demo$ import poly\nimport math\nsolution = find_zero($input$)\nprint(math.fabs(poly($input$, solution)) < 1e-4)'}, {'input': [5, -3], 'output': 1.1641532182693481e-10, 'relation': 'from $demo$ import poly\nimport math\nsolution = find_zero($input$)\nprint(math.fabs(poly($input$, solution)) < 1e-4)'}, {'input': [4, 1, -1, -3], 'output': 1.2522427539352066e-11, 'relation': 'from $demo$ import poly\nimport math\nsolution = find_zero($input$)\nprint(math.fabs(poly($input$, solution)) < 1e-4)'}, {'input': [-10, -4, 2, 1], 'output': 7.0775918459276e-10, 'relation': 'from $demo$ import poly\nimport math\nsolution = find_zero($input$)\nprint(math.fabs(poly($input$, solution)) < 1e-4)'}, {'input': [-8, -2, 1, 10, 6, 2], 'output': 1.0347153134304676e-09, 'relation': 'from $demo$ import poly\nimport math\nsolution = find_zero($input$)\nprint(math.fabs(poly($input$, solution)) < 1e-4)'}, {'input': [-10, -7, -2, -5, 8, -2], 'output': 4.458877711499554e-12, 'relation': 'from $demo$ import poly\nimport math\nsolution = find_zero($input$)\nprint(math.fabs(poly($input$, solution)) < 1e-4)'}, {'input': [-7, 9], 'output': 2.3283064365386963e-10, 'relation': 'from $demo$ import poly\nimport math\nsolution = find_zero($input$)\nprint(math.fabs(poly($input$, solution)) < 1e-4)'}, {'input': [1, 1, 3, 9, 6, -7, 2, 8], 'output': 6.708447131131834e-10, 'relation': 'from $demo$ import poly\nimport math\nsolution = find_zero($input$)\nprint(math.fabs(poly($input$, solution)) < 1e-4)'}, {'input': [-2, -9, 3, -10], 'output': 1.3271347909515896e-10, 'relation': 'from $demo$ import poly\nimport math\nsolution = find_zero($input$)\nprint(math.fabs(poly($input$, solution)) < 1e-4)'}, {'input': [1, 3, -8, 1], 'output': 9.151792171313566e-11, 'relation': 'from $demo$ import poly\nimport math\nsolution = find_zero($input$)\nprint(math.fabs(poly($input$, solution)) < 1e-4)'}, {'input': [-7, -1, 6, -1, 3, 1], 'output': 9.165997960636219e-10, 'relation': 'from $demo$ import poly\nimport math\nsolution = find_zero($input$)\nprint(math.fabs(poly($input$, solution)) < 1e-4)'}, {'input': [-1, 7, -6, -4, 3, 2, -5, 9], 'output': 1.2270528522298832e-10, 'relation': 'from $demo$ import poly\nimport math\nsolution = find_zero($input$)\nprint(math.fabs(poly($input$, solution)) < 1e-4)'}, {'input': [2, 7, -10, -1, -1, -4], 'output': 8.104050763790838e-11, 'relation': 'from $demo$ import poly\nimport math\nsolution = find_zero($input$)\nprint(math.fabs(poly($input$, solution)) < 1e-4)'}, {'input': [8, 9, 10, 1, 4, 4, 4, -4], 'output': 2.9445686777762603e-08, 'relation': 'from $demo$ import poly\nimport math\nsolution = find_zero($input$)\nprint(math.fabs(poly($input$, solution)) < 1e-4)'}, {'input': [-5, -8, -1, 6, 10, 9, 1, -8], 'output': 2.796114451086851e-10, 'relation': 'from $demo$ import poly\nimport math\nsolution = find_zero($input$)\nprint(math.fabs(poly($input$, solution)) < 1e-4)'}, {'input': [-1, -3, -4, -6], 'output': 8.562428543967826e-11, 'relation': 'from $demo$ import poly\nimport math\nsolution = find_zero($input$)\nprint(math.fabs(poly($input$, solution)) < 1e-4)'}, {'input': [-9, -3], 'output': 1.7462298274040222e-10, 'relation': 'from $demo$ import poly\nimport math\nsolution = find_zero($input$)\nprint(math.fabs(poly($input$, solution)) < 1e-4)'}, {'input': [9, -8, 4, 3, 10, 8, -4, 2], 'output': 4.614358672938579e-09, 'relation': 'from $demo$ import poly\nimport math\nsolution = find_zero($input$)\nprint(math.fabs(poly($input$, solution)) < 1e-4)'}, {'input': [2, -3, -6, 10, -10, -7, 3, -3], 'output': 2.5733340805467186e-10, 'relation': 'from $demo$ import poly\nimport math\nsolution = find_zero($input$)\nprint(math.fabs(poly($input$, solution)) < 1e-4)'}, {'input': [6, 4, -9, 7], 'output': 4.689382215872229e-10, 'relation': 'from $demo$ import poly\nimport math\nsolution = find_zero($input$)\nprint(math.fabs(poly($input$, solution)) < 1e-4)'}, {'input': [-7, 4, -6, 4], 'output': 9.2210683533267e-12, 'relation': 'from $demo$ import poly\nimport math\nsolution = find_zero($input$)\nprint(math.fabs(poly($input$, solution)) < 1e-4)'}, {'input': [4, 9, 6, 3, 7, 4], 'output': 2.5149304860860866e-10, 'relation': 'from $demo$ import poly\nimport math\nsolution = find_zero($input$)\nprint(math.fabs(poly($input$, solution)) < 1e-4)'}, {'input': [5, 4, -2, -3], 'output': 1.9339907453286287e-10, 'relation': 'from $demo$ import poly\nimport math\nsolution = find_zero($input$)\nprint(math.fabs(poly($input$, solution)) < 1e-4)'}, {'input': [6, 5, 10, -3, -2, 4], 'output': 1.9849579757647007e-09, 'relation': 'from $demo$ import poly\nimport math\nsolution = find_zero($input$)\nprint(math.fabs(poly($input$, solution)) < 1e-4)'}, {'input': [-1, -3], 'output': 1.1641532182693481e-10, 'relation': 'from $demo$ import poly\nimport math\nsolution = find_zero($input$)\nprint(math.fabs(poly($input$, solution)) < 1e-4)'}, {'input': [1, 1, 7, -8, -6, -6], 'output': 4.970059919173764e-10, 'relation': 'from $demo$ import poly\nimport math\nsolution = find_zero($input$)\nprint(math.fabs(poly($input$, solution)) < 1e-4)'}]" sort_third,HumanEval/33," def sort_third(l: list): """"""This function takes a list l and returns a list l' such that l' is identical to l in the indicies that are not divisible by three, while its values at the indicies that are divisible by three are equal to the values of the corresponding indicies of l, but sorted. >>> sort_third([1, 2, 3]) [1, 2, 3] >>> sort_third([5, 6, 3, 4, 8, 9, 2]) [2, 6, 3, 4, 8, 9, 5] """""" "," def candidate(l: list): """"""This function takes a list l and returns a list l' such that l' is identical to l in the indicies that are not divisible by three, while its values at the indicies that are divisible by three are equal to the values of the corresponding indicies of l, but sorted descendingly or ascendingly. >>> candidate([1, 2, 3]) [1, 2, 3] >>> candidate([5, 6, 3, 4, 8, 9, 2]) [2, 6, 3, 4, 8, 9, 5] """""" "," def sort_third(l: list): """"""This function takes a list l and returns a list l' such that l' is identical to l in the indicies that are not divisible by three, while its values at the indicies that are divisible by three are equal to the values of the corresponding indicies of l, but sorted. >>> sort_third([1, 2, 3]) [3, 2, 1] >>> sort_third([5, 6, 3, 4, 8, 9, 2]) [9, 8, 6, 5, 4, 3, 2] """""" "," def candidate(l: list): """"""This function takes a list l and returns a list l' such that l' is identical to l in the indicies that are not divisible by three, while its values at the indicies that are divisible by three are equal to the values of the corresponding indicies of l. """""" "," def candidate(l: list): """"""This function takes a list l and returns a list l' such that l' is identical to l in the indicies that are not divisible by three, while its values at the indicies that are divisible by three are equal to the values of the corresponding indicies of l, but sorted descendingly or ascendingly. >>> candidate([1, 2, 3]) [3, 2, 1] >>> candidate([5, 6, 3, 4, 8, 9, 2]) [9, 8, 6, 5, 4, 3, 2] """""" ",,,," def sort_third(l: list): """"""This function takes a list l and returns a list l' such that l' is identical to l in the indicies that are not divisible by three, while its values at the indicies that are divisible by three are equal to the values of the corresponding indicies of l, but sorted. >>> sort_third([1, 2, 3]) [1, 2, 3] >>> sort_third([5, 6, 3, 4, 8, 9, 2]) [2, 6, 3, 4, 8, 9, 5] """""" l = list(l) l[::3] = sorted(l[::3]) return l ","[{'input': '[5, 6, 3, 4, 8, 9, 2]', 'output': '[2, 6, 3, 4, 8, 9, 5]', 'relation': '=='}, {'input': '[5, 8, 3, 4, 6, 9, 2]', 'output': '[2, 8, 3, 4, 6, 9, 5]', 'relation': '=='}, {'input': '[5, 6, 9, 4, 8, 3, 2]', 'output': '[2, 6, 9, 4, 8, 3, 5]', 'relation': '=='}, {'input': '[5, 6, 3, 4, 8, 9, 2, 1]', 'output': '[2, 6, 3, 4, 8, 9, 5, 1]', 'relation': '=='}]" unique,HumanEval/34," def unique(l: list): """"""Return sorted unique elements in a list >>> unique([5, 3, 5, 2, 3, 3, 9, 0, 123]) [0, 2, 3, 5, 9, 123] """""" "," def candidate(l: list): """"""Return descending or ascending sorted unique elements in a list >>> candidate([5, 3, 5, 2, 3, 3, 9, 0, 123]) [0, 2, 3, 5, 9, 123] """""" "," def unique(l: list): """"""Return sorted unique elements in a list >>> unique([5, 3, 5, 2, 3, 3, 9, 0, 123]) [3, 5, 9, 123] """""" "," def candidate(l: list): """"""Return elements in a list """""" "," def candidate(l: list): """"""Return descending or ascending sorted unique elements in a list >>> candidate([5, 3, 5, 2, 3, 3, 9, 0, 123]) [3, 5, 9, 123] """""" ",,,," def unique(l: list): """"""Return sorted unique elements in a list >>> unique([5, 3, 5, 2, 3, 3, 9, 0, 123]) [0, 2, 3, 5, 9, 123] """""" return sorted(list(set(l))) ","[{'input': '[5, 3, 5, 2, 3, 3, 9, 0, 123]', 'output': '[0, 2, 3, 5, 9, 123]', 'relation': '=='}]" max_element,HumanEval/35," def max_element(l: list): """"""Return maximum element in the list. >>> max_element([1, 2, 3]) 3 >>> max_element([5, 3, -5, 2, -3, 3, 9, 0, 123, 1, -10]) 123 """""" "," def candidate(l: list): """"""Return a certain element in the list. >>> candidate([1, 2, 3]) 3 >>> candidate([5, 3, -5, 2, -3, 3, 9, 0, 123, 1, -10]) 123 """""" "," def max_element(l: list): """"""Return maximum element in the list. >>> max_element([1, 2, 3]) 1 >>> max_element([5, 3, -5, 2, -3, 3, 9, 0, 123, 1, -10]) -10 """""" "," def candidate(l: list): """"""Return element in the list. """""" "," def candidate(l: list): """"""Return a certain element in the list. >>> candidate([1, 2, 3]) 1 >>> candidate([5, 3, -5, 2, -3, 3, 9, 0, 123, 1, -10]) -10 """""" ",,,," def max_element(l: list): """"""Return maximum element in the list. >>> max_element([1, 2, 3]) 3 >>> max_element([5, 3, -5, 2, -3, 3, 9, 0, 123, 1, -10]) 123 """""" m = l[0] for e in l: if e > m: m = e return m ","[{'input': '[1, 2, 3]', 'output': '3', 'relation': '=='}, {'input': '[5, 3, -5, 2, -3, 3, 9, 0, 124, 1, -10]', 'output': '124', 'relation': '=='}]" fizz_buzz,HumanEval/36," def fizz_buzz(n: int): """"""Return the number of times the digit 7 appears in integers less than n which are divisible by 11 or 13. >>> fizz_buzz(50) 0 >>> fizz_buzz(78) 2 >>> fizz_buzz(79) 3 """""" "," def candidate(n: int): """"""Return the number of times the digit 7 appears in integers less than k or n*n or n which are divisible by 11 or 13. >>> candidate(50) 0 >>> candidate(78) 2 >>> candidate(79) 3 """""" "," def fizz_buzz(n: int): """"""Return the number of times the digit 7 appears in integers less than n which are divisible by 11 or 13. >>> fizz_buzz(50) 2 >>> fizz_buzz(78) 4 >>> fizz_buzz(79) 4 """""" "," def fizz_buzz(n: int): """"""Return the number of times the digit 7 appears in integers less than n which are divisible. """""" "," def candidate(n: int): """"""Return the number of times the digit 7 appears in integers less than k or n*n or n which are divisible by 11 or 13. >>> candidate(50) 2 >>> candidate(78) 4 >>> candidate(79) 4 """""" ",,,," def fizz_buzz(n: int): """"""Return the number of times the digit 7 appears in integers less than n which are divisible by 11 or 13. >>> fizz_buzz(50) 0 >>> fizz_buzz(78) 2 >>> fizz_buzz(79) 3 """""" ns = [] for i in range(n): if i % 11 == 0 or i % 13 == 0: ns.append(i) s = ''.join(list(map(str, ns))) ans = 0 for c in s: ans += (c == '7') return ans ","[{'input': '50', 'output': '0', 'relation': '=='}, {'input': '78', 'output': '2', 'relation': '=='}, {'input': '79', 'output': '3', 'relation': '=='}, {'input': '100', 'output': '3', 'relation': '=='}, {'input': '200', 'output': '6', 'relation': '=='}, {'input': '4000', 'output': '192', 'relation': '=='}, {'input': '10000', 'output': '639', 'relation': '=='}, {'input': '100000', 'output': '8026', 'relation': '=='}]" sort_even,HumanEval/37," def sort_even(l: list): """"""This function takes a list l and returns a list l' such that l' is identical to l in the odd indicies, while its values at the even indicies are equal to the values of the even indicies of l, but sorted. >>> sort_even([1, 2, 3]) [1, 2, 3] >>> sort_even([5, 6, 3, 4]) [3, 6, 5, 4] """""" "," def candidate(l: list): """"""This function takes a list l and returns a list l' such that l' is identical to l in the odd indicies, while its values at the even indicies are equal to the values of the even indicies of l, but sorted descendingly or ascendingly. >>> candidate([1, 2, 3]) [1, 2, 3] >>> candidate([5, 6, 3, 4]) [3, 6, 5, 4] """""" "," def sort_even(l: list): """"""This function takes a list l and returns a list l' such that l' is identical to l in the odd indicies, while its values at the even indicies are equal to the values of the even indicies of l, but sorted. >>> sort_even([1, 2, 3]) [3, 2, 1] >>> sort_even([5, 6, 3, 4]) [6, 5, 4, 3] """""" "," def candidate(l: list): """"""This function takes a list l and returns a list l' such that l' is identical to l in the odd indicies, while its values at the even indicies are equal to the values of the even indicies of l. """""" "," def candidate(l: list): """"""This function takes a list l and returns a list l' such that l' is identical to l in the odd indicies, while its values at the even indicies are equal to the values of the even indicies of l, but sorted descendingly or ascendingly. >>> candidate([1, 2, 3]) [3, 2, 1] >>> candidate([5, 6, 3, 4]) [6, 5, 4, 3] """""" ",,,," def sort_even(l: list): """"""This function takes a list l and returns a list l' such that l' is identical to l in the odd indicies, while its values at the even indicies are equal to the values of the even indicies of l, but sorted. >>> sort_even([1, 2, 3]) [1, 2, 3] >>> sort_even([5, 6, 3, 4]) [3, 6, 5, 4] """""" evens = l[::2] odds = l[1::2] evens.sort() ans = [] for e, o in zip(evens, odds): ans.extend([e, o]) if len(evens) > len(odds): ans.append(evens[-1]) return ans ","[{'input': '[1, 2, 3]', 'output': '[1, 2, 3]', 'relation': '=='}, {'input': '[5, 3, -5, 2, -3, 3, 9, 0, 123, 1, -10]', 'output': '[-10, 3, -5, 2, -3, 3, 5, 0, 9, 1, 123]', 'relation': '=='}, {'input': '[5, 8, -12, 4, 23, 2, 3, 11, 12, -10]', 'output': '[-12, 8, 3, 4, 5, 2, 12, 11, 23, -10]', 'relation': '=='}]" decode_cyclic,HumanEval/38," def encode_cyclic(s: str): """""" returns encoded string by cycling groups of three characters. """""" # split string to groups. Each of length 3. groups = [s[(3 * i):min((3 * i + 3), len(s))] for i in range((len(s) + 2) // 3)] # cycle elements in each group. Unless group has fewer elements than 3. groups = [(group[1:] + group[0]) if len(group) == 3 else group for group in groups] return """".join(groups) def decode_cyclic(s: str): """""" takes as input string encoded with encode_cyclic function. Returns decoded string. """""" "," def encode_cyclic(s: str): """""" returns encoded string by cycling groups of three characters. """""" # split string to groups. Each of length 3. groups = [s[(3 * i):min((3 * i + 3), len(s))] for i in range((len(s) + 2) // 3)] # cycle elements in each group. Unless group has fewer elements than 3. groups = [(group[1:] + group[0]) if len(group) == 3 else group for group in groups] return """".join(groups) def candidate(s: str): """""" takes as input string encoded with encode_cyclic function. Returns encoded or decoded string. """""" "," def encode_cyclic(s: str): """""" returns encoded string by cycling groups of three characters. """""" # split string to groups. Each of length 3. groups = [s[(3 * i):min((3 * i + 3), len(s))] for i in range((len(s) + 2) // 3)] # cycle elements in each group. Unless group has fewer elements than 3. groups = [(group[1:] + group[0]) if len(group) == 3 else group for group in groups] return """".join(groups) def decode_cyclic(s: str): """""" takes as input string decoded with encode_cyclic function. Returns encoded string. """""" "," def encode_cyclic(s: str): """""" returns encoded string by cycling groups of three characters. """""" # split string to groups. Each of length 3. groups = [s[(3 * i):min((3 * i + 3), len(s))] for i in range((len(s) + 2) // 3)] # cycle elements in each group. Unless group has fewer elements than 3. groups = [(group[1:] + group[0]) if len(group) == 3 else group for group in groups] return """".join(groups) def candidate(s: str): """""" takes as input string encoded with encode_cyclic function. """""" "," def encode_cyclic(s: str): """""" returns encoded string by cycling groups of three characters. """""" # split string to groups. Each of length 3. groups = [s[(3 * i):min((3 * i + 3), len(s))] for i in range((len(s) + 2) // 3)] # cycle elements in each group. Unless group has fewer elements than 3. groups = [(group[1:] + group[0]) if len(group) == 3 else group for group in groups] return """".join(groups) def candidate(s: str): """""" takes as input string decoded with encode_cyclic function. Returns encoded or decoded string. """""" ",,,," def encode_cyclic(s: str): """""" returns encoded string by cycling groups of three characters. """""" # split string to groups. Each of length 3. groups = [s[(3 * i):min((3 * i + 3), len(s))] for i in range((len(s) + 2) // 3)] # cycle elements in each group. Unless group has fewer elements than 3. groups = [(group[1:] + group[0]) if len(group) == 3 else group for group in groups] return """".join(groups) def decode_cyclic(s: str): """""" takes as input string encoded with encode_cyclic function. Returns decoded string. """""" return encode_cyclic(encode_cyclic(s)) ","[{'input': ""'axdhhixdexrvsncacbgh'"", 'output': 'daxihhexdvxrcsnbacgh', 'relation': '=='}, {'input': ""'artwugrnwoshzaizfy'"", 'output': 'targwuwrnhosizayzf', 'relation': '=='}, {'input': ""'iekykgcmdlldiztb'"", 'output': 'kiegykdcmdlltizb', 'relation': '=='}, {'input': ""'dmrrjctlugwsbvchy'"", 'output': 'rdmcrjutlsgwcbvhy', 'relation': '=='}, {'input': ""'hdciomlfulglvi'"", 'output': 'chdmioulfllgvi', 'relation': '=='}, {'input': ""'ctufruhfxmiowruvkhyy'"", 'output': 'uctufrxhfomiuwrhvkyy', 'relation': '=='}, {'input': ""'bzhmikgscw'"", 'output': 'hbzkmicgsw', 'relation': '=='}, {'input': ""'upguomieexrhixr'"", 'output': 'gupmuoeiehxrrix', 'relation': '=='}, {'input': ""'smnhelpcqbdyufevnzt'"", 'output': 'nsmlheqpcybdeufzvnt', 'relation': '=='}, {'input': ""'mtmqioavrxd'"", 'output': 'mmtoqiravxd', 'relation': '=='}, {'input': ""'yirukyjndoafxixyfqqd'"", 'output': 'ryiyukdjnfoaxxiqyfqd', 'relation': '=='}, {'input': ""'uqjgetyflyqrtkaadplz'"", 'output': 'juqtgelyfryqatkpadlz', 'relation': '=='}, {'input': ""'bhhccspcxryyee'"", 'output': 'hbhsccxpcyryee', 'relation': '=='}, {'input': ""'rfpqtigrnxwywjgvumlo'"", 'output': 'prfiqtngryxwgwjmvulo', 'relation': '=='}, {'input': ""'dhockhsrashhcwabhu'"", 'output': 'odhhckasrhshacwubh', 'relation': '=='}, {'input': ""'kcbhiqpgvre'"", 'output': 'bkcqhivpgre', 'relation': '=='}, {'input': ""'phspzzgdnvndnnlxbov'"", 'output': 'sphzpzngddvnlnnoxbv', 'relation': '=='}, {'input': ""'dbuxkmdhzgrgenoiofhc'"", 'output': 'udbmxkzdhggroenfiohc', 'relation': '=='}, {'input': ""'rdzurbcyafnhpgpmb'"", 'output': 'zrdburacyhfnppgmb', 'relation': '=='}, {'input': ""'ammzzijnoxzw'"", 'output': 'mamizzojnwxz', 'relation': '=='}, {'input': ""'wpvgjebsgrbxkbxspb'"", 'output': 'vwpegjgbsxrbxkbbsp', 'relation': '=='}, {'input': ""'fbqcfqtcchmvshdtbs'"", 'output': 'qfbqcfctcvhmdshstb', 'relation': '=='}, {'input': ""'nvcsqsigkwkvimhvuej'"", 'output': 'cnvssqkigvwkhimevuj', 'relation': '=='}, {'input': ""'yckotadcsgqrelich'"", 'output': 'kycaotsdcrgqielch', 'relation': '=='}, {'input': ""'fojwjrzutavqjvr'"", 'output': 'jforwjtzuqavrjv', 'relation': '=='}, {'input': ""'idexrdijetg'"", 'output': 'eiddxreijtg', 'relation': '=='}, {'input': ""'vugqpibciniuakb'"", 'output': 'gvuiqpibcunibak', 'relation': '=='}, {'input': ""'ifuorxnrwdca'"", 'output': 'uifxorwnradc', 'relation': '=='}, {'input': ""'blrresebnlzj'"", 'output': 'rblsrenebjlz', 'relation': '=='}, {'input': ""'gvlvdhyrln'"", 'output': 'lgvhvdlyrn', 'relation': '=='}, {'input': ""'ehxzzfnafxkfnzzxzvh'"", 'output': 'xehfzzfnafxkznzvxzh', 'relation': '=='}, {'input': ""'zwfmbdhgpljozh'"", 'output': 'fzwdmbphgoljzh', 'relation': '=='}, {'input': ""'vgakimyicuqlm'"", 'output': 'avgmkicyiluqm', 'relation': '=='}, {'input': ""'karifdibstndxzlntkqd'"", 'output': 'rkadifsibdtnlxzkntqd', 'relation': '=='}, {'input': ""'giswnbqzavxrxvxg'"", 'output': 'sgibwnaqzrvxxxvg', 'relation': '=='}, {'input': ""'cvntkkdxvqjjnkv'"", 'output': 'ncvktkvdxjqjvnk', 'relation': '=='}, {'input': ""'jrwgnemvvftxjmsr'"", 'output': 'wjregnvmvxftsjmr', 'relation': '=='}, {'input': ""'jgjzsnukto'"", 'output': 'jjgnzstuko', 'relation': '=='}, {'input': ""'vgopzqxfzcjvvuqtk'"", 'output': 'ovgqpzzxfvcjqvutk', 'relation': '=='}, {'input': ""'hvyhzjeagbh'"", 'output': 'yhvjhzgeabh', 'relation': '=='}, {'input': ""'yctnuogwsmpwhemuw'"", 'output': 'tyconusgwwmpmheuw', 'relation': '=='}, {'input': ""'ydynhyzwfq'"", 'output': 'yydynhfzwq', 'relation': '=='}, {'input': ""'rhboedovzrtqyoktx'"", 'output': 'brhdoezovqrtkyotx', 'relation': '=='}, {'input': ""'ronxpfiyouihyqyuhp'"", 'output': 'nrofxpoiyhuiyyqpuh', 'relation': '=='}, {'input': ""'cwohijkrkeechm'"", 'output': 'ocwjhikkrceehm', 'relation': '=='}, {'input': ""'gcwnknonrgnb'"", 'output': 'wgcnnkronbgn', 'relation': '=='}, {'input': ""'swyysapamjylnrmx'"", 'output': 'yswaysmpaljymnrx', 'relation': '=='}, {'input': ""'thzhippankvmzmvfox'"", 'output': 'zthphinpamkvvzmxfo', 'relation': '=='}, {'input': ""'ratssmacvneu'"", 'output': 'tramssvacune', 'relation': '=='}, {'input': ""'bifkgmkkomiyniycp'"", 'output': 'fbimkgokkymiynicp', 'relation': '=='}, {'input': ""'rbxhulyucb'"", 'output': 'xrblhucyub', 'relation': '=='}, {'input': ""'gahehtpved'"", 'output': 'hgatehepvd', 'relation': '=='}, {'input': ""'owgylittfwdxfjysadj'"", 'output': 'gowiylfttxwdyfjdsaj', 'relation': '=='}, {'input': ""'mmvgcwwusdwhjvyzdtz'"", 'output': 'vmmwgcswuhdwyjvtzdz', 'relation': '=='}, {'input': ""'blznvrcqlkaupdnluno'"", 'output': 'zblrnvlcqukanpdnluo', 'relation': '=='}, {'input': ""'fxnuiqzrtpoy'"", 'output': 'nfxquitzrypo', 'relation': '=='}, {'input': ""'sixhckohiosyvmtk'"", 'output': 'xsikhciohyostvmk', 'relation': '=='}, {'input': ""'kfpglpikzi'"", 'output': 'pkfpglziki', 'relation': '=='}, {'input': ""'irwqgahxcprnhwyuwpp'"", 'output': 'wiraqgchxnpryhwpuwp', 'relation': '=='}, {'input': ""'aczhmjhjwslvrqpln'"", 'output': 'zacjhmwhjvslprqln', 'relation': '=='}, {'input': ""'lwkijohdigkxxrdwfy'"", 'output': 'klwoijihdxgkdxrywf', 'relation': '=='}, {'input': ""'xpgxsiqtydgjj'"", 'output': 'gxpixsyqtjdgj', 'relation': '=='}, {'input': ""'fjlwraiberjbw'"", 'output': 'lfjawreibbrjw', 'relation': '=='}, {'input': ""'ypuasdppjkfo'"", 'output': 'uypdasjppokf', 'relation': '=='}, {'input': ""'pdimpcsucv'"", 'output': 'ipdcmpcsuv', 'relation': '=='}, {'input': ""'ezejcsdrhy'"", 'output': 'eezsjchdry', 'relation': '=='}, {'input': ""'tzthytmoqjsojsnt'"", 'output': 'ttzthyqmoojsnjst', 'relation': '=='}, {'input': ""'xdtguyivgc'"", 'output': 'txdygugivc', 'relation': '=='}, {'input': ""'frhfacownpjt'"", 'output': 'hfrcfanowtpj', 'relation': '=='}, {'input': ""'jwhwojvhci'"", 'output': 'hjwjwocvhi', 'relation': '=='}, {'input': ""'vzsndghurieebfcjtzxs'"", 'output': 'svzgndrhueiecbfzjtxs', 'relation': '=='}, {'input': ""'doojwwiqmporct'"", 'output': 'odowjwmiqrpoct', 'relation': '=='}, {'input': ""'xkniathvcs'"", 'output': 'nxktiachvs', 'relation': '=='}, {'input': ""'yvasbiyfyqupifonusp'"", 'output': 'ayvisbyyfpquoifsnup', 'relation': '=='}, {'input': ""'lnpkvkfkdnw'"", 'output': 'plnkkvdfknw', 'relation': '=='}, {'input': ""'vmjrbyckokdimqyav'"", 'output': 'jvmyrbockikdymqav', 'relation': '=='}, {'input': ""'nboqlgyptoyugibejr'"", 'output': 'onbgqltypuoybgirej', 'relation': '=='}, {'input': ""'pdwutahwzjrfrnach'"", 'output': 'wpdautzhwfjrarnch', 'relation': '=='}, {'input': ""'duopweqwjin'"", 'output': 'oduepwjqwin', 'relation': '=='}, {'input': ""'hopemrtqgecxyzink'"", 'output': 'phoremgtqxeciyznk', 'relation': '=='}, {'input': ""'ajijsxvpsorelkpyrr'"", 'output': 'iajxjssvpeorplkryr', 'relation': '=='}, {'input': ""'kgohswhymbknpwxz'"", 'output': 'okgwhsmhynbkxpwz', 'relation': '=='}, {'input': ""'vzmepueqbkdsdqoo'"", 'output': 'mvzuepbeqskdodqo', 'relation': '=='}, {'input': ""'enxecuzipk'"", 'output': 'xenuecpzik', 'relation': '=='}, {'input': ""'muwkvcmkrwyurbpchtu'"", 'output': 'wmuckvrmkuwyprbtchu', 'relation': '=='}, {'input': ""'hxjndcuwyofdjawkzbbj'"", 'output': 'jhxcndyuwdofwjabkzbj', 'relation': '=='}, {'input': ""'nelqnhvzsffftmc'"", 'output': 'lnehqnsvzfffctm', 'relation': '=='}, {'input': ""'hpvehsuioivozoavrjf'"", 'output': 'vhpsehouioivazojvrf', 'relation': '=='}, {'input': ""'lsounjiowjg'"", 'output': 'olsjunwiojg', 'relation': '=='}, {'input': ""'dhpslmjwsavjiams'"", 'output': 'pdhmslsjwjavmias', 'relation': '=='}, {'input': ""'xbyxptyzjtzhhultigvy'"", 'output': 'yxbtxpjyzhtzlhugtivy', 'relation': '=='}, {'input': ""'euvuudjzbbsoxeljkcxn'"", 'output': 'veuduubjzobslxecjkxn', 'relation': '=='}, {'input': ""'ezglqrifqpzi'"", 'output': 'gezrlqqifipz', 'relation': '=='}, {'input': ""'kzxocdyhexvvmz'"", 'output': 'xkzdoceyhvxvmz', 'relation': '=='}, {'input': ""'czlaimdorvxlisvulm'"", 'output': 'lczmairdolvxvismul', 'relation': '=='}, {'input': ""'hpvtrathkuc'"", 'output': 'vhpatrkthuc', 'relation': '=='}, {'input': ""'wjondubbepdjhrdmoelv'"", 'output': 'owjundebbjpddhremolv', 'relation': '=='}, {'input': ""'sxnenxdpunitwlboog'"", 'output': 'nsxxenudptnibwlgoo', 'relation': '=='}, {'input': ""'dvlrulbmlgdio'"", 'output': 'ldvlrulbmigdo', 'relation': '=='}, {'input': ""'guvtauzkbhe'"", 'output': 'vguutabzkhe', 'relation': '=='}]" prime_fib,HumanEval/39," def prime_fib(n: int): """""" prime_fib returns n-th number that is a Fibonacci number and it's also prime. >>> prime_fib(1) 2 >>> prime_fib(2) 3 >>> prime_fib(3) 5 >>> prime_fib(4) 13 >>> prime_fib(5) 89 """""" "," def candidate(n: int): """""" candidate returns n-th number that is a Fibonacci number and it's also prime or composite. >>> candidate(1) 2 >>> candidate(2) 3 >>> candidate(3) 5 >>> candidate(4) 13 >>> candidate(5) 89 """""" "," def prime_fib(n: int): """""" prime_fib returns n-th number that is a Fibonacci number and it's also prime. >>> prime_fib(1) 20 >>> prime_fib(2) 30 >>> prime_fib(3) 50 >>> prime_fib(4) 130 >>> prime_fib(5) 890 """""" "," def candidate(n: int): """""" candidate returns n-th number that is a Fibonacci number. """""" "," def candidate(n: int): """""" candidate returns n-th number that is a Fibonacci number and it's also prime or composite. >>> candidate(1) 20 >>> candidate(2) 30 >>> candidate(3) 50 >>> candidate(4) 130 >>> candidate(5) 890 """""" ",,,," def prime_fib(n: int): """""" prime_fib returns n-th number that is a Fibonacci number and it's also prime. >>> prime_fib(1) 2 >>> prime_fib(2) 3 >>> prime_fib(3) 5 >>> prime_fib(4) 13 >>> prime_fib(5) 89 """""" import math def is_prime(p): if p < 2: return False for k in range(2, min(int(math.sqrt(p)) + 1, p - 1)): if p % k == 0: return False return True f = [0, 1] while True: f.append(f[-1] + f[-2]) if is_prime(f[-1]): n -= 1 if n == 0: return f[-1] ","[{'input': '1', 'output': '2', 'relation': '=='}, {'input': '2', 'output': '3', 'relation': '=='}, {'input': '3', 'output': '5', 'relation': '=='}, {'input': '4', 'output': '13', 'relation': '=='}, {'input': '5', 'output': '89', 'relation': '=='}, {'input': '6', 'output': '233', 'relation': '=='}, {'input': '7', 'output': '1597', 'relation': '=='}, {'input': '8', 'output': '28657', 'relation': '=='}, {'input': '9', 'output': '514229', 'relation': '=='}, {'input': '10', 'output': '433494437', 'relation': '=='}]" triples_sum_to_zero,HumanEval/40," def triples_sum_to_zero(l: list): """""" triples_sum_to_zero takes a list of integers as an input. it returns True if there are three distinct elements in the list that sum to zero, and False otherwise. >>> triples_sum_to_zero([1, 3, 5, 0]) False >>> triples_sum_to_zero([1, 3, -2, 1]) True >>> triples_sum_to_zero([1, 2, 3, 7]) False >>> triples_sum_to_zero([2, 4, -5, 3, 9, 7]) True >>> triples_sum_to_zero([1]) False """""" "," def candidate(l: list): """""" candidate takes a list of integers as an input. it returns True if there are three elements in a list that sum to zero and meet a certain condition (such as they are distinct, they are odd, they are prime, or another condition), and False otherwise. >>> candidate([1, 3, 5, 0]) False >>> candidate([1, 3, -2, 1]) True >>> candidate([1, 2, 3, 7]) False >>> candidate([2, 4, -5, 3, 9, 7]) True >>> candidate([1]) False """""" "," def triples_sum_to_zero(l: list): """""" triples_sum_to_zero takes a list of integers as an input. it returns True if there are three distinct elements in the list that sum to zero, and False otherwise. >>> triples_sum_to_zero([1, 3, 5, 0]) False >>> triples_sum_to_zero([1, 3, -2, 1]) False >>> triples_sum_to_zero([1, 2, 3, 7]) True >>> triples_sum_to_zero([2, 4, -5, 3, 9, 7]) False >>> triples_sum_to_zero([1]) True """""" "," def candidate(l: list): """""" candidate takes a list of integers as an input. it returns True if there are three distinct elements in the list, and False otherwise. """""" "," def candidate(l: list): """""" candidate takes a list of integers as an input. it returns True if there are three elements in a list that sum to zero and meet a certain condition (such as they are distinct, they are odd, they are prime, or another condition), and False otherwise. >>> candidate([1, 3, 5, 0]) True >>> candidate([1, 3, -2, 1]) False >>> candidate([1, 2, 3, 7]) True >>> candidate([2, 4, -5, 3, 9, 7]) False >>> candidate([1]) True """""" ",,,," def triples_sum_to_zero(l: list): """""" triples_sum_to_zero takes a list of integers as an input. it returns True if there are three distinct elements in the list that sum to zero, and False otherwise. >>> triples_sum_to_zero([1, 3, 5, 0]) False >>> triples_sum_to_zero([1, 3, -2, 1]) True >>> triples_sum_to_zero([1, 2, 3, 7]) False >>> triples_sum_to_zero([2, 4, -5, 3, 9, 7]) True >>> triples_sum_to_zero([1]) False """""" for i in range(len(l)): for j in range(i + 1, len(l)): for k in range(j + 1, len(l)): if l[i] + l[j] + l[k] == 0: return True return False ","[{'input': '[1, 3, 5, 0]', 'output': 'False', 'relation': '=='}, {'input': '[1, 3, 5, -1]', 'output': 'False', 'relation': '=='}, {'input': '[1, 3, -2, 1]', 'output': 'True', 'relation': '=='}, {'input': '[1, 2, 3, 7]', 'output': 'False', 'relation': '=='}, {'input': '[1, 2, 5, 7]', 'output': 'False', 'relation': '=='}, {'input': '[2, 4, -5, 3, 9, 7]', 'output': 'True', 'relation': '=='}, {'input': '[1]', 'output': 'False', 'relation': '=='}, {'input': '[1, 3, 5, -100]', 'output': 'False', 'relation': '=='}, {'input': '[100, 3, 5, -100]', 'output': 'False', 'relation': '=='}]" car_race_collision,HumanEval/41," def car_race_collision(n: int): """""" Imagine a road that's a perfectly straight infinitely long line. n cars are driving left to right; simultaneously, a different set of n cars are driving right to left. The two sets of cars start out being very far from each other. All cars move in the same speed. Two cars are said to collide when a car that's moving left to right hits a car that's moving right to left. However, the cars are infinitely sturdy and strong; as a result, they continue moving in their trajectory as if they did not collide. This function outputs the number of such collisions. """""" "," def car_race_collision(n: int): """""" Imagine a road that's a perfectly straight infinitely long line. 2*n or n cars are driving left to right; simultaneously, a different set of 2*n or n cars are driving right to left. The two sets of cars start out being very far from each other. All cars move in the same speed. Two cars are said to collide when a car that's moving left to right hits a car that's moving right to left. However, the cars are infinitely sturdy and strong; as a result, they continue moving in their trajectory as if they did not collide. This function outputs the number of such collisions. """""" "," def is_prime(n: int): """""" Imagine a road that's a perfectly straight infinitely long line. n cars are driving left to right; simultaneously, a different set of n cars are driving right to left. The two sets of cars start out being very far from each other. All cars move in the same speed. Two cars are said to collide when a car that's moving left to right hits a car that's moving right to left. However, the cars are infinitely sturdy and strong; as a result, they continue moving in their trajectory as if they did not collide. This function outputs the number of such collisions. """""" "," def candidate(n: int): """""" Imagine a road that's a perfectly straight infinitely long line. n cars are driving left to right; simultaneously, a different set of n cars are driving right to left. The two sets of cars start out being very far from each other. All cars move in the same speed. Two cars are said to collide """""" "," def is_prime(n: int): """""" Imagine a road that's a perfectly straight infinitely long line. 2*n or n cars are driving left to right; simultaneously, a different set of 2*n or n cars are driving right to left. The two sets of cars start out being very far from each other. All cars move in the same speed. Two cars are said to collide when a car that's moving left to right hits a car that's moving right to left. However, the cars are infinitely sturdy and strong; as a result, they continue moving in their trajectory as if they did not collide. This function outputs the number of such collisions. """""" "," def candidate(n: int): """""" Imagine a road that's a perfectly straight infinitely long line. 2*n or n cars are driving left to right; simultaneously, a different set of 2*n or n cars are driving right to left. The two sets of cars start out being very far from each other. All cars move in the same speed. Two cars are said to collide """""" "," def is_prime(n: int): """""" Imagine a road that's a perfectly straight infinitely long line. n cars are driving left to right; simultaneously, a different set of n cars are driving right to left. The two sets of cars start out being very far from each other. All cars move in the same speed. Two cars are said to collide """""" "," def is_prime(n: int): """""" Imagine a road that's a perfectly straight infinitely long line. 2*n or n cars are driving left to right; simultaneously, a different set of 2*n or n cars are driving right to left. The two sets of cars start out being very far from each other. All cars move in the same speed. Two cars are said to collide """""" "," def car_race_collision(n: int): """""" Imagine a road that's a perfectly straight infinitely long line. n cars are driving left to right; simultaneously, a different set of n cars are driving right to left. The two sets of cars start out being very far from each other. All cars move in the same speed. Two cars are said to collide when a car that's moving left to right hits a car that's moving right to left. However, the cars are infinitely sturdy and strong; as a result, they continue moving in their trajectory as if they did not collide. This function outputs the number of such collisions. """""" return n**2 ","[{'input': '2', 'output': '4', 'relation': '=='}, {'input': '3', 'output': '9', 'relation': '=='}, {'input': '4', 'output': '16', 'relation': '=='}, {'input': '8', 'output': '64', 'relation': '=='}, {'input': '10', 'output': '100', 'relation': '=='}]" incr_list,HumanEval/42," def incr_list(l: list): """"""Return list with elements incremented by 1. >>> incr_list([1, 2, 3]) [2, 3, 4] >>> incr_list([5, 3, 5, 2, 3, 3, 9, 0, 123]) [6, 4, 6, 3, 4, 4, 10, 1, 124] """""" "," def incr_list(l: list): """"""Return list with elements incremented by a number. >>> incr_list([1, 2, 3]) [2, 3, 4] >>> incr_list([5, 3, 5, 2, 3, 3, 9, 0, 123]) [6, 4, 6, 3, 4, 4, 10, 1, 124] """""" "," def incr_list(l: list): """"""Return list with elements incremented by 1. >>> incr_list([1, 2, 3]) [3, 4, 5] >>> incr_list([5, 3, 5, 2, 3, 3, 9, 0, 123]) [7, 5, 7, 4, 5, 5, 11, 2, 125] """""" "," def incr_list(l: list): """"""Return list with elements incremented. """""" "," def incr_list(l: list): """"""Return list with elements incremented by a number. >>> incr_list([1, 2, 3]) [3, 4, 5] >>> incr_list([5, 3, 5, 2, 3, 3, 9, 0, 123]) [7, 5, 7, 4, 5, 5, 11, 2, 125] """""" ",,,," def incr_list(l: list): """"""Return list with elements incremented by 1. >>> incr_list([1, 2, 3]) [2, 3, 4] >>> incr_list([5, 3, 5, 2, 3, 3, 9, 0, 123]) [6, 4, 6, 3, 4, 4, 10, 1, 124] """""" return [(e + 1) for e in l] ","[{'input': '[]', 'output': '[]', 'relation': '=='}, {'input': '[3, 2, 1]', 'output': '[4, 3, 2]', 'relation': '=='}, {'input': '[5, 2, 5, 2, 3, 3, 9, 0, 123]', 'output': '[6, 3, 6, 3, 4, 4, 10, 1, 124]', 'relation': '=='}]" pairs_sum_to_zero,HumanEval/43," def pairs_sum_to_zero(l): """""" pairs_sum_to_zero takes a list of integers as an input. it returns True if there are two distinct elements in the list that sum to zero, and False otherwise. >>> pairs_sum_to_zero([1, 3, 5, 0]) False >>> pairs_sum_to_zero([1, 3, -2, 1]) False >>> pairs_sum_to_zero([1, 2, 3, 7]) False >>> pairs_sum_to_zero([2, 4, -5, 3, 5, 7]) True >>> pairs_sum_to_zero([1]) False """""" "," def candidate(l): """""" candidate takes a list of integers as an input. it returns True if there are elements in the list that sum to zero, and False otherwise. >>> candidate([1, 3, 5, 0]) False >>> candidate([1, 3, -2, 1]) False >>> candidate([1, 2, 3, 7]) False >>> candidate([2, 4, -5, 3, 5, 7]) True >>> candidate([1]) False """""" "," def pairs_sum_to_zero(l): """""" pairs_sum_to_zero takes a list of integers as an input. it returns True if there are two distinct elements in the list that sum to zero, and False otherwise. >>> pairs_sum_to_zero([1, 3, 5, 0]) True >>> pairs_sum_to_zero([1, 3, -2, 1]) True >>> pairs_sum_to_zero([1, 2, 3, 7]) True >>> pairs_sum_to_zero([2, 4, -5, 3, 5, 7]) False >>> pairs_sum_to_zero([1]) True """""" "," def candidate(l): """""" candidate takes a list of integers as an input. it returns True if there are two distinct elements in the list that """""" "," def candidate(l): """""" candidate takes a list of integers as an input. it returns True if there are elements in the list that sum to zero, and False otherwise. >>> candidate([1, 3, 5, 0]) True >>> candidate([1, 3, -2, 1]) True >>> candidate([1, 2, 3, 7]) True >>> candidate([2, 4, -5, 3, 5, 7]) False >>> candidate([1]) True """""" ",,,," def pairs_sum_to_zero(l): """""" pairs_sum_to_zero takes a list of integers as an input. it returns True if there are two distinct elements in the list that sum to zero, and False otherwise. >>> pairs_sum_to_zero([1, 3, 5, 0]) False >>> pairs_sum_to_zero([1, 3, -2, 1]) False >>> pairs_sum_to_zero([1, 2, 3, 7]) False >>> pairs_sum_to_zero([2, 4, -5, 3, 5, 7]) True >>> pairs_sum_to_zero([1]) False """""" for i, l1 in enumerate(l): for j in range(i + 1, len(l)): if l1 + l[j] == 0: return True return False ","[{'input': '[1, 3, 5, 0]', 'output': 'False', 'relation': '=='}, {'input': '[1, 3, -2, 1]', 'output': 'False', 'relation': '=='}, {'input': '[1, 2, 3, 7]', 'output': 'False', 'relation': '=='}, {'input': '[2, 4, -5, 3, 5, 7]', 'output': 'True', 'relation': '=='}, {'input': '[1]', 'output': 'False', 'relation': '=='}, {'input': '[-3, 9, -1, 3, 2, 30]', 'output': 'True', 'relation': '=='}, {'input': '[-3, 9, -1, 3, 2, 31]', 'output': 'True', 'relation': '=='}, {'input': '[-3, 9, -1, 4, 2, 30]', 'output': 'False', 'relation': '=='}, {'input': '[-3, 9, -1, 4, 2, 31]', 'output': 'False', 'relation': '=='}]" change_base,HumanEval/44," def change_base(x: int, base: int): """"""Change numerical base of input number x to base. return string representation after the conversion. base numbers are less than 10. >>> change_base(8, 3) '22' >>> change_base(8, 2) '1000' >>> change_base(7, 2) '111' """""" "," def candidate(x: int, y: int): """"""Change numerical base of input number x or y to base. return string representation after the conversion. base numbers are less than 10. >>> candidate(8, 3) '22' >>> candidate(8, 2) '1000' >>> candidate(7, 2) '111' """""" "," def change_base(x: int, base: int): """"""Change numerical base of input number x to base. return string representation after the conversion. base numbers are less than 10. >>> change_base(8, 3) '8' >>> change_base(8, 2) '8' >>> change_base(7, 2) '7' """""" "," def candidate(x: int, y: int): """"""Change numerical base of input number x to base. """""" "," def candidate(x: int, y: int): """"""Change numerical base of input number x or y to base. return string representation after the conversion. base numbers are less than 10. >>> candidate(8, 3) '8' >>> candidate(8, 2) '8' >>> candidate(7, 2) '7' """""" ",,,," def change_base(x: int, base: int): """"""Change numerical base of input number x to base. return string representation after the conversion. base numbers are less than 10. >>> change_base(8, 3) '22' >>> change_base(8, 2) '1000' >>> change_base(7, 2) '111' """""" ret = """" while x > 0: ret = str(x % base) + ret x //= base return ret ","[{'input': '8, 3', 'output': '22', 'relation': '=='}, {'input': '9, 3', 'output': '100', 'relation': '=='}, {'input': '234, 2', 'output': '11101010', 'relation': '=='}, {'input': '16, 2', 'output': '10000', 'relation': '=='}, {'input': '8, 2', 'output': '1000', 'relation': '=='}, {'input': '7, 2', 'output': '111', 'relation': '=='}, {'input': '2, 3', 'output': '2', 'relation': '=='}, {'input': '3, 4', 'output': '3', 'relation': '=='}, {'input': '4, 5', 'output': '4', 'relation': '=='}, {'input': '5, 6', 'output': '5', 'relation': '=='}, {'input': '6, 7', 'output': '6', 'relation': '=='}, {'input': '7, 8', 'output': '7', 'relation': '=='}]" triangle_area,HumanEval/45," def triangle_area(a, h): """"""Given length of a side and high return area for a triangle. >>> triangle_area(5, 3) 7.5 """""" "," def candidate(x, y): """"""Given length of a side and high return perimeter or area for a triangle. >>> candidate(5, 3) 7.5 """""" "," def triangle_area(a, h): """"""Given length of a side and high return area for a triangle. >>> triangle_area(5, 3) 15 """""" "," def triangle_area(a, h): """"""Given length of a side and high, return. """""" "," def candidate(x, y): """"""Given length of a side and high return perimeter or area for a triangle. >>> candidate(5, 3) 15 """""" ",,,," def triangle_area(a, h): """"""Given length of a side and high return area for a triangle. >>> triangle_area(5, 3) 7.5 """""" return a * h / 2.0 ","[{'input': '5, 3', 'output': '7.5', 'relation': '=='}, {'input': '2, 2', 'output': '2.0', 'relation': '=='}, {'input': '10, 8', 'output': '40.0', 'relation': '=='}]" fib4,HumanEval/46," def fib4(n: int): """"""The Fib4 number sequence is a sequence similar to the Fibbonacci sequnece that's defined as follows: fib4(0) -> 0 fib4(1) -> 0 fib4(2) -> 2 fib4(3) -> 0 fib4(n) -> fib4(n-1) + fib4(n-2) + fib4(n-3) + fib4(n-4). Please write a function to efficiently compute the n-th element of the fib4 number sequence. Do not use recursion. >>> fib4(5) 4 >>> fib4(6) 8 >>> fib4(7) 14 """""" "," def fib4(n: int): """"""The Fib4 number sequence is a sequence similar to the Fibbonacci sequnece that's defined as follows: fib4(0) -> 0 fib4(1) -> 0 fib4(2) -> 2 fib4(3) -> 0 fib4(n) -> fib4(n-1) +/- fib4(n-2) +/- fib4(n-3) +/- fib4(n-4). Please write a function to efficiently compute the n-th element of the fib4 number sequence. Do not use recursion. >>> fib4(5) 2 >>> fib4(6) 4 >>> fib4(7) 6 """""" "," def fib4(n: int): """"""The Fib4 number sequence is a sequence similar to the Fibbonacci sequnece that's defined as follows: fib4(0) -> 0 fib4(1) -> 0 fib4(2) -> 2 fib4(3) -> 0 fib4(n) -> fib4(n-1) + fib4(n-2) + fib4(n-3) + fib4(n-4). Please write a function to efficiently compute the n-th element of the fib4 number sequence. Do not use recursion. >>> fib4(5) 0 >>> fib4(6) 0 >>> fib4(7) 2 """""" "," def fib4(n: int): """"""The Fib4 number sequence is a sequence similar to the Fibbonacci sequnece that's defined as follows: fib4(0) -> 0 fib4(1) -> 0 fib4(2) -> 2 fib4(3) -> 0 Please write a function to efficiently compute the n-th element of the fib4 number sequence. Do not use recursion. """""" "," def fib4(n: int): """"""The Fib4 number sequence is a sequence similar to the Fibbonacci sequnece that's defined as follows: fib4(0) -> 0 fib4(1) -> 0 fib4(2) -> 2 fib4(3) -> 0 fib4(n) -> fib4(n-1) +/- fib4(n-2) +/- fib4(n-3) +/- fib4(n-4). Please write a function to efficiently compute the n-th element of the fib4 number sequence. Do not use recursion. >>> fib4(5) 2 >>> fib4(6) 4 >>> fib4(7) 6 """""" ",,,," def fib4(n: int): """"""The Fib4 number sequence is a sequence similar to the Fibbonacci sequnece that's defined as follows: fib4(0) -> 0 fib4(1) -> 0 fib4(2) -> 2 fib4(3) -> 0 fib4(n) -> fib4(n-1) + fib4(n-2) + fib4(n-3) + fib4(n-4). Please write a function to efficiently compute the n-th element of the fib4 number sequence. Do not use recursion. >>> fib4(5) 4 >>> fib4(6) 8 >>> fib4(7) 14 """""" results = [0, 0, 2, 0] if n < 4: return results[n] for _ in range(4, n + 1): results.append(results[-1] + results[-2] + results[-3] + results[-4]) results.pop(0) return results[-1] ","[{'input': '5', 'output': '4', 'relation': '=='}, {'input': '8', 'output': '28', 'relation': '=='}, {'input': '10', 'output': '104', 'relation': '=='}, {'input': '12', 'output': '386', 'relation': '=='}]" median,HumanEval/47," def median(l: list): """"""Return median of elements in the list l. >>> median([3, 1, 2, 4, 5]) 3 >>> median([-10, 4, 6, 1000, 10, 20]) 15.0 """""" "," def candidate(l: list): """"""Return max or median of elements in the list l. >>> candidate([3, 1, 2, 4, 5]) 3 >>> candidate([-10, 4, 6, 1000, 10, 20]) 15.0 """""" "," def median(l: list): """"""Return median of elements in the list l. >>> median([3, 1, 2, 4, 5]) 5 >>> median([-10, 4, 6, 1000, 10, 20]) 1000 """""" "," def candidate(l: list): """"""Return of elements in the list l. """""" "," def candidate(l: list): """"""Return max or median of elements in the list l. >>> candidate([3, 1, 2, 4, 5]) 5 >>> candidate([-10, 4, 6, 1000, 10, 20]) 1000 """""" ",,,," def median(l: list): """"""Return median of elements in the list l. >>> median([3, 1, 2, 4, 5]) 3 >>> median([-10, 4, 6, 1000, 10, 20]) 15.0 """""" l = sorted(l) if len(l) % 2 == 1: return l[len(l) // 2] else: return (l[len(l) // 2 - 1] + l[len(l) // 2]) / 2.0 ","[{'input': '[3, 1, 2, 4, 5]', 'output': '3', 'relation': '=='}, {'input': '[-10, 4, 6, 1000, 10, 20]', 'output': '8.0', 'relation': '=='}, {'input': '[5]', 'output': '5', 'relation': '=='}, {'input': '[6, 5]', 'output': '5.5', 'relation': '=='}, {'input': '[8, 1, 3, 9, 9, 2, 7]', 'output': '7 ', 'relation': '=='}]" is_palindrome,HumanEval/48," def is_palindrome(text: str): """""" Checks if given string is a palindrome >>> is_palindrome('') True >>> is_palindrome('aba') True >>> is_palindrome('aaaaa') True >>> is_palindrome('zbcd') False """""" "," def candidate(text: str): """""" Checks if given string is an Isogram/Palindrome or not >>> candidate('') True >>> candidate('aba') True >>> candidate('aaaaa') True >>> candidate('zbcd') False """""" "," def is_palindrome(text: str): """""" Checks if given string is a palindrome >>> is_palindrome('') False >>> is_palindrome('aba') False >>> is_palindrome('aaaaa') False >>> is_palindrome('zbcd') True """""" "," def candidate(text: str): """""" Checks if given string is a """""" "," def candidate(text: str): """""" Checks if given string is an Isogram/Palindrome or not >>> candidate('') False >>> candidate('aba') False >>> candidate('aaaaa') False >>> candidate('zbcd') True """""" ",,,," def is_palindrome(text: str): """""" Checks if given string is a palindrome >>> is_palindrome('') True >>> is_palindrome('aba') True >>> is_palindrome('aaaaa') True >>> is_palindrome('zbcd') False """""" for i in range(len(text)): if text[i] != text[len(text) - 1 - i]: return False return True ","[{'input': ""''"", 'output': 'True', 'relation': '=='}, {'input': ""'aba'"", 'output': 'True', 'relation': '=='}, {'input': ""'aaaaa'"", 'output': 'True', 'relation': '=='}, {'input': ""'zbcd'"", 'output': 'False', 'relation': '=='}, {'input': ""'xywyx'"", 'output': 'True', 'relation': '=='}, {'input': ""'xywyz'"", 'output': 'False', 'relation': '=='}, {'input': ""'xywzx'"", 'output': 'False', 'relation': '=='}]" modp,HumanEval/49," def modp(n: int, p: int): """"""Return 2^n modulo p (be aware of numerics). >>> modp(3, 5) 3 >>> modp(1101, 101) 2 >>> modp(0, 101) 1 >>> modp(3, 11) 8 >>> modp(100, 101) 1 """""" "," def candidate(x: int, y: int): """"""Return 2^n modulo p (be aware of numerics). >>> candidate(3, 5) 3 >>> candidate(1101, 101) 2 >>> candidate(0, 101) 1 >>> candidate(3, 11) 8 >>> candidate(100, 101) 1 """""" "," def modp(n: int, p: int): """"""Return 2^n modulo p (be aware of numerics). >>> modp(3, 5) 5 >>> modp(1101, 101) 101 >>> modp(0, 101) 101 >>> modp(3, 11) 11 >>> modp(100, 101) 101 """""" "," def modp(n: int, p: int): """"""Return 2^n modulo. """""" "," def candidate(x: int, y: int): """"""Return 2^n modulo p (be aware of numerics). >>> candidate(3, 5) 5 >>> candidate(1101, 101) 101 >>> candidate(0, 101) 101 >>> candidate(3, 11) 11 >>> candidate(100, 101) 101 """""" "," def candidate(x: int, y: int): """"""Return 2^n modulo. """""" ",,," def modp(n: int, p: int): """"""Return 2^n modulo p (be aware of numerics). >>> modp(3, 5) 3 >>> modp(1101, 101) 2 >>> modp(0, 101) 1 >>> modp(3, 11) 8 >>> modp(100, 101) 1 """""" ret = 1 for i in range(n): ret = (2 * ret) % p return ret ","[{'input': '3, 5', 'output': '3', 'relation': '=='}, {'input': '1101, 101', 'output': '2', 'relation': '=='}, {'input': '0, 101', 'output': '1', 'relation': '=='}, {'input': '3, 11', 'output': '8', 'relation': '=='}, {'input': '100, 101', 'output': '1', 'relation': '=='}, {'input': '30, 5', 'output': '4', 'relation': '=='}, {'input': '31, 5', 'output': '3', 'relation': '=='}]" decode_shift,HumanEval/50," def encode_shift(s: str): """""" returns encoded string by shifting every character by 5 in the alphabet. """""" return """".join([chr(((ord(ch) + 5 - ord(""a"")) % 26) + ord(""a"")) for ch in s]) def decode_shift(s: str): """""" takes as input string encoded with encode_shift function. Returns decoded string. """""" "," def encode_shift(s: str): """""" returns encoded string by shifting every character by 5 in the alphabet. """""" return """".join([chr(((ord(ch) + 5 - ord(""a"")) % 26) + ord(""a"")) for ch in s]) def candidate(s: str): """""" takes as input string decoded or encoded with encode_shift function. Returns decoded or encoded string. """""" "," def encode_shift(s: str): """""" returns encoded string by shifting every character by 5 in the alphabet. """""" return """".join([chr(((ord(ch) + 5 - ord(""a"")) % 26) + ord(""a"")) for ch in s]) def decode_shift(s: str): """""" takes as input string encoded with encode_shift function which shifts every character by 3. Returns decoded string. """""" "," def encode_shift(s: str): """""" returns encoded string by shifting every character by 5 in the alphabet. """""" return """".join([chr(((ord(ch) + 5 - ord(""a"")) % 26) + ord(""a"")) for ch in s]) def candidate(s: str): """""" takes as input string encoded with encode_shift function. """""" "," def encode_shift(s: str): """""" returns encoded string by shifting every character by 5 in the alphabet. """""" return """".join([chr(((ord(ch) + 5 - ord(""a"")) % 26) + ord(""a"")) for ch in s]) def candidate(s: str): """""" takes as input string decoded or encoded with encode_shift function which shifts every character by 3. Returns decoded or encoded string. """""" "," def encode_shift(s: str): """""" returns encoded string by shifting every character by 5 in the alphabet. """""" return """".join([chr(((ord(ch) + 5 - ord(""a"")) % 26) + ord(""a"")) for ch in s]) def candidate(s: str): """""" takes as input string decoded or encoded with encode_shift function. """""" "," def encode_shift(s: str): """""" returns encoded string by shifting every character by 5 in the alphabet. """""" return """".join([chr(((ord(ch) + 5 - ord(""a"")) % 26) + ord(""a"")) for ch in s]) def candidate(s: str): """""" takes as input string encoded with encode_shift function which shifts every character by 3. """""" "," def encode_shift(s: str): """""" returns encoded string by shifting every character by 5 in the alphabet. """""" return """".join([chr(((ord(ch) + 5 - ord(""a"")) % 26) + ord(""a"")) for ch in s]) def candidate(s: str): """""" takes as input string decoded or encoded with encode_shift function which shifts every character by 3. """""" "," def encode_shift(s: str): """""" returns encoded string by shifting every character by 5 in the alphabet. """""" return """".join([chr(((ord(ch) + 5 - ord(""a"")) % 26) + ord(""a"")) for ch in s]) def decode_shift(s: str): """""" takes as input string encoded with encode_shift function. Returns decoded string. """""" return """".join([chr(((ord(ch) - 5 - ord(""a"")) % 26) + ord(""a"")) for ch in s]) ","[{'input': ""'ifcnmmjciacwhxsgfhlm'"", 'output': 'daxihhexdvxrcsnbacgh', 'relation': '=='}, {'input': ""'yfwlbzbwsmtxnefdek'"", 'output': 'targwuwrnhosizayzf', 'relation': '=='}, {'input': ""'pnjldpihriqqyneg'"", 'output': 'kiegykdcmdlltizb', 'relation': '=='}, {'input': ""'wirhwozyqxlbhgamd'"", 'output': 'rdmcrjutlsgwcbvhy', 'relation': '=='}, {'input': ""'hmirntzqkqqlan'"", 'output': 'chdmioulfllgvi', 'relation': '=='}, {'input': ""'zhyzkwcmktrnzbwmapdd'"", 'output': 'uctufrxhfomiuwrhvkyy', 'relation': '=='}, {'input': ""'mgeprnhlxb'"", 'output': 'hbzkmicgsw', 'relation': '=='}, {'input': ""'lzurztjnjmcwwnc'"", 'output': 'gupmuoeiehxrrix', 'relation': '=='}, {'input': ""'sxrqmjvuhdgijzkeasy'"", 'output': 'nsmlheqpcybdeufzvnt', 'relation': '=='}, {'input': ""'rrytvnwfaci'"", 'output': 'mmtoqiravxd', 'relation': '=='}, {'input': ""'wdndzpiosktfccnvdkvi'"", 'output': 'ryiyukdjnfoaxxiqyfqd', 'relation': '=='}, {'input': ""'ozvyljqdkwdvfypufiqe'"", 'output': 'juqtgelyfryqatkpadlz', 'relation': '=='}, {'input': ""'mgmxhhcuhdwdjj'"", 'output': 'hbhsccxpcyryee', 'relation': '=='}, {'input': ""'uwknvyslwdcblborazqt'"", 'output': 'prfiqtngryxwgwjmvulo', 'relation': '=='}, {'input': ""'timmhpfxwmxmfhbzgm'"", 'output': 'odhhckasrhshacwubh', 'relation': '=='}, {'input': ""'gphvmnaulwj'"", 'output': 'bkcqhivpgre', 'relation': '=='}, {'input': ""'xumeuesliiasqsstcga'"", 'output': 'sphzpzngddvnlnnoxbv', 'relation': '=='}, {'input': ""'zigrcpeimllwtjskntmh'"", 'output': 'udbmxkzdhggroenfiohc', 'relation': '=='}, {'input': ""'ewigzwfhdmksuulrg'"", 'output': 'zrdburacyhfnppgmb', 'relation': '=='}, {'input': ""'rfrneetosbce'"", 'output': 'mamizzojnwxz', 'relation': '=='}, {'input': ""'abujlolgxcwgcpggxu'"", 'output': 'vwpegjgbsxrbxkbbsp', 'relation': '=='}, {'input': ""'vkgvhkhyhamrixmxyg'"", 'output': 'qfbqcfctcvhmdshstb', 'relation': '=='}, {'input': ""'hsaxxvpnlabpmnrjazo'"", 'output': 'cnvssqkigvwkhimevuj', 'relation': '=='}, {'input': ""'pdhftyxihwlvnjqhm'"", 'output': 'kycaotsdcrgqielch', 'relation': '=='}, {'input': ""'oktwboyezvfawoa'"", 'output': 'jforwjtzuqavrjv', 'relation': '=='}, {'input': ""'jniicwjnoyl'"", 'output': 'eiddxreijtg', 'relation': '=='}, {'input': ""'laznvunghzsngfp'"", 'output': 'gvuiqpibcunibak', 'relation': '=='}, {'input': ""'znkctwbswfih'"", 'output': 'uifxorwnradc', 'relation': '=='}, {'input': ""'wgqxwjsjgoqe'"", 'output': 'rblsrenebjlz', 'relation': '=='}, {'input': ""'qlamaiqdws'"", 'output': 'lgvhvdlyrn', 'relation': '=='}, {'input': ""'cjmkeeksfkcpeseacem'"", 'output': 'xehfzzfnafxkznzvxzh', 'relation': '=='}, {'input': ""'kebirgumltqoem'"", 'output': 'fzwdmbphgoljzh', 'relation': '=='}, {'input': ""'falrpnhdnqzvr'"", 'output': 'avgmkicyiluqm', 'relation': '=='}, {'input': ""'wpfinkxngiysqcepsyvi'"", 'output': 'rkadifsibdtnlxzkntqd', 'relation': '=='}, {'input': ""'xlngbsfvewacccal'"", 'output': 'sgibwnaqzrvxxxvg', 'relation': '=='}, {'input': ""'shapypaicovoasp'"", 'output': 'ncvktkvdxjqjvnk', 'relation': '=='}, {'input': ""'bowjlsarackyxorw'"", 'output': 'wjregnvmvxftsjmr', 'relation': '=='}, {'input': ""'oolsexyzpt'"", 'output': 'jjgnzstuko', 'relation': '=='}, {'input': ""'talvueeckahovazyp'"", 'output': 'ovgqpzzxfvcjqvutk', 'relation': '=='}, {'input': ""'dmaomeljfgm'"", 'output': 'yhvjhzgeabh', 'relation': '=='}, {'input': ""'ydhtszxlbbrurmjzb'"", 'output': 'tyconusgwwmpmheuw', 'relation': '=='}, {'input': ""'ddidsmkebv'"", 'output': 'yydynhfzwq', 'relation': '=='}, {'input': ""'gwmitjetavwypdtyc'"", 'output': 'brhdoezovqrtkyotx', 'relation': '=='}, {'input': ""'swtkcutndmznddvuzm'"", 'output': 'nrofxpoiyhuiyyqpuh', 'relation': '=='}, {'input': ""'thbomnppwhjjmr'"", 'output': 'ocwjhikkrceehm', 'relation': '=='}, {'input': ""'blhsspwtsgls'"", 'output': 'wgcnnkronbgn', 'relation': '=='}, {'input': ""'dxbfdxrufqodrswc'"", 'output': 'yswaysmpaljymnrx', 'relation': '=='}, {'input': ""'eymumnsufrpaaerckt'"", 'output': 'zthphinpamkvvzmxfo', 'relation': '=='}, {'input': ""'ywfrxxafhzsj'"", 'output': 'tramssvacune', 'relation': '=='}, {'input': ""'kgnrpltppdrndsnhu'"", 'output': 'fbimkgokkymiynicp', 'relation': '=='}, {'input': ""'cwgqmzhdzg'"", 'output': 'xrblhucyub', 'relation': '=='}, {'input': ""'mlfyjmjuai'"", 'output': 'hgatehepvd', 'relation': '=='}, {'input': ""'ltbndqkyycbidkoixfo'"", 'output': 'gowiylfttxwdyfjdsaj', 'relation': '=='}, {'input': ""'arrblhxbzmibdoayeie'"", 'output': 'vmmwgcswuhdwyjvtzdz', 'relation': '=='}, {'input': ""'egqwsaqhvzpfsuisqzt'"", 'output': 'zblrnvlcqukanpdnluo', 'relation': '=='}, {'input': ""'skcvznyewdut'"", 'output': 'nfxquitzrypo', 'relation': '=='}, {'input': ""'cxnpmhntmdtxyarp'"", 'output': 'xsikhciohyostvmk', 'relation': '=='}, {'input': ""'upkulqenpn'"", 'output': 'pkfpglziki', 'relation': '=='}, {'input': ""'bnwfvlhmcsuwdmbuzbu'"", 'output': 'wiraqgchxnpryhwpuwp', 'relation': '=='}, {'input': ""'efhomrbmoaxquwvqs'"", 'output': 'zacjhmwhjvslprqln', 'relation': '=='}, {'input': ""'pqbtnonmiclpicwdbk'"", 'output': 'klwoijihdxgkdxrywf', 'relation': '=='}, {'input': ""'lcuncxdvyoilo'"", 'output': 'gxpixsyqtjdgj', 'relation': '=='}, {'input': ""'qkofbwjnggwob'"", 'output': 'lfjawreibbrjw', 'relation': '=='}, {'input': ""'zduifxouutpk'"", 'output': 'uypdasjppokf', 'relation': '=='}, {'input': ""'nuihruhxza'"", 'output': 'ipdcmpcsuv', 'relation': '=='}, {'input': ""'jjexohmiwd'"", 'output': 'eezsjchdry', 'relation': '=='}, {'input': ""'yyeymdvrttoxsoxy'"", 'output': 'ttzthyqmoojsnjst', 'relation': '=='}, {'input': ""'ycidlzlnah'"", 'output': 'txdygugivc', 'relation': '=='}, {'input': ""'mkwhkfstbyuo'"", 'output': 'hfrcfanowtpj', 'relation': '=='}, {'input': ""'mobobthamn'"", 'output': 'hjwjwocvhi', 'relation': '=='}, {'input': ""'xaelsiwmzjnjhgkeoycx'"", 'output': 'svzgndrhueiecbfzjtxs', 'relation': '=='}, {'input': ""'titbobrnvwuthy'"", 'output': 'odowjwmiqrpoct', 'relation': '=='}, {'input': ""'scpynfhmax'"", 'output': 'nxktiachvs', 'relation': '=='}, {'input': ""'fdanxgddkuvztnkxszu'"", 'output': 'ayvisbyyfpquoifsnup', 'relation': '=='}, {'input': ""'uqsppaikpsb'"", 'output': 'plnkkvdfknw', 'relation': '=='}, {'input': ""'oardwgthpnpidrvfa'"", 'output': 'jvmyrbockikdymqav', 'relation': '=='}, {'input': ""'tsglvqyduztdglnwjo'"", 'output': 'onbgqltypuoybgirej', 'relation': '=='}, {'input': ""'buifzyembkowfwshm'"", 'output': 'wpdautzhwfjrarnch', 'relation': '=='}, {'input': ""'tizjubovbns'"", 'output': 'oduepwjqwin', 'relation': '=='}, {'input': ""'umtwjrlyvcjhndesp'"", 'output': 'phoremgtqxeciyznk', 'relation': '=='}, {'input': ""'nfocoxxaujtwuqpwdw'"", 'output': 'iajxjssvpeorplkryr', 'relation': '=='}, {'input': ""'tplbmxrmdsgpcube'"", 'output': 'okgwhsmhynbkxpwz', 'relation': '=='}, {'input': ""'raezjugjvxpitivt'"", 'output': 'mvzuepbeqskdodqo', 'relation': '=='}, {'input': ""'cjszjhuenp'"", 'output': 'xenuecpzik', 'relation': '=='}, {'input': ""'brzhpawrpzbduwgyhmz'"", 'output': 'wmuckvrmkuwyprbtchu', 'relation': '=='}, {'input': ""'omchsidzbitkbofgpego'"", 'output': 'jhxcndyuwdofwjabkzbj', 'relation': '=='}, {'input': ""'qsjmvsxaekkkhyr'"", 'output': 'lnehqnsvzfffctm', 'relation': '=='}, {'input': ""'amuxjmtzntnafetoawk'"", 'output': 'vhpsehouioivazojvrf', 'relation': '=='}, {'input': ""'tqxozsbntol'"", 'output': 'olsjunwiojg', 'relation': '=='}, {'input': ""'uimrxqxobofarnfx'"", 'output': 'pdhmslsjwjavmias', 'relation': '=='}, {'input': ""'dcgycuodemyeqmzlynad'"", 'output': 'yxbtxpjyzhtzlhugtivy', 'relation': '=='}, {'input': ""'ajzizzgoetgxqcjhopcs'"", 'output': 'veuduubjzobslxecjkxn', 'relation': '=='}, {'input': ""'ljewqvvnknue'"", 'output': 'gezrlqqifipz', 'relation': '=='}, {'input': ""'cpeithjdmacare'"", 'output': 'xkzdoceyhvxvmz', 'relation': '=='}, {'input': ""'qherfnwitqacanxrzq'"", 'output': 'lczmairdolvxvismul', 'relation': '=='}, {'input': ""'amufywpymzh'"", 'output': 'vhpatrkthuc', 'relation': '=='}, {'input': ""'tbozsijggouiimwjrtqa'"", 'output': 'owjundebbjpddhremolv', 'relation': '=='}, {'input': ""'sxccjsziuysngbqltt'"", 'output': 'nsxxenudptnibwlgoo', 'relation': '=='}, {'input': ""'qiaqwzqgrnlit'"", 'output': 'ldvlrulbmigdo', 'relation': '=='}, {'input': ""'alzzyfgepmj'"", 'output': 'vguutabzkhe', 'relation': '=='}]" remove_vowels,HumanEval/51," def remove_vowels(text): """""" remove_vowels is a function that takes string and returns string without vowels. >>> remove_vowels('') '' >>> remove_vowels(""abcdef\nghijklm"") 'bcdf\nghjklm' >>> remove_vowels('abcdef') 'bcdf' >>> remove_vowels('aaaaa') '' >>> remove_vowels('aaBAA') 'B' >>> remove_vowels('zbcd') 'zbcd' """""" "," def candidate(text): """""" candidate is a function that takes string and returns string with or without vowels. >>> candidate('') '' >>> candidate(""abcdef\nghijklm"") 'bcdf\nghjklm' >>> candidate('abcdef') 'bcdf' >>> candidate('aaaaa') 'aaaaa' >>> candidate('aaBAA') 'B' >>> candidate('zbcd') 'zbcd' """""" "," def remove_vowels(text): """""" remove_vowels is a function that takes string and returns string without vowels. >>> remove_vowels('') '' >>> remove_vowels(""abcdef\nghijklm"") 'aei' >>> remove_vowels('abcdef') 'ae' >>> remove_vowels('aaaaa') 'aaaaa' >>> remove_vowels('aaBAA') 'aaAA' >>> remove_vowels('zbcd') '' """""" "," def candidate(text): """""" candidate is a function that takes string and returns string without. """""" "," def candidate(text): """""" candidate is a function that takes string and returns string with or without vowels. >>> candidate('') '' >>> candidate(""abcdef\nghijklm"") 'aei' >>> candidate('abcdef') 'ae' >>> candidate('aaaaa') 'aaaaa' >>> candidate('aaBAA') 'aaAA' >>> candidate('zbcd') '' """""" ",,,," def remove_vowels(text): """""" remove_vowels is a function that takes string and returns string without vowels. >>> remove_vowels('') '' >>> remove_vowels(""abcdef\nghijklm"") 'bcdf\nghjklm' >>> remove_vowels('abcdef') 'bcdf' >>> remove_vowels('aaaaa') '' >>> remove_vowels('aaBAA') 'B' >>> remove_vowels('zbcd') 'zbcd' """""" return """".join([s for s in text if s.lower() not in [""a"", ""e"", ""i"", ""o"", ""u""]]) ","[{'input': ""''"", 'output': '', 'relation': '=='}, {'input': '""abcdef\\nghijklm""', 'output': 'bcdf\nghjklm', 'relation': '=='}, {'input': ""'fedcba'"", 'output': 'fdcb', 'relation': '=='}, {'input': ""'eeeee'"", 'output': '', 'relation': '=='}, {'input': ""'acBAA'"", 'output': 'cB', 'relation': '=='}, {'input': ""'EcBOO'"", 'output': 'cB', 'relation': '=='}, {'input': ""'ybcd'"", 'output': 'ybcd', 'relation': '=='}]" below_threshold,HumanEval/52," def below_threshold(l: list, t: int): """"""Return True if all numbers in the list l are below threshold t. >>> below_threshold([1, 2, 4, 10], 100) True >>> below_threshold([1, 20, 4, 10], 5) False """""" "," def candidate(l: list, t: int): """"""Return True if numbers in the list l are around threshold t. >>> candidate([1, 2, 4, 10], 100) True >>> candidate([1, 20, 4, 10], 5) False """""" "," def below_threshold(l: list, t: int): """"""Return True if all numbers in the list l are below threshold t. >>> below_threshold([1, 2, 4, 10], 100) False >>> below_threshold([1, 20, 4, 10], 5) True """""" "," def candidate(l: list, t: int): """"""Return True if all numbers in the list l are below. """""" "," def candidate(l: list, t: int): """"""Return True if numbers in the list l are around threshold t. >>> candidate([1, 2, 4, 10], 100) False >>> candidate([1, 20, 4, 10], 5) True """""" ",,,," def below_threshold(l: list, t: int): """"""Return True if all numbers in the list l are below threshold t. >>> below_threshold([1, 2, 4, 10], 100) True >>> below_threshold([1, 20, 4, 10], 5) False """""" for e in l: if e >= t: return False return True ","[{'input': '[1, 2, 4, 10], 100', 'output': 'True', 'relation': '=='}, {'input': '[1, 20, 4, 10], 5', 'output': 'False', 'relation': '=='}, {'input': '[1, 20, 4, 10], 21', 'output': 'True', 'relation': '=='}, {'input': '[1, 20, 4, 10], 22', 'output': 'True', 'relation': '=='}, {'input': '[1, 8, 4, 10], 11', 'output': 'True', 'relation': '=='}, {'input': '[1, 8, 4, 10], 10', 'output': 'False', 'relation': '=='}]" add,HumanEval/53," def add(x: int, y: int): """"""Add two numbers x and y >>> add(2, 3) 5 >>> add(5, 7) 12 """""" "," def candidate(x: int, y: int): """"""Add or multiply or subtract two numbers x and y >>> candidate(2, 3) 5 >>> candidate(5, 7) 12 """""" "," def add(x: int, y: int): """"""Add two numbers x and y >>> add(2, 3) 1 >>> add(5, 7) 2 """""" "," def candidate(x: int, y: int): """""" two numbers x and y """""" "," def candidate(x: int, y: int): """"""Add or multiply or subtract two numbers x and y >>> candidate(2, 3) 1 >>> candidate(5, 7) 2 """""" ",,,," def add(x: int, y: int): """"""Add two numbers x and y >>> add(2, 3) 5 >>> add(5, 7) 12 """""" return x + y ","[{'input': '0, 1', 'output': '1', 'relation': '=='}, {'input': '1, 0', 'output': '1', 'relation': '=='}, {'input': '2, 3', 'output': '5', 'relation': '=='}, {'input': '5, 7', 'output': '12', 'relation': '=='}, {'input': '7, 5', 'output': '12', 'relation': '=='}, {'input': '654, 114', 'output': '768', 'relation': '=='}, {'input': '25, 759', 'output': '784', 'relation': '=='}, {'input': '281, 250', 'output': '531', 'relation': '=='}, {'input': '228, 142', 'output': '370', 'relation': '=='}, {'input': '754, 104', 'output': '858', 'relation': '=='}, {'input': '692, 758', 'output': '1450', 'relation': '=='}, {'input': '913, 558', 'output': '1471', 'relation': '=='}, {'input': '89, 604', 'output': '693', 'relation': '=='}, {'input': '432, 32', 'output': '464', 'relation': '=='}, {'input': '30, 95', 'output': '125', 'relation': '=='}, {'input': '223, 238', 'output': '461', 'relation': '=='}, {'input': '517, 616', 'output': '1133', 'relation': '=='}, {'input': '27, 574', 'output': '601', 'relation': '=='}, {'input': '203, 733', 'output': '936', 'relation': '=='}, {'input': '665, 718', 'output': '1383', 'relation': '=='}, {'input': '558, 429', 'output': '987', 'relation': '=='}, {'input': '225, 459', 'output': '684', 'relation': '=='}, {'input': '603, 284', 'output': '887', 'relation': '=='}, {'input': '828, 890', 'output': '1718', 'relation': '=='}, {'input': '6, 777', 'output': '783', 'relation': '=='}, {'input': '825, 163', 'output': '988', 'relation': '=='}, {'input': '714, 432', 'output': '1146', 'relation': '=='}, {'input': '348, 284', 'output': '632', 'relation': '=='}, {'input': '159, 220', 'output': '379', 'relation': '=='}, {'input': '980, 781', 'output': '1761', 'relation': '=='}, {'input': '344, 104', 'output': '448', 'relation': '=='}, {'input': '94, 389', 'output': '483', 'relation': '=='}, {'input': '99, 367', 'output': '466', 'relation': '=='}, {'input': '867, 352', 'output': '1219', 'relation': '=='}, {'input': '618, 270', 'output': '888', 'relation': '=='}, {'input': '826, 44', 'output': '870', 'relation': '=='}, {'input': '747, 470', 'output': '1217', 'relation': '=='}, {'input': '549, 127', 'output': '676', 'relation': '=='}, {'input': '996, 944', 'output': '1940', 'relation': '=='}, {'input': '387, 80', 'output': '467', 'relation': '=='}, {'input': '565, 300', 'output': '865', 'relation': '=='}, {'input': '849, 643', 'output': '1492', 'relation': '=='}, {'input': '633, 906', 'output': '1539', 'relation': '=='}, {'input': '882, 370', 'output': '1252', 'relation': '=='}, {'input': '591, 196', 'output': '787', 'relation': '=='}, {'input': '721, 71', 'output': '792', 'relation': '=='}, {'input': '46, 677', 'output': '723', 'relation': '=='}, {'input': '233, 791', 'output': '1024', 'relation': '=='}, {'input': '296, 81', 'output': '377', 'relation': '=='}, {'input': '875, 238', 'output': '1113', 'relation': '=='}, {'input': '887, 103', 'output': '990', 'relation': '=='}, {'input': '389, 284', 'output': '673', 'relation': '=='}, {'input': '464, 650', 'output': '1114', 'relation': '=='}, {'input': '854, 373', 'output': '1227', 'relation': '=='}, {'input': '166, 379', 'output': '545', 'relation': '=='}, {'input': '363, 214', 'output': '577', 'relation': '=='}, {'input': '686, 273', 'output': '959', 'relation': '=='}, {'input': '718, 959', 'output': '1677', 'relation': '=='}, {'input': '699, 663', 'output': '1362', 'relation': '=='}, {'input': '73, 623', 'output': '696', 'relation': '=='}, {'input': '650, 175', 'output': '825', 'relation': '=='}, {'input': '546, 746', 'output': '1292', 'relation': '=='}, {'input': '250, 167', 'output': '417', 'relation': '=='}, {'input': '473, 388', 'output': '861', 'relation': '=='}, {'input': '276, 947', 'output': '1223', 'relation': '=='}, {'input': '655, 704', 'output': '1359', 'relation': '=='}, {'input': '570, 224', 'output': '794', 'relation': '=='}, {'input': '701, 332', 'output': '1033', 'relation': '=='}, {'input': '863, 786', 'output': '1649', 'relation': '=='}, {'input': '794, 57', 'output': '851', 'relation': '=='}, {'input': '234, 841', 'output': '1075', 'relation': '=='}, {'input': '32, 824', 'output': '856', 'relation': '=='}, {'input': '323, 410', 'output': '733', 'relation': '=='}, {'input': '274, 67', 'output': '341', 'relation': '=='}, {'input': '216, 935', 'output': '1151', 'relation': '=='}, {'input': '965, 580', 'output': '1545', 'relation': '=='}, {'input': '897, 735', 'output': '1632', 'relation': '=='}, {'input': '322, 217', 'output': '539', 'relation': '=='}, {'input': '671, 511', 'output': '1182', 'relation': '=='}, {'input': '405, 905', 'output': '1310', 'relation': '=='}, {'input': '936, 658', 'output': '1594', 'relation': '=='}, {'input': '469, 146', 'output': '615', 'relation': '=='}, {'input': '271, 142', 'output': '413', 'relation': '=='}, {'input': '252, 762', 'output': '1014', 'relation': '=='}, {'input': '574, 551', 'output': '1125', 'relation': '=='}, {'input': '269, 764', 'output': '1033', 'relation': '=='}, {'input': '598, 438', 'output': '1036', 'relation': '=='}, {'input': '919, 597', 'output': '1516', 'relation': '=='}, {'input': '408, 370', 'output': '778', 'relation': '=='}, {'input': '224, 141', 'output': '365', 'relation': '=='}, {'input': '521, 505', 'output': '1026', 'relation': '=='}, {'input': '93, 773', 'output': '866', 'relation': '=='}, {'input': '48, 881', 'output': '929', 'relation': '=='}, {'input': '112, 156', 'output': '268', 'relation': '=='}, {'input': '642, 163', 'output': '805', 'relation': '=='}, {'input': '811, 696', 'output': '1507', 'relation': '=='}, {'input': '432, 610', 'output': '1042', 'relation': '=='}, {'input': '65, 394', 'output': '459', 'relation': '=='}, {'input': '390, 610', 'output': '1000', 'relation': '=='}, {'input': '479, 541', 'output': '1020', 'relation': '=='}, {'input': '257, 994', 'output': '1251', 'relation': '=='}, {'input': '566, 881', 'output': '1447', 'relation': '=='}, {'input': '965, 11', 'output': '976', 'relation': '=='}, {'input': '696, 738', 'output': '1434', 'relation': '=='}, {'input': '117, 698', 'output': '815', 'relation': '=='}]" same_chars,HumanEval/54," def same_chars(s0: str, s1: str): """""" Check if two words have the same characters. >>> same_chars('eabcdzzzz', 'dddzzzzzzzddeddabc') True >>> same_chars('abcd', 'dddddddabc') True >>> same_chars('dddddddabc', 'abcd') True >>> same_chars('eabcd', 'dddddddabc') False >>> same_chars('abcd', 'dddddddabce') False >>> same_chars('eabcdzzzz', 'dddzzzzzzzddddabc') False """""" "," def candidate(s0: str, s1: str): """""" Check if two words satisfy a specific condition (such as having the same length, having the same characters, or meeting another specific condition). >>> candidate('eabcdzzzz', 'dddzzzzzzzddeddabc') True >>> candidate('abcd', 'dddddddabc') True >>> candidate('dddddddabc', 'abcd') True >>> candidate('eabcd', 'dddddddabc') False >>> candidate('abcd', 'dddddddabce') False >>> candidate('eabcdzzzz', 'dddzzzzzzzddddabc') False """""" "," def same_chars(s0: str, s1: str): """""" Check if two words have the same characters. >>> same_chars('eabcdzzzz', 'dddzzzzzzzddeddabc') False >>> same_chars('abcd', 'dddddddabc') False >>> same_chars('dddddddabc', 'abcd') False >>> same_chars('eabcd', 'dddddddabc') True >>> same_chars('abcd', 'dddddddabce') True >>> same_chars('eabcdzzzz', 'dddzzzzzzzddddabc') True """""" "," def candidate(s0: str, s1: str): """""" >>> candidate('eabcdzzzz', 'dddzzzzzzzddeddabc') True >>> candidate('abcd', 'dddddddabc') True >>> candidate('dddddddabc', 'abcd') True >>> candidate('eabcd', 'dddddddabc') False >>> candidate('abcd', 'dddddddabce') False >>> candidate('eabcdzzzz', 'dddzzzzzzzddddabc') False """""" "," def candidate(s0: str, s1: str): """""" Check if two words satisfy a specific condition (such as having the same length, having the same characters, or meeting another specific condition). >>> candidate('eabcdzzzz', 'dddzzzzzzzddeddabc') False >>> candidate('abcd', 'dddddddabc') False >>> candidate('dddddddabc', 'abcd') False >>> candidate('eabcd', 'dddddddabc') True >>> candidate('abcd', 'dddddddabce') True >>> candidate('eabcdzzzz', 'dddzzzzzzzddddabc') True """""" ",," def candidate(s0: str, s1: str): """""" >>> candidate('eabcdzzzz', 'dddzzzzzzzddeddabc') True >>> candidate('abcd', 'dddddddabc') True >>> candidate('dddddddabc', 'abcd') True >>> candidate('eabcd', 'dddddddabc') False >>> candidate('abcd', 'dddddddabce') False >>> candidate('eabcdzzzz', 'dddzzzzzzzddddabc') False """""" ",," def same_chars(s0: str, s1: str): """""" Check if two words have the same characters. >>> same_chars('eabcdzzzz', 'dddzzzzzzzddeddabc') True >>> same_chars('abcd', 'dddddddabc') True >>> same_chars('dddddddabc', 'abcd') True >>> same_chars('eabcd', 'dddddddabc') False >>> same_chars('abcd', 'dddddddabce') False >>> same_chars('eabcdzzzz', 'dddzzzzzzzddddabc') False """""" return set(s0) == set(s1) ","[{'input': ""'eabcdzzzz', 'dddzzzzzzzddeddabc'"", 'output': 'True', 'relation': '=='}, {'input': ""'abcd', 'dddddddabc'"", 'output': 'True', 'relation': '=='}, {'input': ""'dddddddabc', 'abcd'"", 'output': 'True', 'relation': '=='}, {'input': ""'eabcd', 'dddddddabc'"", 'output': 'False', 'relation': '=='}, {'input': ""'abcd', 'dddddddabcf'"", 'output': 'False', 'relation': '=='}, {'input': ""'eabcdzzzz', 'dddzzzzzzzddddabc'"", 'output': 'False', 'relation': '=='}, {'input': ""'aabb', 'aaccc'"", 'output': 'False', 'relation': '=='}]" fib,HumanEval/55," def fib(n: int): """"""Return n-th Fibonacci number. >>> fib(10) 55 >>> fib(1) 1 >>> fib(8) 21 """""" "," def candidate(n: int): """"""Return a number that satisfies a specific condition (such as being n-th Prime number, being n-th Fibonacci number, or meeting another specific condition). >>> candidate(10) 55 >>> candidate(1) 1 >>> candidate(8) 21 """""" "," def fib(n: int): """"""Return n-th Fibonacci number. >>> fib(10) 550 >>> fib(1) 10 >>> fib(8) 210 """""" "," def candidate(n: int): """""" >>> candidate(10) 55 >>> candidate(1) 1 >>> candidate(8) 21 """""" "," def candidate(n: int): """"""Return a number that satisfies a specific condition (such as being n-th Prime number, being n-th Fibonacci number, or meeting another specific condition). >>> candidate(10) 550 >>> candidate(1) 10 >>> candidate(8) 210 """""" ",," def candidate(n: int): """""" >>> candidate(10) 550 >>> candidate(1) 10 >>> candidate(8) 210 """""" ",," def fib(n: int): """"""Return n-th Fibonacci number. >>> fib(10) 55 >>> fib(1) 1 >>> fib(8) 21 """""" if n == 0: return 0 if n == 1: return 1 return fib(n - 1) + fib(n - 2) ","[{'input': '10', 'output': '55', 'relation': '=='}, {'input': '1', 'output': '1', 'relation': '=='}, {'input': '8', 'output': '21', 'relation': '=='}, {'input': '11', 'output': '89', 'relation': '=='}, {'input': '12', 'output': '144', 'relation': '=='}]" correct_bracketing,HumanEval/56," def correct_bracketing(brackets: str): """""" brackets is a string of ""<"" and "">"". return True if every opening bracket has a corresponding closing bracket. >>> correct_bracketing(""<"") False >>> correct_bracketing(""<>"") True >>> correct_bracketing(""<<><>>"") True >>> correct_bracketing(""><<>"") False """""" "," def candidate(brackets: str): """""" brackets is a string of ""<"" and "">"". return True if every opening brackets have K corresponding closing brackets. >>> candidate(""<"") False >>> candidate(""<>"") True >>> candidate(""<<><>>"") True >>> candidate(""><<>"") False """""" "," def correct_bracketing(brackets: str): """""" brackets is a string of ""<"" and "">"". return True if every opening bracket has a corresponding closing bracket. >>> correct_bracketing(""<"") True >>> correct_bracketing(""<>"") False >>> correct_bracketing(""<<><>>"") False >>> correct_bracketing(""><<>"") True """""" "," def correct_bracketing(brackets: str): """""" brackets is a string of ""<"" and "">"". >>> correct_bracketing(""<"") False """""" "," def candidate(brackets: str): """""" brackets is a string of ""<"" and "">"". return True if every opening bracket has K corresponding closing bracket. >>> candidate(""<"") True >>> candidate(""<>"") False >>> candidate(""<<><>>"") False >>> candidate(""><<>"") True """""" "," def candidate(brackets: str): """""" brackets is a string of ""<"" and "">"". >>> candidate(""<"") False """""" "," def correct_bracketing(brackets: str): """""" brackets is a string of ""<"" and "">"". >>> correct_bracketing(""<"") True """""" "," def candidate(brackets: str): """""" brackets is a string of ""<"" and "">"". >>> candidate(""<"") True """""" "," def correct_bracketing(brackets: str): """""" brackets is a string of ""<"" and "">"". return True if every opening bracket has a corresponding closing bracket. >>> correct_bracketing(""<"") False >>> correct_bracketing(""<>"") True >>> correct_bracketing(""<<><>>"") True >>> correct_bracketing(""><<>"") False """""" depth = 0 for b in brackets: if b == ""<"": depth += 1 else: depth -= 1 if depth < 0: return False return depth == 0 ","[{'input': ""'<>'"", 'output': 'True', 'relation': '=='}, {'input': ""'<<><>>'"", 'output': 'True', 'relation': '=='}, {'input': ""'<><><<><>><>'"", 'output': 'True', 'relation': '=='}, {'input': ""'<><><<<><><>><>><<><><<>>>'"", 'output': 'True', 'relation': '=='}, {'input': ""'<<<><>>>>'"", 'output': 'False', 'relation': '=='}, {'input': ""'><<>'"", 'output': 'False', 'relation': '=='}, {'input': ""'<'"", 'output': 'False', 'relation': '=='}, {'input': ""'<<<<'"", 'output': 'False', 'relation': '=='}, {'input': ""'>'"", 'output': 'False', 'relation': '=='}, {'input': ""'<<>'"", 'output': 'False', 'relation': '=='}, {'input': ""'<><><<><>><>><<>'"", 'output': 'False', 'relation': '=='}, {'input': ""'<><><<><>><>>><>'"", 'output': 'False', 'relation': '=='}]" monotonic,HumanEval/57," def monotonic(l: list): """"""Return True if list elements are monotonically increasing or decreasing. >>> monotonic([1, 2, 4, 20]) True >>> monotonic([1, 20, 4, 10]) False >>> monotonic([4, 1, 0, -10]) True """""" "," def candidate(l: list): """"""Return True if list elements are increasing or decreasing with a specific condition (such as elements being monotonical, nonmonotonical, or another specific condition). >>> candidate([1, 2, 4, 20]) True >>> candidate([1, 20, 4, 10]) False >>> candidate([4, 1, 0, -10]) True """""" "," def monotonic(l: list): """"""Return True if list elements are monotonically increasing or decreasing. >>> monotonic([1, 2, 4, 20]) False >>> monotonic([1, 20, 4, 10]) True >>> monotonic([4, 1, 0, -10]) False """""" "," def candidate(l: list): """""" >>> candidate([1, 2, 4, 20]) True >>> candidate([1, 20, 4, 10]) False >>> candidate([4, 1, 0, -10]) True """""" "," def candidate(l: list): """"""Return True if list elements are increasing or decreasing with a specific condition (such as elements being monotonical, nonmonotonical, or another specific condition). >>> candidate([1, 2, 4, 20]) False >>> candidate([1, 20, 4, 10]) True >>> candidate([4, 1, 0, -10]) False """""" ",," def candidate(l: list): """"""Return True if list elements are monotonic. >>> candidate([1, 2, 4, 20]) False >>> candidate([1, 20, 4, 10]) True >>> candidate([4, 1, 0, -10]) False """""" ",," def monotonic(l: list): """"""Return True is list elements are monotonically increasing or decreasing. >>> monotonic([1, 2, 4, 20]) True >>> monotonic([1, 20, 4, 10]) False >>> monotonic([4, 1, 0, -10]) True """""" if l == sorted(l) or l == sorted(l, reverse=True): return True return False ","[{'input': '[1, 2, 4, 10]', 'output': 'True', 'relation': '=='}, {'input': '[1, 2, 4, 20]', 'output': 'True', 'relation': '=='}, {'input': '[1, 20, 4, 10]', 'output': 'False', 'relation': '=='}, {'input': '[4, 1, 0, -10]', 'output': 'True', 'relation': '=='}, {'input': '[4, 1, 1, 0]', 'output': 'True', 'relation': '=='}, {'input': '[1, 2, 3, 2, 5, 60]', 'output': 'False', 'relation': '=='}, {'input': '[1, 2, 3, 4, 5, 60]', 'output': 'True', 'relation': '=='}, {'input': '[9, 9, 9, 9]', 'output': 'True', 'relation': '=='}]" common,HumanEval/58," def common(l1: list, l2: list): """"""Return sorted unique common elements for two lists. >>> common([1, 4, 3, 34, 653, 2, 5], [5, 7, 1, 5, 9, 653, 121]) [1, 5, 653] >>> common([5, 3, 2, 8], [3, 2]) [2, 3] """""" "," def candidate(l1: list, l2: list): """"""Return sorted (descendingly or ascendingly) unique common elements for two lists. >>> candidate([1, 4, 3, 34, 653, 2, 5], [5, 7, 1, 5, 9, 653, 121]) [1, 5, 653] >>> candidate([5, 3, 2, 8], [3, 2]) [2, 3] """""" "," def common(l1: list, l2: list): """"""Return sorted unique common elements for two lists. >>> common([1, 4, 3, 34, 653, 2, 5], [5, 7, 1, 5, 9, 653, 121]) [653, 5, 1] >>> common([5, 3, 2, 8], [3, 2]) [3, 2] """""" "," def common(l1: list, l2: list): """"""Return common. >>> common([1, 4, 3, 34, 653, 2, 5], [5, 7, 1, 5, 9, 653, 121]) [1, 5, 653] >>> common([5, 3, 2, 8], [3, 2]) [2, 3] """""" "," def candidate(l1: list, l2: list): """"""Return sorted (descendingly or ascendingly) unique common elements for two lists. >>> candidate([1, 4, 3, 34, 653, 2, 5], [5, 7, 1, 5, 9, 653, 121]) [653, 5, 1] >>> candidate([5, 3, 2, 8], [3, 2]) [3, 2] """""" "," def candidate(l1: list, l2: list): """"""Return common. >>> candidate([1, 4, 3, 34, 653, 2, 5], [5, 7, 1, 5, 9, 653, 121]) [1, 5, 653] >>> candidate([5, 3, 2, 8], [3, 2]) [2, 3] """""" "," def common(l1: list, l2: list): """"""Return common. >>> common([1, 4, 3, 34, 653, 2, 5], [5, 7, 1, 5, 9, 653, 121]) [653, 5, 1] >>> common([5, 3, 2, 8], [3, 2]) [3, 2] """""" "," def candidate(l1: list, l2: list): """"""Return common. >>> candidate([1, 4, 3, 34, 653, 2, 5], [5, 7, 1, 5, 9, 653, 121]) [653, 5, 1] >>> candidate([5, 3, 2, 8], [3, 2]) [3, 2] """""" "," def common(l1: list, l2: list): """"""Return sorted unique common elements for two lists. >>> common([1, 4, 3, 34, 653, 2, 5], [5, 7, 1, 5, 9, 653, 121]) [1, 5, 653] >>> common([5, 3, 2, 8], [3, 2]) [2, 3] """""" ret = set() for e1 in l1: for e2 in l2: if e1 == e2: ret.add(e1) return sorted(list(ret)) ","[{'input': '[1, 4, 3, 34, 653, 2, 5], [5, 7, 1, 5, 9, 653, 121]', 'output': '[1, 5, 653]', 'relation': '=='}, {'input': '[5, 3, 2, 8], [3, 2]', 'output': '[2, 3]', 'relation': '=='}, {'input': '[4, 3, 2, 8], [3, 2, 4]', 'output': '[2, 3, 4]', 'relation': '=='}, {'input': '[4, 3, 2, 8], []', 'output': '[]', 'relation': '=='}]" largest_prime_factor,HumanEval/59," def largest_prime_factor(n: int): """"""Return the largest prime factor of n. Assume n > 1 and is not a prime. >>> largest_prime_factor(13195) 29 >>> largest_prime_factor(2048) 2 """""" "," def candidate(n: int): """"""Return the smallest or largest prime factor of n. Assume n > 1 and is not a prime. >>> candidate(13195) 29 >>> candidate(2048) 2 """""" "," def largest_prime_factor(n: int): """"""Return the largest prime factor of n. Assume n > 1 and is not a prime. >>> largest_prime_factor(13195) 5 >>> largest_prime_factor(2048) 2 """""" "," def candidate(n: int): """"""Return the prime factor of n. Assume n > 1 and is not a prime. """""" "," def candidate(n: int): """"""Return the smallest or largest prime factor of n. Assume n > 1 and is not a prime. >>> candidate(13195) 5 >>> candidate(2048) 2 """""" "," def candidate(n: int): """"""Return the smallest or largest prime factor of n. Assume n > 1 and is not a prime. """""" ",,," def largest_prime_factor(n: int): """"""Return the largest prime factor of n. Assume n > 1 and is not a prime. >>> largest_prime_factor(13195) 29 >>> largest_prime_factor(2048) 2 """""" def is_prime(k): if k < 2: return False for i in range(2, k - 1): if k % i == 0: return False return True largest = 1 for j in range(2, n + 1): if n % j == 0 and is_prime(j): largest = max(largest, j) return largest ","[{'input': '15', 'output': '5', 'relation': '=='}, {'input': '27', 'output': '3', 'relation': '=='}, {'input': '63', 'output': '7', 'relation': '=='}, {'input': '330', 'output': '11', 'relation': '=='}, {'input': '13195', 'output': '29', 'relation': '=='}]" sum_to_n,HumanEval/60," def sum_to_n(n: int): """"""sum_to_n is a function that sums numbers from 1 to n. >>> sum_to_n(30) 465 >>> sum_to_n(100) 5050 >>> sum_to_n(5) 15 >>> sum_to_n(10) 55 >>> sum_to_n(1) 1 """""" "," def candidate(n: int): """"""candidate is a function that sums up all numbers. >>> candidate(30) 465 >>> candidate(100) 5050 >>> candidate(5) 15 >>> candidate(10) 55 >>> candidate(1) 1 """""" "," def sum_to_n(n: int): """"""sum_to_n is a function that sums numbers from 1 to n. >>> sum_to_n(30) 930 >>> sum_to_n(100) 10100 >>> sum_to_n(5) 30 >>> sum_to_n(10) 110 >>> sum_to_n(1) 2 """""" "," def candidate(n: int): """"""candidate is a function that sums numbers. """""" "," def candidate(n: int): """"""candidate is a function that sums up all numbers. >>> candidate(30) 465 >>> candidate(100) 10100 >>> candidate(5) 30 >>> candidate(10) 110 >>> candidate(1) 2 """""" ",,,," def sum_to_n(n: int): """"""sum_to_n is a function that sums numbers from 1 to n. >>> sum_to_n(30) 465 >>> sum_to_n(100) 5050 >>> sum_to_n(5) 15 >>> sum_to_n(10) 55 >>> sum_to_n(1) 1 """""" return sum(range(n + 1)) ","[{'input': '1', 'output': '1', 'relation': '=='}, {'input': '6', 'output': '21', 'relation': '=='}, {'input': '11', 'output': '66', 'relation': '=='}, {'input': '30', 'output': '465', 'relation': '=='}, {'input': '100', 'output': '5050', 'relation': '=='}]" correct_bracketing,HumanEval/61," def correct_bracketing(brackets: str): """""" brackets is a string of ""("" and "")"". return True if every opening bracket has a corresponding closing bracket. >>> correct_bracketing(""("") False >>> correct_bracketing(""()"") True >>> correct_bracketing(""(()())"") True >>> correct_bracketing("")(()"") False """""" "," def candidate(brackets: str): """""" brackets is a string of ""("" and "")"". return True if every closing or opening bracket has a corresponding closing or opening bracket. >>> candidate(""("") False >>> candidate(""()"") True >>> candidate(""(()())"") True >>> candidate("")(()"") False """""" "," def correct_bracketing(brackets: str): """""" brackets is a string of ""("" and "")"". return True if every opening bracket has a corresponding closing bracket. >>> correct_bracketing(""("") True >>> correct_bracketing(""()"") False >>> correct_bracketing(""(()())"") False >>> correct_bracketing("")(()"") True """""" "," def correct_bracketing(brackets: str): """""" brackets is a string of ""("" and "")"". >>> correct_bracketing(""("") False """""" "," def candidate(brackets: str): """""" brackets is a string of ""("" and "")"". return True if every closing or opening bracket has a corresponding closing or opening bracket. >>> candidate(""("") True >>> candidate(""()"") False >>> candidate(""(()())"") False >>> candidate("")(()"") True """""" "," def candidate(brackets: str): """""" brackets is a string of ""("" and "")"". >>> candidate(""("") False """""" "," def correct_bracketing(brackets: str): """""" brackets is a string of ""("" and "")"". >>> correct_bracketing(""("") True """""" "," def candidate(brackets: str): """""" brackets is a string of ""("" and "")"". >>> candidate(""("") True """""" "," def correct_bracketing(brackets: str): """""" brackets is a string of ""("" and "")"". return True if every opening bracket has a corresponding closing bracket. >>> correct_bracketing(""("") False >>> correct_bracketing(""()"") True >>> correct_bracketing(""(()())"") True >>> correct_bracketing("")(()"") False """""" depth = 0 for b in brackets: if b == ""("": depth += 1 else: depth -= 1 if depth < 0: return False return depth == 0 ","[{'input': ""'()'"", 'output': 'True', 'relation': '=='}, {'input': ""'(()())'"", 'output': 'True', 'relation': '=='}, {'input': ""'()()(()())()'"", 'output': 'True', 'relation': '=='}, {'input': ""'()()((()()())())(()()(()))'"", 'output': 'True', 'relation': '=='}, {'input': ""'((()())))'"", 'output': 'False', 'relation': '=='}, {'input': ""')(()'"", 'output': 'False', 'relation': '=='}, {'input': ""'('"", 'output': 'False', 'relation': '=='}, {'input': ""'(((('"", 'output': 'False', 'relation': '=='}, {'input': ""')'"", 'output': 'False', 'relation': '=='}, {'input': ""'(()'"", 'output': 'False', 'relation': '=='}, {'input': ""'()()(()())())(()'"", 'output': 'False', 'relation': '=='}, {'input': ""'()()(()())()))()'"", 'output': 'False', 'relation': '=='}]" derivative,HumanEval/62," def derivative(xs: list): """""" xs represent coefficients of a polynomial. xs[0] + xs[1] * x + xs[2] * x^2 + .... Return derivative of this polynomial in the same form. >>> derivative([3, 1, 2, 4, 5]) [1, 4, 12, 20] >>> derivative([1, 2, 3]) [2, 6] """""" "," def candidate(xs: list): """""" xs represent coefficients of a polynomial. xs[0] + xs[1] * x + xs[2] * x^2 + .... Return first or second derivative of this polynomial in the same form. >>> candidate([3, 1, 2, 4, 5]) [1, 4, 12, 20] >>> candidate([1, 2, 3]) [2, 6] """""" "," def derivative(xs: list): """""" xs represent coefficients of a polynomial. xs[0] + xs[1] * x + xs[2] * x^2 + .... Return derivative of this polynomial in the same form. >>> derivative([3, 1, 2, 4, 5]) [20, 12, 4, 1] >>> derivative([1, 2, 3]) [6, 2] """""" "," def candidate(xs: list): """""" xs represent coefficients of a polynomial. xs[0] + xs[1] * x + xs[2] * x^2 + .... """""" "," def candidate(xs: list): """""" xs represent coefficients of a polynomial. xs[0] + xs[1] * x + xs[2] * x^2 + .... Return first or second derivative of this polynomial in the same form. >>> candidate([3, 1, 2, 4, 5]) [20, 12, 4, 1] >>> candidate([1, 2, 3]) [6, 2] """""" ",,,," def derivative(xs: list): """""" xs represent coefficients of a polynomial. xs[0] + xs[1] * x + xs[2] * x^2 + .... Return derivative of this polynomial in the same form. >>> derivative([3, 1, 2, 4, 5]) [1, 4, 12, 20] >>> derivative([1, 2, 3]) [2, 6] """""" return [(i * x) for i, x in enumerate(xs)][1:] ","[{'input': '[3, 1, 2, 4, 5]', 'output': '[1, 4, 12, 20]', 'relation': '=='}, {'input': '[1, 2, 3]', 'output': '[2, 6]', 'relation': '=='}, {'input': '[3, 2, 1]', 'output': '[2, 2]', 'relation': '=='}, {'input': '[3, 2, 1, 0, 4]', 'output': '[2, 2, 0, 16]', 'relation': '=='}, {'input': '[1]', 'output': '[]', 'relation': '=='}]" fibfib,HumanEval/63," def fibfib(n: int): """"""The FibFib number sequence is a sequence similar to the Fibbonacci sequence that's defined as follows: fibfib(0) == 0 fibfib(1) == 0 fibfib(2) == 1 fibfib(n) == fibfib(n-1) + fibfib(n-2) + fibfib(n-3). Please write a function to efficiently compute the n-th element of the fibfib number sequence. >>> fibfib(1) 0 >>> fibfib(5) 4 >>> fibfib(8) 24 """""" "," def fibfib(n: int): """"""The FibFib number sequence is a sequence similar to the Fibbonacci sequence that's defined as follows: fibfib(0) == 0 fibfib(1) == 0 fibfib(2) == 1 fibfib(n) == fibfib(n-1) + fibfib(n-2) + fibfib(n-3). Please write a function to efficiently compute an arbitrary element of the fibfib number sequence. >>> fibfib(1) 0 >>> fibfib(5) 4 >>> fibfib(8) 24 """""" "," def fibfib(n: int): """"""The FibFib number sequence is a sequence similar to the Fibbonacci sequence that's defined as follows: fibfib(0) == 0 fibfib(1) == 0 fibfib(2) == 1 fibfib(n) == fibfib(n-1) + fibfib(n-2) + fibfib(n-3). Please write a function to efficiently compute the n-th element of the fibfib number sequence. >>> fibfib(1) 1 >>> fibfib(5) 5 >>> fibfib(8) 21 """""" "," def fibfib(n: int): """"""The FibFib number sequence is a sequence similar to the Fibbonacci sequence that's defined as follows: fibfib(0) == 0 fibfib(1) == 0 Please write a function to efficiently compute the n-th element of the fibfib number sequence. >>> fibfib(1) 0 >>> fibfib(5) 4 >>> fibfib(8) 24 """""" "," def fibfib(n: int): """"""The FibFib number sequence is a sequence similar to the Fibbonacci sequence that's defined as follows: fibfib(0) == 0 fibfib(1) == 0 fibfib(2) == 1 fibfib(n) == fibfib(n-1) + fibfib(n-2) + fibfib(n-3). Please write a function to efficiently compute an element of the fibfib number sequence. >>> fibfib(1) 1 >>> fibfib(5) 5 >>> fibfib(8) 21 """""" "," def fibfib(n: int): """"""The FibFib number sequence is a sequence similar to the Fibbonacci sequence that's defined as follows: fibfib(0) == 0 fibfib(1) == 0 Please write a function to efficiently compute an element of the fibfib number sequence. >>> fibfib(1) 0 >>> fibfib(5) 4 >>> fibfib(8) 24 """""" "," def fibfib(n: int): """"""The FibFib number sequence is a sequence similar to the Fibbonacci sequence that's defined as follows: fibfib(0) == 0 fibfib(1) == 0 Please write a function to efficiently compute the n-th element of the fibfib number sequence. >>> fibfib(1) 1 >>> fibfib(5) 5 >>> fibfib(8) 21 """""" "," def fibfib(n: int): """"""The FibFib number sequence is a sequence similar to the Fibbonacci sequence that's defined as follows: fibfib(0) == 0 fibfib(1) == 0 Please write a function to efficiently compute an element of the fibfib number sequence. >>> fibfib(1) 1 >>> fibfib(5) 5 >>> fibfib(8) 21 """""" "," def fibfib(n: int): """"""The FibFib number sequence is a sequence similar to the Fibbonacci sequnece that's defined as follows: fibfib(0) == 0 fibfib(1) == 0 fibfib(2) == 1 fibfib(n) == fibfib(n-1) + fibfib(n-2) + fibfib(n-3). Please write a function to efficiently compute the n-th element of the fibfib number sequence. >>> fibfib(1) 0 >>> fibfib(5) 4 >>> fibfib(8) 24 """""" if n == 0: return 0 if n == 1: return 0 if n == 2: return 1 return fibfib(n - 1) + fibfib(n - 2) + fibfib(n - 3) ","[{'input': '2', 'output': '1', 'relation': '=='}, {'input': '1', 'output': '0', 'relation': '=='}, {'input': '5', 'output': '4', 'relation': '=='}, {'input': '8', 'output': '24', 'relation': '=='}, {'input': '10', 'output': '81', 'relation': '=='}, {'input': '12', 'output': '274', 'relation': '=='}, {'input': '14', 'output': '927', 'relation': '=='}]" vowels_count,HumanEval/64," FIX = """""" Add more test cases. """""" def vowels_count(s): """"""Write a function vowels_count which takes a string representing a word as input and returns the number of vowels in the string. Vowels in this case are 'a', 'e', 'i', 'o', 'u'. Here, 'y' is also a vowel, but only when it is at the end of the given word. Example: >>> vowels_count(""abcde"") 2 >>> vowels_count(""ACEDY"") 3 """""" "," FIX = """""" Add more test cases. """""" def candidate(s): """"""Write a function candidate which takes a string representing a word as input and returns the number of characters or vowels in the string. Vowels in this case are 'a', 'e', 'i', 'o', 'u'. Here, 'y' is also a vowel, but only when it is at the end of the given word. Example: >>> candidate(""abcde"") 2 >>> candidate(""ACEDY"") 3 """""" "," FIX = """""" Add more test cases. """""" def vowels_count(s): """"""Write a function vowels_count which takes a string representing a word as input and returns the number of vowels in the string. Vowels in this case are 'a', 'e', 'i', 'o', 'u'. Here, 'y' is also a vowel, but only when it is at the end of the given word. Example: >>> vowels_count(""abcde"") 5 >>> vowels_count(""ACEDY"") 5 """""" "," FIX = """""" Add more test cases. """""" def candidate(s): """"""Write a function candidate which takes a string representing a word as input. Vowels in this case are 'a', 'e', 'i', 'o', 'u'. Here, 'y' is also a vowel, but only when it is at the end of the given word. """""" "," FIX = """""" Add more test cases. """""" def candidate(s): """"""Write a function candidate which takes a string representing a word as input and returns the number of characters or vowels in the string. Vowels in this case are 'a', 'e', 'i', 'o', 'u'. Here, 'y' is also a vowel, but only when it is at the end of the given word. Example: >>> candidate(""abcde"") 5 >>> candidate(""ACEDY"") 5 """""" ",,,," FIX = """""" Add more test cases. """""" def vowels_count(s): """"""Write a function vowels_count which takes a string representing a word as input and returns the number of vowels in the string. Vowels in this case are 'a', 'e', 'i', 'o', 'u'. Here, 'y' is also a vowel, but only when it is at the end of the given word. Example: >>> vowels_count(""abcde"") 2 >>> vowels_count(""ACEDY"") 3 """""" vowels = ""aeiouAEIOU"" n_vowels = sum(c in vowels for c in s) if s[-1] == 'y' or s[-1] == 'Y': n_vowels += 1 return n_vowels ","[{'input': '""abcde""', 'output': '2', 'relation': '=='}, {'input': '""Alone""', 'output': '3', 'relation': '=='}, {'input': '""key""', 'output': '2', 'relation': '=='}, {'input': '""bye""', 'output': '1', 'relation': '=='}, {'input': '""keY""', 'output': '2', 'relation': '=='}, {'input': '""bYe""', 'output': '1', 'relation': '=='}, {'input': '""ACEDY""', 'output': '3', 'relation': '=='}]" circular_shift,HumanEval/65," def circular_shift(x, shift): """"""Circular shift the digits of the integer x, shift the digits right by shift and return the result as a string. If shift > number of digits, return digits reversed. >>> circular_shift(12, 1) ""21"" >>> circular_shift(12, 2) ""12"" """""" "," def circular_shift(x, shift): """"""Circular shift the digits of the integer x, shift the digits left or right by shift and return the result as a string. If shift > number of digits, return digits reversed. >>> circular_shift(12, 1) ""21"" >>> circular_shift(12, 2) ""12"" """""" "," def circular_shift(x, shift): """"""Circular shift the digits of the integer x, shift the digits right by shift and return the result as a string. If shift > number of digits, return digits reversed. >>> circular_shift(12, 1) ""12"" >>> circular_shift(12, 2) ""21"" """""" "," def circular_shift(x, shift): """"""Circular shift the digits of the integer x, shift the digits and return the result as a string. """""" "," def circular_shift(x, shift): """"""Circular shift the digits of the integer x, shift the digits left or right by shift and return the result as a string. If shift > number of digits, return digits reversed. >>> circular_shift(12, 1) ""12"" >>> circular_shift(12, 2) ""21"" """""" "," def circular_shift(x, shift): """"""Circular shift the digits of the integer x, shift the digits left or right by shift and return the result as a string. """""" ",,," def circular_shift(x, shift): """"""Circular shift the digits of the integer x, shift the digits right by shift and return the result as a string. If shift > number of digits, return digits reversed. >>> circular_shift(12, 1) ""21"" >>> circular_shift(12, 2) ""12"" """""" s = str(x) if shift > len(s): return s[::-1] else: return s[len(s) - shift:] + s[:len(s) - shift] ","[{'input': '100, 2', 'output': '001', 'relation': '=='}, {'input': '12, 2', 'output': '12', 'relation': '=='}, {'input': '97, 8', 'output': '79', 'relation': '=='}, {'input': '12, 1', 'output': '21', 'relation': '=='}, {'input': '11, 101', 'output': '11', 'relation': '=='}]" digitSum,HumanEval/66," def digitSum(s): """"""Task Write a function that takes a string as input and returns the sum of the upper characters only' ASCII codes. Examples: digitSum("""") => 0 digitSum(""abAB"") => 131 digitSum(""abcCd"") => 67 digitSum(""helloE"") => 69 digitSum(""woArBld"") => 131 digitSum(""aAaaaXa"") => 153 """""" "," def digitSum(s): """"""Task Write a function that takes a string as input and returns the sum of the number of upper characters. Examples: digitSum("""") => 0 digitSum(""abAB"") => 131 digitSum(""abcCd"") => 67 digitSum(""helloE"") => 69 digitSum(""woArBld"") => 131 digitSum(""aAaaaXa"") => 153 """""" "," def digitSum(s): """"""Task Write a function that takes a string as input and returns the sum of the upper characters only' ASCII codes. Examples: digitSum("""") => 0 digitSum(""abAB"") => 2 digitSum(""abcCd"") => 1 digitSum(""helloE"") => 1 digitSum(""woArBld"") => 2 digitSum(""aAaaaXa"") => 2 """""" "," def digitSum(s): """"""Task Write a function that takes a string as input and returns the sum' """""" "," def digitSum(s): """"""Task Write a function that takes a string as input and returns the sum of the number of upper characters. Examples: digitSum("""") => 0 digitSum(""abAB"") => 2 digitSum(""abcCd"") => 1 digitSum(""helloE"") => 1 digitSum(""woArBld"") => 2 digitSum(""aAaaaXa"") => 2 """""" ",,,," def digitSum(s): """"""Task Write a function that takes a string as input and returns the sum of the upper characters only' ASCII codes. Examples: digitSum("""") => 0 digitSum(""abAB"") => 131 digitSum(""abcCd"") => 67 digitSum(""helloE"") => 69 digitSum(""woArBld"") => 131 digitSum(""aAaaaXa"") => 153 """""" if s == """": return 0 return sum(ord(char) if char.isupper() else 0 for char in s) ","[{'input': '""""', 'output': '0', 'relation': '=='}, {'input': '""abAB""', 'output': '131', 'relation': '=='}, {'input': '""abcCd""', 'output': '67', 'relation': '=='}, {'input': '""helloE""', 'output': '69', 'relation': '=='}, {'input': '""woArBld""', 'output': '131', 'relation': '=='}, {'input': '""aAaaaXa""', 'output': '153', 'relation': '=='}, {'input': '"" How are yOu?""', 'output': '151', 'relation': '=='}, {'input': '""You arE Very Smart""', 'output': '327', 'relation': '=='}]" fruit_distribution,HumanEval/67," def fruit_distribution(s,n): """""" In this task, you will be given a string that represents a number of apples and oranges that are distributed in a basket of fruit this basket contains apples, oranges, and mango fruits. Given the string that represents the total number of the oranges and apples and an integer that represent the total number of the fruits in the basket return the number of the mango fruits in the basket. for examble: fruit_distribution(""5 apples and 6 oranges"", 19) ->19 - 5 - 6 = 8 fruit_distribution(""0 apples and 1 oranges"",3) -> 3 - 0 - 1 = 2 fruit_distribution(""2 apples and 3 oranges"", 100) -> 100 - 2 - 3 = 95 fruit_distribution(""100 apples and 1 oranges"",120) -> 120 - 100 - 1 = 19 """""" "," def fruit_distribution(s,n): """""" In this task, you will be given a string that represents a number of apples and oranges that are distributed in a basket of fruit this basket contains apples, oranges, and mango fruits. Given the string that represents the total number of the oranges and apples and an integer that represent the total number of the fruits in the basket return the number of a certain type of fruits in the basket. for examble: fruit_distribution(""5 apples and 6 oranges"", 19) ->19 - 5 - 6 = 8 fruit_distribution(""0 apples and 1 oranges"",3) -> 3 - 0 - 1 = 2 fruit_distribution(""2 apples and 3 oranges"", 100) -> 100 - 2 - 3 = 95 fruit_distribution(""100 apples and 1 oranges"",120) -> 120 - 100 - 1 = 19 """""" "," def fruit_distribution(s,n): """""" In this task, you will be given a string that represents a number of apples and oranges that are distributed in a basket of fruit this basket contains apples, oranges, and mango fruits. Given the string that represents the total number of the oranges and apples and an integer that represent the total number of the fruits in the basket return the number of the mango fruits in the basket. for examble: fruit_distribution(""5 apples and 6 oranges"", 19) ->19 - 6 = 13 fruit_distribution(""0 apples and 1 oranges"",3) -> 3 - 0 = 3 fruit_distribution(""2 apples and 3 oranges"", 100) -> 100 - 2 = 98 fruit_distribution(""100 apples and 1 oranges"",120) -> 120 - 100 = 20 """""" "," def fruit_distribution(s,n): """""" In this task, you will be given a string that represents a number of apples and oranges that are distributed in a basket of fruit this basket contains apples, oranges, and mango fruits. Given the string that represents the total number of the oranges and apples and an integer that represent the total number of the fruits in the basket return the number """""" "," def fruit_distribution(s,n): """""" In this task, you will be given a string that represents a number of apples and oranges that are distributed in a basket of fruit this basket contains apples, oranges, and mango fruits. Given the string that represents the total number of the oranges and apples and an integer that represent the total number of the fruits in the basket return the number of a certain type of fruits in the basket. for examble: fruit_distribution(""5 apples and 6 oranges"", 19) ->19 - 6 = 13 fruit_distribution(""0 apples and 1 oranges"",3) -> 3 - 0 = 3 fruit_distribution(""2 apples and 3 oranges"", 100) -> 100 - 2 = 98 fruit_distribution(""100 apples and 1 oranges"",120) -> 120 - 100 = 20 """""" ",,,," def fruit_distribution(s,n): """""" In this task, you will be given a string that represents a number of apples and oranges that are distributed in a basket of fruit this basket contains apples, oranges, and mango fruits. Given the string that represents the total number of the oranges and apples and an integer that represent the total number of the fruits in the basket return the number of the mango fruits in the basket. for examble: fruit_distribution(""5 apples and 6 oranges"", 19) ->19 - 5 - 6 = 8 fruit_distribution(""0 apples and 1 oranges"",3) -> 3 - 0 - 1 = 2 fruit_distribution(""2 apples and 3 oranges"", 100) -> 100 - 2 - 3 = 95 fruit_distribution(""100 apples and 1 oranges"",120) -> 120 - 100 - 1 = 19 """""" lis = list() for i in s.split(' '): if i.isdigit(): lis.append(int(i)) return n - sum(lis) ","[{'input': '""5 apples and 6 oranges"",19', 'output': '8', 'relation': '=='}, {'input': '""5 apples and 6 oranges"",21', 'output': '10', 'relation': '=='}, {'input': '""0 apples and 1 oranges"",3', 'output': '2', 'relation': '=='}, {'input': '""1 apples and 0 oranges"",3', 'output': '2', 'relation': '=='}, {'input': '""2 apples and 3 oranges"",100', 'output': '95', 'relation': '=='}, {'input': '""2 apples and 3 oranges"",5', 'output': '0', 'relation': '=='}, {'input': '""1 apples and 100 oranges"",120', 'output': '19', 'relation': '=='}]" pluck,HumanEval/68," def pluck(arr): """""" ""Given an array representing a branch of a tree that has non-negative integer nodes your task is to pluck one of the nodes and return it. The plucked node should be the node with the smallest even value. If multiple nodes with the same smallest even value are found return the node that has smallest index. The plucked node should be returned in a list, [ smalest_value, its index ], If there are no even values or the given array is empty, return []. Example 1: Input: [4,2,3] Output: [2, 1] Explanation: 2 has the smallest even value, and 2 has the smallest index. Example 2: Input: [1,2,3] Output: [2, 1] Explanation: 2 has the smallest even value, and 2 has the smallest index. Example 3: Input: [] Output: [] Example 4: Input: [5, 0, 3, 0, 4, 2] Output: [0, 1] Explanation: 0 is the smallest value, but there are two zeros, so we will choose the first zero, which has the smallest index. Constraints: * 1 <= nodes.length <= 10000 * 0 <= node.value """""" "," def pluck(arr): """""" ""Given an array representing a branch of a tree that has non-negative integer nodes your task is to pluck one of the nodes and return it. The plucked node should be the node with the value. If multiple nodes with the value are found return the node that has smallest index. The plucked node should be returned in a list, [ value, its index ], If there are no values or the given array is empty, return []. Example 1: Input: [4,2,3] Output: [2, 1] Explanation Example 2: Input: [1,2,3] Output: [2, 1] Explanation Example 3: Input: [] Output: [] Example 4: Input: [5, 0, 3, 0, 4, 2] Output: [0, 1] Explanation Constraints: * 1 <= nodes.length <= 10000 * 0 <= node.value """""" "," def pluck(arr): """""" ""Given an array representing a branch of a tree that has non-negative integer nodes your task is to pluck one of the nodes and return it. The plucked node should be the node with the smallest even value. If multiple nodes with the same smallest even value are found return the node that has smallest index. The plucked node should be returned in a list, [ smalest_value, its index ], If there are no even values or the given array is empty, return []. Example 1: Input: [4,2,3] Output: [4, 0] Explanation Example 2: Input: [1,2,3] Output: [3, 2] Explanation Example 3: Input: [] Output: [] Example 4: Input: [5, 0, 3, 0, 4, 2] Output: [5, 0] Explanation Constraints: * 1 <= nodes.length <= 10000 * 0 <= node.value """""" "," def pluck(arr): """""" ""Given an array representing a branch of a tree that has non-negative integer nodes your task is to pluck one of the nodes and return it. The plucked node should be the node """""" "," def pluck(arr): """""" ""Given an array representing a branch of a tree that has non-negative integer nodes your task is to pluck one of the nodes and return it. The plucked node should be the node with the value. If multiple nodes with the value are found return the node that has smallest index. The plucked node should be returned in a list, [ value, its index ], If there are no values or the given array is empty, return []. Example 1: Input: [4,2,3] Output: [4, 0] Explanation Example 2: Input: [1,2,3] Output: [3, 2] Explanation Example 3: Input: [] Output: [] Example 4: Input: [5, 0, 3, 0, 4, 2] Output: [5, 0] Explanation Constraints: * 1 <= nodes.length <= 10000 * 0 <= node.value """""" ",,,," def pluck(arr): """""" ""Given an array representing a branch of a tree that has non-negative integer nodes your task is to pluck one of the nodes and return it. The plucked node should be the node with the smallest even value. If multiple nodes with the same smallest even value are found return the node that has smallest index. The plucked node should be returned in a list, [ smalest_value, its index ], If there are no even values or the given array is empty, return []. Example 1: Input: [4,2,3] Output: [2, 1] Explanation: 2 has the smallest even value, and 2 has the smallest index. Example 2: Input: [1,2,3] Output: [2, 1] Explanation: 2 has the smallest even value, and 2 has the smallest index. Example 3: Input: [] Output: [] Example 4: Input: [5, 0, 3, 0, 4, 2] Output: [0, 1] Explanation: 0 is the smallest value, but there are two zeros, so we will choose the first zero, which has the smallest index. Constraints: * 1 <= nodes.length <= 10000 * 0 <= node.value """""" if(len(arr) == 0): return [] evens = list(filter(lambda x: x%2 == 0, arr)) if(evens == []): return [] return [min(evens), arr.index(min(evens))] ","[{'input': '[4,2,3]', 'output': '[2, 1]', 'relation': '=='}, {'input': '[1,2,3]', 'output': '[2, 1]', 'relation': '=='}, {'input': '[]', 'output': '[]', 'relation': '=='}, {'input': '[5, 0, 3, 0, 4, 2]', 'output': '[0, 1]', 'relation': '=='}, {'input': '[1, 2, 3, 0, 5, 3]', 'output': '[0, 3]', 'relation': '=='}, {'input': '[5, 4, 8, 4 ,8]', 'output': '[4, 1]', 'relation': '=='}, {'input': '[7, 6, 7, 1]', 'output': '[6, 1]', 'relation': '=='}, {'input': '[7, 9, 7, 1]', 'output': '[]', 'relation': '=='}]" search,HumanEval/69," def search(lst): ''' You are given a non-empty list of positive integers. Return the greatest integer that is greater than zero, and has a frequency greater than or equal to the value of the integer itself. The frequency of an integer is the number of times it appears in the list. If no such a value exist, return -1. Examples: search([4, 1, 2, 2, 3, 1]) == 2 search([1, 2, 2, 3, 3, 3, 4, 4, 4]) == 3 search([5, 5, 4, 4, 4]) == -1 ''' "," def search(lst): ''' You are given a non-empty list of positive integers. Return the smallest or greatest integer that is greater than zero, and has a frequency similar to the value of the integer itself. The frequency of an integer is the number of times it appears in the list. If no such a value exist, return -1. Examples: search([4, 1, 2, 2, 3, 1]) == 2 search([1, 2, 2, 3, 3, 3, 4, 4, 4]) == 3 search([5, 5, 4, 4, 4]) == -1 ''' "," def search(lst): ''' You are given a non-empty list of positive integers. Return the greatest integer that is greater than zero, and has a frequency greater than or equal to the value of the integer itself. The frequency of an integer is the number of times it appears in the list. If no such a value exist, return -1. Examples: search([4, 1, 2, 2, 3, 1]) == 4 search([1, 2, 2, 3, 3, 3, 4, 4, 4]) == 4 search([5, 5, 4, 4, 4]) == 5 ''' "," def search(lst): ''' You are given a non-empty list of positive integers. Return the greatest integer that is greater than zero, and has a frequency. ''' "," def search(lst): ''' You are given a non-empty list of positive integers. Return the smallest or greatest integer that is greater than zero, and has a frequency similar to the value of the integer itself. The frequency of an integer is the number of times it appears in the list. If no such a value exist, return -1. Examples: search([4, 1, 2, 2, 3, 1]) == 4 search([1, 2, 2, 3, 3, 3, 4, 4, 4]) == 4 search([5, 5, 4, 4, 4]) == 5 ''' "," def search(lst): ''' You are given a non-empty list of positive integers. Return the smallest or greatest integer that is greater than zero, and has a frequency. ''' ",,," def search(lst): ''' You are given a non-empty list of positive integers. Return the greatest integer that is greater than zero, and has a frequency greater than or equal to the value of the integer itself. The frequency of an integer is the number of times it appears in the list. If no such a value exist, return -1. Examples: search([4, 1, 2, 2, 3, 1]) == 2 search([1, 2, 2, 3, 3, 3, 4, 4, 4]) == 3 search([5, 5, 4, 4, 4]) == -1 ''' frq = [0] * (max(lst) + 1) for i in lst: frq[i] += 1; ans = -1 for i in range(1, len(frq)): if frq[i] >= i: ans = i return ans ","[{'input': '[5, 5, 5, 5, 1]', 'output': '1', 'relation': '=='}, {'input': '[4, 1, 4, 1, 4, 4]', 'output': '4', 'relation': '=='}, {'input': '[3, 3]', 'output': '-1', 'relation': '=='}, {'input': '[8, 8, 8, 8, 8, 8, 8, 8]', 'output': '8', 'relation': '=='}, {'input': '[2, 3, 3, 2, 2]', 'output': '2', 'relation': '=='}, {'input': '[2, 7, 8, 8, 4, 8, 7, 3, 9, 6, 5, 10, 4, 3, 6, 7, 1, 7, 4, 10, 8, 1]', 'output': '1', 'relation': '=='}, {'input': '[3, 2, 8, 2]', 'output': '2', 'relation': '=='}, {'input': '[6, 7, 1, 8, 8, 10, 5, 8, 5, 3, 10]', 'output': '1', 'relation': '=='}, {'input': '[8, 8, 3, 6, 5, 6, 4]', 'output': '-1', 'relation': '=='}, {'input': '[6, 9, 6, 7, 1, 4, 7, 1, 8, 8, 9, 8, 10, 10, 8, 4, 10, 4, 10, 1, 2, 9, 5, 7, 9]', 'output': '1', 'relation': '=='}, {'input': '[1, 9, 10, 1, 3]', 'output': '1', 'relation': '=='}, {'input': '[6, 9, 7, 5, 8, 7, 5, 3, 7, 5, 10, 10, 3, 6, 10, 2, 8, 6, 5, 4, 9, 5, 3, 10]', 'output': '5', 'relation': '=='}, {'input': '[1]', 'output': '1', 'relation': '=='}, {'input': '[8, 8, 10, 6, 4, 3, 5, 8, 2, 4, 2, 8, 4, 6, 10, 4, 2, 1, 10, 2, 1, 1, 5]', 'output': '4', 'relation': '=='}, {'input': '[2, 10, 4, 8, 2, 10, 5, 1, 2, 9, 5, 5, 6, 3, 8, 6, 4, 10]', 'output': '2', 'relation': '=='}, {'input': '[1, 6, 10, 1, 6, 9, 10, 8, 6, 8, 7, 3]', 'output': '1', 'relation': '=='}, {'input': '[9, 2, 4, 1, 5, 1, 5, 2, 5, 7, 7, 7, 3, 10, 1, 5, 4, 2, 8, 4, 1, 9, 10, 7, 10, 2, 8, 10, 9, 4]', 'output': '4', 'relation': '=='}, {'input': '[2, 6, 4, 2, 8, 7, 5, 6, 4, 10, 4, 6, 3, 7, 8, 8, 3, 1, 4, 2, 2, 10, 7]', 'output': '4', 'relation': '=='}, {'input': '[9, 8, 6, 10, 2, 6, 10, 2, 7, 8, 10, 3, 8, 2, 6, 2, 3, 1]', 'output': '2', 'relation': '=='}, {'input': '[5, 5, 3, 9, 5, 6, 3, 2, 8, 5, 6, 10, 10, 6, 8, 4, 10, 7, 7, 10, 8]', 'output': '-1', 'relation': '=='}, {'input': '[10]', 'output': '-1', 'relation': '=='}, {'input': '[9, 7, 7, 2, 4, 7, 2, 10, 9, 7, 5, 7, 2]', 'output': '2', 'relation': '=='}, {'input': '[5, 4, 10, 2, 1, 1, 10, 3, 6, 1, 8]', 'output': '1', 'relation': '=='}, {'input': '[7, 9, 9, 9, 3, 4, 1, 5, 9, 1, 2, 1, 1, 10, 7, 5, 6, 7, 6, 7, 7, 6]', 'output': '1', 'relation': '=='}, {'input': '[3, 10, 10, 9, 2]', 'output': '-1', 'relation': '=='}]" strange_sort_list,HumanEval/70," def strange_sort_list(lst): ''' Given list of integers, return list in strange order. Strange sorting, is when you start with the minimum value, then maximum of the remaining integers, then minimum and so on. Examples: strange_sort_list([1, 2, 3, 4]) == [1, 4, 2, 3] strange_sort_list([5, 5, 5, 5]) == [5, 5, 5, 5] strange_sort_list([]) == [] ''' "," def candidate(lst): ''' Given list of integers, return list in a certain order (ascending, strange or another). Strange sorting, is when you start with the minimum value, then maximum of the remaining integers, then minimum and so on. Examples: candidate([1, 2, 3, 4]) == [1, 4, 2, 3] candidate([5, 5, 5, 5]) == [5, 5, 5, 5] candidate([]) == [] ''' "," def strange_sort_list(lst): ''' Given list of integers, return list in strange order. Strange sorting, is when you start with the minimum value, then maximum of the remaining integers, then minimum and so on. Examples: strange_sort_list([1, 2, 3, 4]) == [1, 2, 3, 4] strange_sort_list([5, 5, 5, 5]) == [5] strange_sort_list([]) == [] ''' "," def strange_sort_list(lst): ''' Given list of integers, return list in strange order. Examples: strange_sort_list([1, 2, 3, 4]) == [1, 4, 2, 3] strange_sort_list([5, 5, 5, 5]) == [5, 5, 5, 5] strange_sort_list([]) == [] ''' "," def candidate(lst): ''' Given list of integers, return list in a certain order (ascending, strange or another). Strange sorting, is when you start with the minimum value, then maximum of the remaining integers, then minimum and so on. Examples: candidate([1, 2, 3, 4]) == [1, 2, 3, 4] candidate([5, 5, 5, 5]) == [5] candidate([]) == [] ''' "," def candidate(lst): ''' Given list of integers, return list in a certain order (ascending, strange or another). Examples: candidate([1, 2, 3, 4]) == [1, 4, 2, 3] candidate([5, 5, 5, 5]) == [5, 5, 5, 5] candidate([]) == [] ''' "," def strange_sort_list(lst): ''' Given list of integers, return list in strange order. Examples: strange_sort_list([1, 2, 3, 4]) == [1, 2, 3, 4] strange_sort_list([5, 5, 5, 5]) == [5] strange_sort_list([]) == [] ''' "," def candidate(lst): ''' Given list of integers, return list in a certain order (ascending, strange or another). Examples: candidate([1, 2, 3, 4]) == [1, 2, 3, 4] candidate([5, 5, 5, 5]) == [5] candidate([]) == [] ''' "," def strange_sort_list(lst): ''' Given list of integers, return list in strange order. Strange sorting, is when you start with the minimum value, then maximum of the remaining integers, then minimum and so on. Examples: strange_sort_list([1, 2, 3, 4]) == [1, 4, 2, 3] strange_sort_list([5, 5, 5, 5]) == [5, 5, 5, 5] strange_sort_list([]) == [] ''' res, switch = [], True while lst: res.append(min(lst) if switch else max(lst)) lst.remove(res[-1]) switch = not switch return res ","[{'input': '[1, 2, 3, 4]', 'output': '[1, 4, 2, 3]', 'relation': '=='}, {'input': '[5, 6, 7, 8, 9]', 'output': '[5, 9, 6, 8, 7]', 'relation': '=='}, {'input': '[1, 2, 3, 4, 5]', 'output': '[1, 5, 2, 4, 3]', 'relation': '=='}, {'input': '[5, 6, 7, 8, 9, 1]', 'output': '[1, 9, 5, 8, 6, 7]', 'relation': '=='}, {'input': '[5, 5, 5, 5]', 'output': '[5, 5, 5, 5]', 'relation': '=='}, {'input': '[]', 'output': '[]', 'relation': '=='}, {'input': '[1,2,3,4,5,6,7,8]', 'output': '[1, 8, 2, 7, 3, 6, 4, 5]', 'relation': '=='}, {'input': '[0,2,2,2,5,5,-5,-5]', 'output': '[-5, 5, -5, 5, 0, 2, 2, 2]', 'relation': '=='}, {'input': '[111111]', 'output': '[111111]', 'relation': '=='}]" triangle_area,HumanEval/71," def triangle_area(a, b, c): ''' Given the lengths of the three sides of a triangle. Return the area of the triangle rounded to 2 decimal points if the three sides form a valid triangle. Otherwise return -1 Three sides make a valid triangle when the sum of any two sides is greater than the third side. Example: triangle_area(3, 4, 5) == 6.00 triangle_area(1, 2, 10) == -1 ''' "," def candidate(a, b, c): ''' Given the lengths of the three sides of a triangle. Return the area or perimeter of the triangle rounded to 2 decimal points if the three sides form a valid triangle. Otherwise return -1 Three sides make a valid triangle when the sum of any two sides is greater than the third side. Example: candidate(3, 4, 5) == 6.00 candidate(1, 2, 10) == -1 ''' "," def triangle_area(a, b, c): ''' Given the lengths of the three sides of a triangle. Return the area of the triangle rounded to 2 decimal points if the three sides form a valid triangle. Otherwise return -1 Three sides make a valid triangle when the sum of any two sides is greater than the third side. Example: triangle_area(3, 4, 5) == 12.00 triangle_area(1, 2, 10) == -1 ''' "," def triangle_area(a, b, c): ''' Given the lengths of the three sides of a triangle. Return the area of the triangle rounded to 2 decimal points if the three sides form a valid triangle. Three sides make a valid triangle when the sum of any two sides is greater than the third side. Example: triangle_area(3, 4, 5) == 6.00 ''' "," def candidate(a, b, c): ''' Given the lengths of the three sides of a triangle. Return the area or perimeter of the triangle rounded to 2 decimal points if the three sides form a valid triangle. Otherwise return -1 Three sides make a valid triangle when the sum of any two sides is greater than the third side. Example: candidate(3, 4, 5) == 12.00 candidate(1, 2, 10) == -1 ''' "," def candidate(a, b, c): ''' Given the lengths of the three sides of a triangle. Return the area or perimeter of the triangle rounded to 2 decimal points if the three sides form a valid triangle. Three sides make a valid triangle when the sum of any two sides is greater than the third side. Example: candidate(3, 4, 5) == 6.00 ''' "," def triangle_area(a, b, c): ''' Given the lengths of the three sides of a triangle. Return the area of the triangle rounded to 2 decimal points if the three sides form a valid triangle. Three sides make a valid triangle when the sum of any two sides is greater than the third side. Example: triangle_area(3, 4, 5) == 12.00 ''' "," def candidate(a, b, c): ''' Given the lengths of the three sides of a triangle. Return the area or perimeter of the triangle rounded to 2 decimal points if the three sides form a valid triangle. Three sides make a valid triangle when the sum of any two sides is greater than the third side. Example: candidate(3, 4, 5) == 12.00 ''' "," def triangle_area(a, b, c): ''' Given the lengths of the three sides of a triangle. Return the area of the triangle rounded to 2 decimal points if the three sides form a valid triangle. Otherwise return -1 Three sides make a valid triangle when the sum of any two sides is greater than the third side. Example: triangle_area(3, 4, 5) == 6.00 triangle_area(1, 2, 10) == -1 ''' if a + b <= c or a + c <= b or b + c <= a: return -1 s = (a + b + c)/2 area = (s * (s - a) * (s - b) * (s - c)) ** 0.5 area = round(area, 2) return area ","[{'input': '3, 4, 5', 'output': '6.0', 'relation': '=='}, {'input': '1, 2, 10', 'output': '-1', 'relation': '=='}, {'input': '4, 8, 5', 'output': '8.18', 'relation': '=='}, {'input': '2, 2, 2', 'output': '1.73', 'relation': '=='}, {'input': '1, 2, 3', 'output': '-1', 'relation': '=='}, {'input': '10, 5, 7', 'output': '16.25', 'relation': '=='}, {'input': '2, 6, 3', 'output': '-1', 'relation': '=='}, {'input': '1, 1, 1', 'output': '0.43', 'relation': '=='}, {'input': '2, 2, 10', 'output': '-1', 'relation': '=='}]" will_it_fly,HumanEval/72," def will_it_fly(q,w): ''' Write a function that returns True if the object q will fly, and False otherwise. The object q will fly if it's balanced (it is a palindromic list) and the sum of its elements is less than or equal the maximum possible weight w. Example: will_it_fly([1, 2], 5) ➞ False # 1+2 is less than the maximum possible weight, but it's unbalanced. will_it_fly([3, 2, 3], 1) ➞ False # it's balanced, but 3+2+3 is more than the maximum possible weight. will_it_fly([3, 2, 3], 9) ➞ True # 3+2+3 is less than the maximum possible weight, and it's balanced. will_it_fly([3], 5) ➞ True # 3 is less than the maximum possible weight, and it's balanced. ''' "," def will_it_fly(q,w): ''' Write a function that returns True if the object q will fly, and False otherwise. The object q will fly if it's balanced (it is a palindromic list) and the sum of its elements is more than or less than or equal the maximum possible weight w. Example: will_it_fly([1, 2], 5) ➞ False # 1+2 is less than the weight, but it's unbalanced. will_it_fly([3, 2, 3], 1) ➞ False # it's balanced, but 3+2+3 is more than the maximum possible weight. will_it_fly([3, 2, 3], 9) ➞ True # 3+2+3 is less than the maximum possible weight, and it's balanced. will_it_fly([3], 5) ➞ True # 3 is less than the maximum possible weight, and it's balanced. ''' "," def will_it_fly(q,w): ''' Write a function that returns True if the object q will fly, and False otherwise. The object q will fly if it's balanced (it is a palindromic list) and the sum of its elements is less than or equal the maximum possible weight w. Example: will_it_fly([1, 2], 5) ➞ True # 1+2 is less than the maximum possible weight, but it's unbalanced. will_it_fly([3, 2, 3], 1) ➞ True # it's balanced, but 3+2+3 is more than the maximum possible weight. will_it_fly([3, 2, 3], 9) ➞ False # 3+2+3 is less than the maximum possible weight, and it's balanced. will_it_fly([3], 5) ➞ False # 3 is less than the maximum possible weight, and it's balanced. ''' "," def will_it_fly(q,w): ''' Write a function that returns True if the object q will fly, and False otherwise. Example: will_it_fly([1, 2], 5) ➞ False # 1+2 is less than the maximum possible weight, but it's unbalanced. will_it_fly([3, 2, 3], 1) ➞ False will_it_fly([3, 2, 3], 9) ➞ True will_it_fly([3], 5) ➞ True ''' "," def will_it_fly(q,w): ''' Write a function that returns True if the object q will fly, and False otherwise. The object q will fly if it's balanced (it is a palindromic list) and the sum of its elements is more than or less than or equal the weight w. Example: will_it_fly([1, 2], 5) ➞ True # 1+2 is less than the maximum possible weight, but it's unbalanced. will_it_fly([3, 2, 3], 1) ➞ True # it's balanced, but 3+2+3 is more than the maximum possible weight. will_it_fly([3, 2, 3], 9) ➞ False # 3+2+3 is less than the maximum possible weight, and it's balanced. will_it_fly([3], 5) ➞ False # 3 is less than the maximum possible weight, and it's balanced. ''' ",," def will_it_fly(q,w): ''' Write a function that returns True if the object q will fly, and False otherwise. Example: will_it_fly([1, 2], 5) ➞ True # 1+2 is less than the maximum possible weight, but it's unbalanced. will_it_fly([3, 2, 3], 1) ➞ True will_it_fly([3, 2, 3], 9) ➞ False will_it_fly([3], 5) ➞ False ''' ",," def will_it_fly(q,w): ''' Write a function that returns True if the object q will fly, and False otherwise. The object q will fly if it's balanced (it is a palindromic list) and the sum of its elements is less than or equal the maximum possible weight w. Example: will_it_fly([1, 2], 5) ➞ False # 1+2 is less than the maximum possible weight, but it's unbalanced. will_it_fly([3, 2, 3], 1) ➞ False # it's balanced, but 3+2+3 is more than the maximum possible weight. will_it_fly([3, 2, 3], 9) ➞ True # 3+2+3 is less than the maximum possible weight, and it's balanced. will_it_fly([3], 5) ➞ True # 3 is less than the maximum possible weight, and it's balanced. ''' if sum(q) > w: return False i, j = 0, len(q)-1 while i true is_simple_power(2, 2) => true is_simple_power(8, 2) => true is_simple_power(3, 2) => false is_simple_power(3, 1) => false is_simple_power(5, 3) => false """""" "," def candidate(a, b): """"""Your task is to write a function that returns true if a number x is a power of n and false in other cases. x is a simple power of n if n**k=x For example: candidate(1, 4) => true candidate(2, 2) => true candidate(8, 2) => true candidate(3, 2) => false candidate(3, 1) => false candidate(5, 3) => false """""" "," def is_simple_power(x, n): """"""Your task is to write a function that returns true if a number x is a simple power of n and false in other cases. x is a simple power of n if n**int=x For example: is_simple_power(1, 4) => false is_simple_power(2, 2) => false is_simple_power(8, 2) => false is_simple_power(3, 2) => true is_simple_power(3, 1) => true is_simple_power(5, 3) => true """""" "," def is_simple_power(x, n): """"""Your task is to write a function that returns true if a number x is a simple power of n and false in other cases. x is a simple power of n if """""" "," def candidate(a, b): """"""Your task is to write a function that returns true if a number x is a power of n and false in other cases. x is a simple power of n if n**k=x For example: candidate(1, 4) => false candidate(2, 2) => false candidate(8, 2) => false candidate(3, 2) => true candidate(3, 1) => true candidate(5, 3) => true """""" ",,,," def is_simple_power(x, n): """"""Your task is to write a function that returns true if a number x is a simple power of n and false in other cases. x is a simple power of n if n**int=x For example: is_simple_power(1, 4) => true is_simple_power(2, 2) => true is_simple_power(8, 2) => true is_simple_power(3, 2) => false is_simple_power(3, 1) => false is_simple_power(5, 3) => false """""" if (n == 1): return (x == 1) power = 1 while (power < x): power = power * n return (power == x) ","[{'input': '16, 2', 'output': 'True', 'relation': '=='}, {'input': '143214, 16', 'output': 'False', 'relation': '=='}, {'input': '4, 2', 'output': 'True', 'relation': '=='}, {'input': '9, 3', 'output': 'True', 'relation': '=='}, {'input': '16, 4', 'output': 'True', 'relation': '=='}, {'input': '24, 2', 'output': 'False', 'relation': '=='}, {'input': '128, 4', 'output': 'False', 'relation': '=='}, {'input': '12, 6', 'output': 'False', 'relation': '=='}]" iscube,HumanEval/77," def iscube(a): ''' Write a function that takes an integer a and returns True if this integer is a cube of some integer number. Note: you may assume the input is always valid. Examples: iscube(1) ==> True iscube(2) ==> False iscube(-1) ==> True iscube(64) ==> True iscube(0) ==> True iscube(180) ==> False ''' "," def candidate(a): ''' Write a function that takes an integer a and returns True if this integer is a cube or a similar exponents of some integer number. Note: you may assume the input is always valid. Examples: candidate(1) ==> True candidate(2) ==> False candidate(-1) ==> True candidate(64) ==> True candidate(0) ==> True candidate(180) ==> False ''' "," def iscube(a): ''' Write a function that takes an integer a and returns True if this integer is a cube of some integer number. Note: you may assume the input is always valid. Examples: iscube(1) ==> False iscube(2) ==> True iscube(-1) ==> False iscube(64) ==> False iscube(0) ==> False iscube(180) ==> True ''' "," def candidate(a): ''' Write a function that takes an integer a and returns True if this integer is. Note: you may assume the input is always valid. Examples: candidate(1) ==> True candidate(2) ==> False candidate(-1) ==> True candidate(64) ==> True candidate(0) ==> True candidate(180) ==> False ''' "," def candidate(a): ''' Write a function that takes an integer a and returns True if this integer is a cube or a similar exponents of some integer number. Note: you may assume the input is always valid. Examples: candidate(1) ==> False candidate(2) ==> True candidate(-1) ==> False candidate(64) ==> False candidate(0) ==> False candidate(180) ==> True ''' ",," def candidate(a): ''' Write a function that takes an integer a and returns True if this integer is. Note: you may assume the input is always valid. Examples: candidate(1) ==> False candidate(2) ==> True candidate(-1) ==> False candidate(64) ==> False candidate(0) ==> False candidate(180) ==> True ''' ",," def iscube(a): ''' Write a function that takes an integer a and returns True if this ingeger is a cube of some integer number. Note: you may assume the input is always valid. Examples: iscube(1) ==> True iscube(2) ==> False iscube(-1) ==> True iscube(64) ==> True iscube(0) ==> True iscube(180) ==> False ''' a = abs(a) return int(round(a ** (1. / 3))) ** 3 == a ","[{'input': '1', 'output': 'True', 'relation': '=='}, {'input': '2', 'output': 'False', 'relation': '=='}, {'input': '-1', 'output': 'True', 'relation': '=='}, {'input': '64', 'output': 'True', 'relation': '=='}, {'input': '180', 'output': 'False', 'relation': '=='}, {'input': '1000', 'output': 'True', 'relation': '=='}, {'input': '0', 'output': 'True', 'relation': '=='}, {'input': '1729', 'output': 'False', 'relation': '=='}]" hex_key,HumanEval/78," def hex_key(num): """"""You have been tasked to write a function that receives a hexadecimal number as a string and counts the number of hexadecimal digits that are primes (prime number, or a prime, is a natural number greater than 1 that is not a product of two smaller natural numbers). Hexadecimal digits are 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F. Prime numbers are 2, 3, 5, 7, 11, 13, 17,... So you have to determine a number of the following digits: 2, 3, 5, 7, B (=decimal 11), D (=decimal 13). Note: you may assume the input is always correct or empty string, and symbols A,B,C,D,E,F are always uppercase. Examples: For num = ""AB"" the output should be 1. For num = ""1077E"" the output should be 2. For num = ""ABED1A33"" the output should be 4. For num = ""123456789ABCDEF0"" the output should be 6. For num = ""2020"" the output should be 2. """""" "," def candidate(num): """"""You have been tasked to write a function that receives an octal or hexadecimal (or another base) number as a string and counts the number of octal or hexadecimal (or another base) digits that are primes (prime number, or a prime, is a natural number greater than 1 that is not a product of two smaller natural numbers). Hexadecimal digits are 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F. Prime numbers are 2, 3, 5, 7, 11, 13, 17,... So you have to determine a number of the following digits: 2, 3, 5, 7, B (=decimal 11), D (=decimal 13), or digits from other base units. Note: you may assume the input is always correct or empty string, and symbols A,B,C,D,E,F are always uppercase. Examples: For num = ""AB"" the output should be 1. For num = ""1077E"" the output should be 2. For num = ""ABED1A33"" the output should be 4. For num = ""123456789ABCDEF0"" the output should be 6. For num = ""2020"" the output should be 2. """""" "," def hex_key(num): """"""You have been tasked to write a function that receives a hexadecimal number as a string and counts the number of hexadecimal digits that are primes (prime number, or a prime, is a natural number greater than 1 that is not a product of two smaller natural numbers). Hexadecimal digits are 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F. Prime numbers are 2, 3, 5, 7, 11, 13, 17,... So you have to determine a number of the following digits: 2, 3, 5, 7, B (=decimal 11), D (=decimal 13). Note: you may assume the input is always correct or empty string, and symbols A,B,C,D,E,F are always uppercase. Examples: For num = ""AB"" the output should be 0. For num = ""1077E"" the output should be 2. For num = ""ABED1A33"" the output should be 2. For num = ""123456789ABCDEF0"" the output should be 4. For num = ""2020"" the output should be 2. """""" "," def hex_key(num): """"""You have been tasked to write a function that receives a hexadecimal number as a string Examples: For num = ""AB"" the output should be 1. For num = ""1077E"" the output should be 2. For num = ""ABED1A33"" the output should be 4. For num = ""123456789ABCDEF0"" the output should be 6. For num = ""2020"" the output should be 2. """""" "," def candidate(num): """"""You have been tasked to write a function that receives an octal or hexadecimal (or another base) number as a string and counts the number of octal or hexadecimal (or another base) digits that are primes (prime number, or a prime, is a natural number greater than 1 that is not a product of two smaller natural numbers). Hexadecimal digits are 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F. Prime numbers are 2, 3, 5, 7, 11, 13, 17,... So you have to determine a number of the following digits: 2, 3, 5, 7, B (=decimal 11), D (=decimal 13), or digits from other base units. Note: you may assume the input is always correct or empty string, and symbols A,B,C,D,E,F are always uppercase. Examples: For num = ""AB"" the output should be 0. For num = ""1077E"" the output should be 2. For num = ""ABED1A33"" the output should be 2. For num = ""123456789ABCDEF0"" the output should be 4. For num = ""2020"" the output should be 2. """""" "," def candidate(num): """"""You have been tasked to write a function that receives an octal or hexadecimal (or another base) number as a string Examples: For num = ""AB"" the output should be 1. For num = ""1077E"" the output should be 2. For num = ""ABED1A33"" the output should be 4. For num = ""123456789ABCDEF0"" the output should be 6. For num = ""2020"" the output should be 2. """""" "," def hex_key(num): """"""You have been tasked to write a function that receives a hexadecimal number as a string Examples: For num = ""AB"" the output should be 0. For num = ""1077E"" the output should be 2. For num = ""ABED1A33"" the output should be 2. For num = ""123456789ABCDEF0"" the output should be 4. For num = ""2020"" the output should be 2. """""" "," def candidate(num): """"""You have been tasked to write a function that receives an octal or hexadecimal (or another base) number as a string Examples: For num = ""AB"" the output should be 0. For num = ""1077E"" the output should be 2. For num = ""ABED1A33"" the output should be 2. For num = ""123456789ABCDEF0"" the output should be 4. For num = ""2020"" the output should be 2. """""" "," def hex_key(num): """"""You have been tasked to write a function that receives a hexadecimal number as a string and counts the number of hexadecimal digits that are primes (prime number, or a prime, is a natural number greater than 1 that is not a product of two smaller natural numbers). Hexadecimal digits are 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F. Prime numbers are 2, 3, 5, 7, 11, 13, 17,... So you have to determine a number of the following digits: 2, 3, 5, 7, B (=decimal 11), D (=decimal 13). Note: you may assume the input is always correct or empty string, and symbols A,B,C,D,E,F are always uppercase. Examples: For num = ""AB"" the output should be 1. For num = ""1077E"" the output should be 2. For num = ""ABED1A33"" the output should be 4. For num = ""123456789ABCDEF0"" the output should be 6. For num = ""2020"" the output should be 2. """""" primes = ('2', '3', '5', '7', 'B', 'D') total = 0 for i in range(0, len(num)): if num[i] in primes: total += 1 return total ","[{'input': '""AB""', 'output': '1', 'relation': '=='}, {'input': '""1077E""', 'output': '2', 'relation': '=='}, {'input': '""ABED1A33""', 'output': '4', 'relation': '=='}, {'input': '""2020""', 'output': '2', 'relation': '=='}, {'input': '""123456789ABCDEF0""', 'output': '6', 'relation': '=='}, {'input': '""112233445566778899AABBCCDDEEFF00""', 'output': '12', 'relation': '=='}, {'input': '[]', 'output': '0', 'relation': '=='}]" decimal_to_binary,HumanEval/79," def decimal_to_binary(decimal): """"""You will be given a number in decimal form and your task is to convert it to binary format. The function should return a string, with each character representing a binary number. Each character in the string will be '0' or '1'. There will be an extra couple of characters 'db' at the beginning and at the end of the string. The extra characters are there to help with the format. Examples: decimal_to_binary(15) # returns ""db1111db"" decimal_to_binary(32) # returns ""db100000db"" """""" "," def candidate(decimal): """"""You will be given a number in decimal form and your task is to convert it to binary format. The function should return a string, with each character representing a binary number. Each character in the string will be '0' or '1' or '2'. There will be an extra couple of characters 'db' at different positions (start, or middle, or end) of the string. The extra characters are there to help with the format. Examples: candidate(15) # returns ""db1111db"" candidate(32) # returns ""db100000db"" """""" "," def decimal_to_binary(decimal): """"""You will be given a number in decimal form and your task is to convert it to binary format. The function should return a string, with each character representing a binary number. Each character in the string will be '0' or '1'. There will be an extra couple of characters 'db' at the beginning and at the end of the string. The extra characters are there to help with the format. Examples: decimal_to_binary(15) # returns ""db15db"" decimal_to_binary(32) # returns ""db32db"" """""" "," def decimal_to_binary(decimal): """"""You will be given a number in decimal form and your task is to convert it to binary format. The function should return a string, with each character representing a binary number. Each character in the string will be '0' or '1'. There will be an extra couple of characters 'db' at. """""" "," def candidate(decimal): """"""You will be given a number in decimal form and your task is to convert it to binary format. The function should return a string, with each character representing a binary number. Each character in the string will be '0' or '1' or '2'. There will be an extra couple of characters 'db' at different positions (start, or middle, or end) of the string. The extra characters are there to help with the format. Examples: candidate(15) # returns ""db15db"" candidate(32) # returns ""db32db"" """""" "," def candidate(decimal): """"""You will be given a number in decimal form and your task is to convert it to binary format. The function should return a string, with each character representing a binary number. Each character in the string will be '0' or '1' or '2'. There will be an extra couple of characters 'db' at. """""" ",,," def decimal_to_binary(decimal): """"""You will be given a number in decimal form and your task is to convert it to binary format. The function should return a string, with each character representing a binary number. Each character in the string will be '0' or '1'. There will be an extra couple of characters 'db' at the beginning and at the end of the string. The extra characters are there to help with the format. Examples: decimal_to_binary(15) # returns ""db1111db"" decimal_to_binary(32) # returns ""db100000db"" """""" return ""db"" + bin(decimal)[2:] + ""db"" ","[{'input': '0', 'output': 'db0db', 'relation': '=='}, {'input': '32', 'output': 'db100000db', 'relation': '=='}, {'input': '103', 'output': 'db1100111db', 'relation': '=='}, {'input': '15', 'output': 'db1111db', 'relation': '=='}]" is_happy,HumanEval/80," def is_happy(s): """"""You are given a string s. Your task is to check if the string is happy or not. A string is happy if its length is at least 3 and every 3 consecutive letters are distinct For example: is_happy(a) => False is_happy(aa) => False is_happy(abcd) => True is_happy(aabb) => False is_happy(adb) => True is_happy(xyy) => False """""" "," def is_happy(s): """"""You are given a string s. Your task is to check if the string is happy or not. A string is happy if its length is at least 3 and roughly substrings of letters are distinct For example: is_happy(a) => False is_happy(aa) => False is_happy(abcd) => True is_happy(aabb) => False is_happy(adb) => True is_happy(xyy) => False """""" "," def is_happy(s): """"""You are given a string s. Your task is to check if the string is happy or not. A string is happy if its length is at least 3 and every 3 consecutive letters are distinct For example: is_happy(a) => True is_happy(aa) => True is_happy(abcd) => False is_happy(aabb) => True is_happy(adb) => False is_happy(xyy) => True """""" "," def is_happy(s): """"""You are given a string s. Your task is to check if the string is happy or not. For example: is_happy(a) => False is_happy(aa) => False is_happy(abcd) => True is_happy(aabb) => False is_happy(adb) => True is_happy(xyy) => False """""" "," def is_happy(s): """"""You are given a string s. Your task is to check if the string is happy or not. A string is happy if its length is at least 3 and roughly substrings of letters are distinct For example: is_happy(a) => True is_happy(aa) => True is_happy(abcd) => False is_happy(aabb) => True is_happy(adb) => False is_happy(xyy) => True """""" ",," def is_happy(s): """"""You are given a string s. Your task is to check if the string is happy or not. For example: is_happy(a) => True is_happy(aa) => True is_happy(abcd) => False is_happy(aabb) => True is_happy(adb) => False is_happy(xyy) => True """""" ",," def is_happy(s): """"""You are given a string s. Your task is to check if the string is happy or not. A string is happy if its length is at least 3 and every 3 consecutive letters are distinct For example: is_happy(a) => False is_happy(aa) => False is_happy(abcd) => True is_happy(aabb) => False is_happy(adb) => True is_happy(xyy) => False """""" if len(s) < 3: return False for i in range(len(s) - 2): if s[i] == s[i+1] or s[i+1] == s[i+2] or s[i] == s[i+2]: return False return True ","[{'input': '""a""', 'output': 'False ', 'relation': '=='}, {'input': '""aa""', 'output': 'False ', 'relation': '=='}, {'input': '""abcd""', 'output': 'True ', 'relation': '=='}, {'input': '""aabb""', 'output': 'False ', 'relation': '=='}, {'input': '""adb""', 'output': 'True ', 'relation': '=='}, {'input': '""xyy""', 'output': 'False ', 'relation': '=='}, {'input': '""iopaxpoi""', 'output': 'True ', 'relation': '=='}, {'input': '""iopaxioi""', 'output': 'False ', 'relation': '=='}]" numerical_letter_grade,HumanEval/81," def numerical_letter_grade(grades): """"""It is the last week of the semester and the teacher has to give the grades to students. The teacher has been making her own algorithm for grading. The only problem is, she has lost the code she used for grading. She has given you a list of GPAs for some students and you have to write a function that can output a list of letter grades using the following table: GPA | Letter grade 4.0 A+ > 3.7 A > 3.3 A- > 3.0 B+ > 2.7 B > 2.3 B- > 2.0 C+ > 1.7 C > 1.3 C- > 1.0 D+ > 0.7 D > 0.0 D- 0.0 E Example: numerical_letter_grade([4.0, 3, 1.7, 2, 3.5]) ==> ['A+', 'B', 'C-', 'C', 'A-'] """""" "," def candidate(grades): """"""It is the last week of the semester and the teacher has to give the grades to students. The teacher has been making her own algorithm for grading. The only problem is, she has lost the code she used for grading. She has given you a list of GPAs for some students and you have to write a function that can output a list of percentage or letter grades using the following table: GPA | Letter grade 4.0 A+ > 3.7 A > 3.3 A- > 3.0 B+ > 2.7 B > 2.3 B- > 2.0 C+ > 1.7 C > 1.3 C- > 1.0 D+ > 0.7 D > 0.0 D- 0.0 E Example: candidate([4.0, 3, 1.7, 2, 3.5]) ==> ['A+', 'B', 'C-', 'C', 'A-'] """""" "," def numerical_letter_grade(grades): """"""It is the last week of the semester and the teacher has to give the grades to students. The teacher has been making her own algorithm for grading. The only problem is, she has lost the code she used for grading. She has given you a list of GPAs for some students and you have to write a function that can output a list of letter grades using the following table: GPA | Letter grade 4.0 A+ > 3.7 A > 3.3 A- > 3.0 B+ > 2.7 B > 2.3 B- > 2.0 C+ > 1.7 C > 1.3 C- > 1.0 D+ > 0.7 D > 0.0 D- 0.0 E Example: numerical_letter_grade([4.0, 3, 1.7, 2, 3.5]) ==> ['A', 'B', 'C', 'C', 'A'] """""" "," def numerical_letter_grade(grades): """"""It is the last week of the semester and the teacher has to give the grades to students. The teacher has been making her own algorithm for grading. The only problem is, she has lost the code she used for grading. She has given you a list of GPAs for some students and you have to write a function that can output a list of letter grades using the following table: """""" "," def candidate(grades): """"""It is the last week of the semester and the teacher has to give the grades to students. The teacher has been making her own algorithm for grading. The only problem is, she has lost the code she used for grading. She has given you a list of GPAs for some students and you have to write a function that can output a list of percentage or letter grades using the following table: GPA | Letter grade 4.0 A+ > 3.7 A > 3.3 A- > 3.0 B+ > 2.7 B > 2.3 B- > 2.0 C+ > 1.7 C > 1.3 C- > 1.0 D+ > 0.7 D > 0.0 D- 0.0 E Example: candidate([4.0, 3, 1.7, 2, 3.5]) ==> ['A', 'B', 'C', 'C', 'A'] """""" "," def numerical_letter_grade(grades): """"""It is the last week of the semester and the teacher has to give the grades to students. The teacher has been making her own algorithm for grading. The only problem is, she has lost the code she used for grading. She has given you a list of GPAs for some students and you have to write a function that can output a list of percentage or letter grades using the following table: """""" ",,," def numerical_letter_grade(grades): """"""It is the last week of the semester and the teacher has to give the grades to students. The teacher has been making her own algorithm for grading. The only problem is, she has lost the code she used for grading. She has given you a list of GPAs for some students and you have to write a function that can output a list of letter grades using the following table: GPA | Letter grade 4.0 A+ > 3.7 A > 3.3 A- > 3.0 B+ > 2.7 B > 2.3 B- > 2.0 C+ > 1.7 C > 1.3 C- > 1.0 D+ > 0.7 D > 0.0 D- 0.0 E Example: grade_equation([4.0, 3, 1.7, 2, 3.5]) ==> ['A+', 'B', 'C-', 'C', 'A-'] """""" letter_grade = [] for gpa in grades: if gpa == 4.0: letter_grade.append(""A+"") elif gpa > 3.7: letter_grade.append(""A"") elif gpa > 3.3: letter_grade.append(""A-"") elif gpa > 3.0: letter_grade.append(""B+"") elif gpa > 2.7: letter_grade.append(""B"") elif gpa > 2.3: letter_grade.append(""B-"") elif gpa > 2.0: letter_grade.append(""C+"") elif gpa > 1.7: letter_grade.append(""C"") elif gpa > 1.3: letter_grade.append(""C-"") elif gpa > 1.0: letter_grade.append(""D+"") elif gpa > 0.7: letter_grade.append(""D"") elif gpa > 0.0: letter_grade.append(""D-"") else: letter_grade.append(""E"") return letter_grade ","[{'input': '[4.0, 3, 1.7, 2, 3.5]', 'output': ""['A+', 'B', 'C-', 'C', 'A-']"", 'relation': '=='}, {'input': '[1.2]', 'output': ""['D+']"", 'relation': '=='}, {'input': '[0.5]', 'output': ""['D-']"", 'relation': '=='}, {'input': '[0.0]', 'output': ""['E']"", 'relation': '=='}, {'input': '[1, 0.3, 1.5, 2.8, 3.3]', 'output': ""['D', 'D-', 'C-', 'B', 'B+']"", 'relation': '=='}, {'input': '[0, 0.7]', 'output': ""['E', 'D-']"", 'relation': '=='}]" prime_length,HumanEval/82," def prime_length(string): """"""Write a function that takes a string and returns True if the string length is a prime number or False otherwise Examples prime_length('Hello') == True prime_length('abcdcba') == True prime_length('kittens') == True prime_length('orange') == False """""" "," def candidate(string): """"""Write a function that takes a string and returns True if the string length meets a certain condition (e.g. is an even or prime number or another type) or False otherwise Examples candidate('Hello') == True candidate('abcdcba') == True candidate('kittens') == True candidate('orange') == False """""" "," def prime_length(string): """"""Write a function that takes a string and returns True if the string length is a prime number or False otherwise Examples prime_length('Hello') == False prime_length('abcdcba') == False prime_length('kittens') == False prime_length('orange') == True """""" "," def candidate(string): """""" Examples candidate('Hello') == True candidate('abcdcba') == True candidate('kittens') == True candidate('orange') == False """""" "," def candidate(string): """"""Write a function that takes a string and returns True if the string length meets a certain condition (e.g. is an even or prime number or another type) or False otherwise Examples candidate('Hello') == False candidate('abcdcba') == False candidate('kittens') == False candidate('orange') == True """""" ",," def candidate(string): """""" Examples candidate('Hello') == False candidate('abcdcba') == False candidate('kittens') == False candidate('orange') == True """""" ",," def prime_length(string): """"""Write a function that takes a string and returns True if the string length is a prime number or False otherwise Examples prime_length('Hello') == True prime_length('abcdcba') == True prime_length('kittens') == True prime_length('orange') == False """""" l = len(string) if l == 0 or l == 1: return False for i in range(2, l): if l % i == 0: return False return True ","[{'input': ""'Hello'"", 'output': 'True', 'relation': '=='}, {'input': ""'abcdcba'"", 'output': 'True', 'relation': '=='}, {'input': ""'kittens'"", 'output': 'True', 'relation': '=='}, {'input': ""'orange'"", 'output': 'False', 'relation': '=='}, {'input': ""'wow'"", 'output': 'True', 'relation': '=='}, {'input': ""'world'"", 'output': 'True', 'relation': '=='}, {'input': ""'MadaM'"", 'output': 'True', 'relation': '=='}, {'input': ""'Wow'"", 'output': 'True', 'relation': '=='}, {'input': ""''"", 'output': 'False', 'relation': '=='}, {'input': ""'HI'"", 'output': 'True', 'relation': '=='}, {'input': ""'go'"", 'output': 'True', 'relation': '=='}, {'input': ""'gogo'"", 'output': 'False', 'relation': '=='}, {'input': ""'aaaaaaaaaaaaaaa'"", 'output': 'False', 'relation': '=='}, {'input': ""'Madam'"", 'output': 'True', 'relation': '=='}, {'input': ""'M'"", 'output': 'False', 'relation': '=='}, {'input': ""'0'"", 'output': 'False', 'relation': '=='}]" starts_one_ends,HumanEval/83," def starts_one_ends(n): """""" Given a positive integer n, return the count of the numbers of n-digit positive integers that start or end with 1. """""" "," def starts_one_ends(n): """""" Given a positive integer n, return the count of the numbers of integers that start or end with 1. """""" ",," def starts_one_ends(n): """""" Given a positive integer n, return the count of the numbers of n-digit """""" ",,,,," def starts_one_ends(n): """""" Given a positive integer n, return the count of the numbers of n-digit positive integers that start or end with 1. """""" if n == 1: return 1 return 18 * (10 ** (n - 2)) ","[{'input': '1', 'output': '1', 'relation': '=='}, {'input': '2', 'output': '18', 'relation': '=='}, {'input': '3', 'output': '180', 'relation': '=='}, {'input': '4', 'output': '1800', 'relation': '=='}, {'input': '5', 'output': '18000', 'relation': '=='}]" solve,HumanEval/84," def solve(N): """"""Given a positive integer N, return the total sum of its digits in binary. Example For N = 1000, the sum of digits will be 1 the output should be ""1"". For N = 150, the sum of digits will be 6 the output should be ""110"". For N = 147, the sum of digits will be 12 the output should be ""1100"". Variables: @N integer Constraints: 0 ≤ N ≤ 10000. Output: a string of binary number """""" "," def solve(N): """"""Given a positive integer N, return the total sum of its digits in a specific base (hexadecimal or binary or another base). Example For N = 1000, the sum of digits will be 1 the output should be ""1"". For N = 150, the sum of digits will be 6 the output should be ""110"". For N = 147, the sum of digits will be 12 the output should be ""1100"". Variables: @N integer Constraints: 0 ≤ N ≤ 10000. Output: a string of hexadecimal or binary number """""" "," def solve(N): """"""Given a positive integer N, return the total sum of its digits in binary. Example For N = 1000, the sum of digits will be 0 the output should be ""0"". For N = 150, the sum of digits will be 0 the output should be ""0"". For N = 147, the sum of digits will be 0 the output should be ""0"". Variables: @N integer Constraints: 0 ≤ N ≤ 10000. Output: a string of binary number """""" "," def solve(N): """"""Given a positive integer N, return the total sum of its digits. Example For N = 1000, the sum of digits will be 1 the output should be ""1"". For N = 150, the sum of digits will be 6 the output should be ""110"". """""" "," def solve(N): """"""Given a positive integer N, return the total sum of its digits in a specific base (hexadecimal or binary or another base). Example For N = 1000, the sum of digits will be 0 the output should be ""0"". For N = 150, the sum of digits will be 0 the output should be ""0"". For N = 147, the sum of digits will be 0 the output should be ""0"". Variables: @N integer Constraints: 0 ≤ N ≤ 10000. Output: a string of hexadecimal or binary number """""" ",," def solve(N): """"""Given a positive integer N, return the total sum of its digits. Example For N = 1000, the sum of digits will be 0 the output should be ""0"". For N = 150, the sum of digits will be 0 the output should be ""0"". """""" ",," def solve(N): """"""Given a positive integer N, return the total sum of its digits in binary. Example For N = 1000, the sum of digits will be 1 the output should be ""1"". For N = 150, the sum of digits will be 6 the output should be ""110"". For N = 147, the sum of digits will be 12 the output should be ""1100"". Variables: @N integer Constraints: 0 ≤ N ≤ 10000. Output: a string of binary number """""" return bin(sum(int(i) for i in str(N)))[2:] ","[{'input': '1000', 'output': '1', 'relation': '=='}, {'input': '150', 'output': '110', 'relation': '=='}, {'input': '147', 'output': '1100', 'relation': '=='}, {'input': '333', 'output': '1001', 'relation': '=='}, {'input': '963', 'output': '10010', 'relation': '=='}]" add,HumanEval/85," def add(lst): """"""Given a non-empty list of integers lst. add the even elements that are at odd indices.. Examples: add([4, 2, 6, 7]) ==> 2 """""" "," def add(lst): """"""Given a non-empty list of integers lst. add the even elements that are at certain indices.. Examples: add([4, 2, 6, 7]) ==> 2 """""" "," def add(lst): """"""Given a non-empty list of integers lst. add the even elements that are at odd indices.. Examples: add([4, 2, 6, 7]) ==> 6 """""" "," def add(lst): """"""Given a non-empty list of integers lst. add the even elements that.. Examples: add([4, 2, 6, 7]) ==> 2 """""" "," def add(lst): """"""Given a non-empty list of integers lst. add the even elements that are at certain indices.. Examples: add([4, 2, 6, 7]) ==> 6 """""" ",," def add(lst): """"""Given a non-empty list of integers lst. add the even elements that.. Examples: add([4, 2, 6, 7]) ==> 6 """""" ",," def add(lst): """"""Given a non-empty list of integers lst. add the even elements that are at odd indices.. Examples: add([4, 2, 6, 7]) ==> 2 """""" return sum([lst[i] for i in range(1, len(lst), 2) if lst[i]%2 == 0]) ","[{'input': '[4, 88]', 'output': '88', 'relation': '=='}, {'input': '[4, 5, 6, 7, 2, 122]', 'output': '122', 'relation': '=='}, {'input': '[4, 0, 6, 7]', 'output': '0', 'relation': '=='}, {'input': '[4, 4, 6, 8]', 'output': '12', 'relation': '=='}]" anti_shuffle,HumanEval/86," def anti_shuffle(s): """""" Write a function that takes a string and returns an ordered version of it. Ordered version of string, is a string where all words (separated by space) are replaced by a new word where all the characters arranged in ascending order based on ascii value. Note: You should keep the order of words and blank spaces in the sentence. For example: anti_shuffle('Hi') returns 'Hi' anti_shuffle('hello') returns 'ehllo' anti_shuffle('Hello World!!!') returns 'Hello !!!Wdlor' """""" "," def anti_shuffle(s): """""" Write a function that takes a string and returns an ordered version of it. Ordered version of string, is a string where all words (separated by space) are replaced by a new word where all the characters arranged in descending or ascending order based on ascii value. Note: You should keep the order of words and blank spaces in the sentence. For example: anti_shuffle('Hi') returns 'Hi' anti_shuffle('hello') returns 'ehllo' anti_shuffle('Hello World!!!') returns 'Hello !!!Wdlor' """""" "," def anti_shuffle(s): """""" Write a function that takes a string and returns an ordered version of it. Ordered version of string, is a string where all words (separated by space) are replaced by a new word where all the characters arranged in ascending order based on ascii value. Note: You should keep the order of words and blank spaces in the sentence. For example: anti_shuffle('Hi') returns 'iH' anti_shuffle('hello') returns 'ollhe' anti_shuffle('Hello World!!!') returns 'roldW!!! olleH' """""" "," def anti_shuffle(s): """""" Write a function that takes a string and returns an ordered version of it. """""" "," def anti_shuffle(s): """""" Write a function that takes a string and returns an ordered version of it. Ordered version of string, is a string where all words (separated by space) are replaced by a new word where all the characters arranged in descending or ascending order based on ascii value. Note: You should keep the order of words and blank spaces in the sentence. For example: anti_shuffle('Hi') returns 'iH' anti_shuffle('hello') returns 'ollhe' anti_shuffle('Hello World!!!') returns 'roldW!!! olleH' """""" ",,,," def anti_shuffle(s): """""" Write a function that takes a string and returns an ordered version of it. Ordered version of string, is a string where all words (separated by space) are replaced by a new word where all the characters arranged in ascending order based on ascii value. Note: You should keep the order of words and blank spaces in the sentence. For example: anti_shuffle('Hi') returns 'Hi' anti_shuffle('hello') returns 'ehllo' anti_shuffle('Hello World!!!') returns 'Hello !!!Wdlor' """""" return ' '.join([''.join(sorted(list(i))) for i in s.split(' ')]) ","[{'input': ""'Hi'"", 'output': 'Hi', 'relation': '=='}, {'input': ""'hello'"", 'output': 'ehllo', 'relation': '=='}, {'input': ""'number'"", 'output': 'bemnru', 'relation': '=='}, {'input': ""'abcd'"", 'output': 'abcd', 'relation': '=='}, {'input': ""'Hello World!!!'"", 'output': 'Hello !!!Wdlor', 'relation': '=='}, {'input': ""''"", 'output': '', 'relation': '=='}, {'input': ""'Hi. My name is Mister Robot. How are you?'"", 'output': '.Hi My aemn is Meirst .Rboot How aer ?ouy', 'relation': '=='}]" get_row,HumanEval/87," def get_row(lst, x): """""" You are given a 2 dimensional data, as a nested lists, which is similar to matrix, however, unlike matrices, each row may contain a different number of columns. Given lst, and integer x, find integers x in the list, and return list of tuples, [(x1, y1), (x2, y2) ...] such that each tuple is a coordinate - (row, columns), starting with 0. Sort coordinates initially by rows in ascending order. Also, sort coordinates of the row by columns in descending order. Examples: get_row([ [1,2,3,4,5,6], [1,2,3,4,1,6], [1,2,3,4,5,1] ], 1) == [(0, 0), (1, 4), (1, 0), (2, 5), (2, 0)] get_row([], 1) == [] get_row([[], [1], [1, 2, 3]], 3) == [(2, 2)] """""" "," def get_row(lst, x): """""" You are given a 1 or 2 dimensional data, as a nested lists, which is similar to matrix, however, unlike matrices, each row may contain a different number of columns. Given lst, and integer x, find integers x in the list, and return list of tuples, [(x1, y1), (x2, y2) ...] such that each tuple is a coordinate - (row, columns), starting with 0. Sort coordinates initially by rows. Also, sort coordinates of the row by columns. Examples: get_row([ [1,2,3,4,5,6], [1,2,3,4,1,6], [1,2,3,4,5,1] ], 1) == [(0, 0), (1, 4), (1, 0), (2, 5), (2, 0)] get_row([], 1) == [] get_row([[], [1], [1, 2, 3]], 3) == [(2, 2)] """""" "," def get_row(lst, x): """""" You are given a 2 dimensional data, as a nested lists, which is similar to matrix, however, unlike matrices, each row may contain a different number of columns. Given lst, and integer x, find integers x in the list, and return list of tuples, [(x1, y1), (x2, y2) ...] such that each tuple is a coordinate - (row, columns), starting with 0. Sort coordinates initially by rows in ascending order. Also, sort coordinates of the row by columns in descending order. Examples: get_row([ [1,2,3,4,5,6], [1,2,3,4,1,6], [1,2,3,4,5,1] ], 1) == [(2, 2)] get_row([], 1) == [(2, 2)] get_row([[], [1], [1, 2, 3]], 3) == [] """""" "," def get_row(lst, x): """""" You are given a 2 dimensional data, as a nested lists, which is similar to matrix, however, unlike matrices, each row may contain a different number of columns. Given lst, and integer x, find integers x in the list. """""" "," def get_row(lst, x): """""" You are given a 1 or 2 dimensional data, as a nested lists, which is similar to matrix, however, unlike matrices, each row may contain a different number of columns. Given lst, and integer x, find integers x in the list, and return list of tuples, [(x1, y1), (x2, y2) ...] such that each tuple is a coordinate - (row, columns), starting with 0. Sort coordinates initially by rows. Also, sort coordinates of the row by columns. Examples: get_row([ [1,2,3,4,5,6], [1,2,3,4,1,6], [1,2,3,4,5,1] ], 1) == [(2, 2)] get_row([], 1) == [(2, 2)] get_row([[], [1], [1, 2, 3]], 3) == [] """""" ",,,," def get_row(lst, x): """""" You are given a 2 dimensional data, as a nested lists, which is similar to matrix, however, unlike matrices, each row may contain a different number of columns. Given lst, and integer x, find integers x in the list, and return list of tuples, [(x1, y1), (x2, y2) ...] such that each tuple is a coordinate - (row, columns), starting with 0. Sort coordinates initially by rows in ascending order. Also, sort coordinates of the row by columns in descending order. Examples: get_row([ [1,2,3,4,5,6], [1,2,3,4,1,6], [1,2,3,4,5,1] ], 1) == [(0, 0), (1, 4), (1, 0), (2, 5), (2, 0)] get_row([], 1) == [] get_row([[], [1], [1, 2, 3]], 3) == [(2, 2)] """""" coords = [(i, j) for i in range(len(lst)) for j in range(len(lst[i])) if lst[i][j] == x] return sorted(sorted(coords, key=lambda x: x[1], reverse=True), key=lambda x: x[0]) ","[{'input': '[], 1', 'output': '[]', 'relation': '=='}, {'input': '[[1]], 2', 'output': '[]', 'relation': '=='}, {'input': '[[], [1], [1, 2, 3]], 3', 'output': '[(2, 2)]', 'relation': '=='}]" sort_array,HumanEval/88," def sort_array(array): """""" Given an array of non-negative integers, return a copy of the given array after sorting, you will sort the given array in ascending order if the sum( first index value, last index value) is odd, or sort it in descending order if the sum( first index value, last index value) is even. Note: * don't change the given array. Examples: * sort_array([]) => [] * sort_array([5]) => [5] * sort_array([2, 4, 3, 0, 1, 5]) => [0, 1, 2, 3, 4, 5] * sort_array([2, 4, 3, 0, 1, 5, 6]) => [6, 5, 4, 3, 2, 1, 0] """""" "," def sort_array(array): """""" Given an array of non-negative integers, return a copy of the given array after sorting, you will sort the given array in ascending order if the sum( first index value, last index value) is odd or even, or sort it in descending order if the sum( first index value, last index value) is even or odd. Note: * don't change the given array. Examples: * sort_array([]) => [] * sort_array([5]) => [5] * sort_array([2, 4, 3, 0, 1, 5]) => [0, 1, 2, 3, 4, 5] * sort_array([2, 4, 3, 0, 1, 5, 6]) => [6, 5, 4, 3, 2, 1, 0] """""" "," def sort_array(array): """""" Given an array of non-negative integers, return a copy of the given array after sorting, you will sort the given array in ascending order if the sum( first index value, last index value) is odd, or sort it in descending order if the sum( first index value, last index value) is even. Note: * don't change the given array. Examples: * sort_array([]) => [] * sort_array([5]) => [5] * sort_array([2, 4, 3, 0, 1, 5]) => [5, 4, 3, 2, 1, 0] * sort_array([2, 4, 3, 0, 1, 5, 6]) => [0, 1, 2, 3, 4, 5, 6] """""" "," def sort_array(array): """""" Given an array of non-negative integers, return a copy of the given array after sorting, you will sort the given array in ascending order if the sum( first index value, last index value) is odd, or sort it """""" "," def sort_array(array): """""" Given an array of non-negative integers, return a copy of the given array after sorting, you will sort the given array in ascending order if the sum( first index value, last index value) is odd or even, or sort it in descending order if the sum( first index value, last index value) is even or odd. Note: * don't change the given array. Examples: * sort_array([]) => [] * sort_array([5]) => [5] * sort_array([2, 4, 3, 0, 1, 5]) => [5, 4, 3, 2, 1, 0] * sort_array([2, 4, 3, 0, 1, 5, 6]) => [0, 1, 2, 3, 4, 5, 6] """""" "," def sort_array(array): """""" Given an array of non-negative integers, return a copy of the given array after sorting, you will sort the given array in ascending order if the sum( first index value, last index value) is odd or even, or sort it """""" ",,," def sort_array(array): """""" Given an array of non-negative integers, return a copy of the given array after sorting, you will sort the given array in ascending order if the sum( first index value, last index value) is odd, or sort it in descending order if the sum( first index value, last index value) is even. Note: * don't change the given array. Examples: * sort_array([]) => [] * sort_array([5]) => [5] * sort_array([2, 4, 3, 0, 1, 5]) => [0, 1, 2, 3, 4, 5] * sort_array([2, 4, 3, 0, 1, 5, 6]) => [6, 5, 4, 3, 2, 1, 0] """""" return [] if len(array) == 0 else sorted(array, reverse= (array[0]+array[-1]) % 2 == 0) ","[{'input': '[]', 'output': '[]', 'relation': '=='}, {'input': '[5]', 'output': '[5]', 'relation': '=='}, {'input': '[2, 4, 3, 0, 1, 5]', 'output': '[0, 1, 2, 3, 4, 5]', 'relation': '=='}, {'input': '[2, 4, 3, 0, 1, 5, 6]', 'output': '[6, 5, 4, 3, 2, 1, 0]', 'relation': '=='}, {'input': '[2, 1]', 'output': '[1, 2]', 'relation': '=='}, {'input': '[15, 42, 87, 32 ,11, 0]', 'output': '[0, 11, 15, 32, 42, 87]', 'relation': '=='}, {'input': '[21, 14, 23, 11]', 'output': '[23, 21, 14, 11]', 'relation': '=='}]" encrypt,HumanEval/89," def encrypt(s): """"""Create a function encrypt that takes a string as an argument and returns a string encrypted with the alphabet being rotated. The alphabet should be rotated in a manner such that the letters shift down by two multiplied to two places. For example: encrypt('hi') returns 'lm' encrypt('asdfghjkl') returns 'ewhjklnop' encrypt('gf') returns 'kj' encrypt('et') returns 'ix' """""" "," def encrypt(s): """"""Create a function encrypt that takes a string as an argument and returns a string encrypted with the alphabet being rotated. The alphabet should be rotated in a manner such that the letters shift down by three or two multiplied to three or two places. For example: encrypt('hi') returns 'lm' encrypt('asdfghjkl') returns 'ewhjklnop' encrypt('gf') returns 'kj' encrypt('et') returns 'ix' """""" "," def encrypt(s): """"""Create a function encrypt that takes a string as an argument and returns a string encrypted with the alphabet being rotated. The alphabet should be rotated in a manner such that the letters shift down by two multiplied to two places. For example: encrypt('hi') returns 'kl' encrypt('asdfghjkl') returns 'cvfiknqrs' encrypt('gf') returns 'ji' encrypt('et') returns 'gv' """""" "," def encrypt(s): """"""Create a function encrypt that takes a string as an argument and returns a string encrypted. """""" "," def encrypt(s): """"""Create a function encrypt that takes a string as an argument and returns a string encrypted with the alphabet being rotated. The alphabet should be rotated in a manner such that the letters shift down by three or two multiplied to three or two places. For example: encrypt('hi') returns 'kl' encrypt('asdfghjkl') returns 'cvfiknqrs' encrypt('gf') returns 'ji' encrypt('et') returns 'gv' """""" ",,,," def encrypt(s): """"""Create a function encrypt that takes a string as an argument and returns a string encrypted with the alphabet being rotated. The alphabet should be rotated in a manner such that the letters shift down by two multiplied to two places. For example: encrypt('hi') returns 'lm' encrypt('asdfghjkl') returns 'ewhjklnop' encrypt('gf') returns 'kj' encrypt('et') returns 'ix' """""" d = 'abcdefghijklmnopqrstuvwxyz' out = '' for c in s: if c in d: out += d[(d.index(c)+2*2) % 26] else: out += c return out ","[{'input': ""'hi'"", 'output': 'lm', 'relation': '=='}, {'input': ""'asdfghjkl'"", 'output': 'ewhjklnop', 'relation': '=='}, {'input': ""'gf'"", 'output': 'kj', 'relation': '=='}, {'input': ""'et'"", 'output': 'ix', 'relation': '=='}]" next_smallest,HumanEval/90," def next_smallest(lst): """""" You are given a list of integers. Write a function next_smallest() that returns the 2nd smallest element of the list. Return None if there is no such element. next_smallest([1, 2, 3, 4, 5]) == 2 next_smallest([5, 1, 4, 3, 2]) == 2 next_smallest([]) == None next_smallest([1, 1]) == None """""" "," def next_smallest(lst): """""" You are given a list of integers. Write a function next_smallest() that returns the 1st, or 2nd, or 3rd smallest element of the list. Return None if there is no such element. next_smallest([1, 2, 3, 4, 5]) == 2 next_smallest([5, 1, 4, 3, 2]) == 2 next_smallest([]) == None next_smallest([1, 1]) == None """""" "," def next_smallest(lst): """""" You are given a list of integers. Write a function next_smallest() that returns the 2nd smallest element of the list. Return None if there is no such element. next_smallest([1, 2, 3, 4, 5]) == 1 next_smallest([5, 1, 4, 3, 2]) == 1 next_smallest([]) == None next_smallest([1, 1]) == 1 """""" "," def next_smallest(lst): """""" You are given a list of integers. Write a function next_smallest() """""" "," def next_smallest(lst): """""" You are given a list of integers. Write a function next_smallest() that returns the 1st, or 2nd, or 3rd smallest element of the list. Return None if there is no such element. next_smallest([1, 2, 3, 4, 5]) == 1 next_smallest([5, 1, 4, 3, 2]) == 1 next_smallest([]) == None next_smallest([1, 1]) == 1 """""" ",,,," def next_smallest(lst): """""" You are given a list of integers. Write a function next_smallest() that returns the 2nd smallest element of the list. Return None if there is no such element. next_smallest([1, 2, 3, 4, 5]) == 2 next_smallest([5, 1, 4, 3, 2]) == 2 next_smallest([]) == None next_smallest([1, 1]) == None """""" lst = sorted(set(lst)) return None if len(lst) < 2 else lst[1] ","[{'input': '[1, 2, 3, 4, 5]', 'output': '2', 'relation': '=='}, {'input': '[5, 1, 4, 3, 2]', 'output': '2', 'relation': '=='}, {'input': '[]', 'output': 'None', 'relation': '=='}, {'input': '[1, 1]', 'output': 'None', 'relation': '=='}, {'input': '[1,1,1,1,0]', 'output': '1', 'relation': '=='}, {'input': '[1, 0**0]', 'output': 'None', 'relation': '=='}, {'input': '[-35, 34, 12, -45]', 'output': '-35', 'relation': '=='}]" is_bored,HumanEval/91," def is_bored(S): """""" You'll be given a string of words, and your task is to count the number of boredoms. A boredom is a sentence that starts with the word ""I"". Sentences are delimited by '.', '?' or '!'. For example: >>> is_bored(""Hello world"") 0 >>> is_bored(""The sky is blue. The sun is shining. I love this weather"") 1 """""" "," def is_bored(S): """""" You'll be given a string of words, and your task is to count the number of boredoms. A boredom is a sentence that starts with a given word (such as ""W"", ""I""). Sentences are delimited by '.', '?' or '!'. For example: >>> is_bored(""Hello world"") 0 >>> is_bored(""The sky is blue. The sun is shining. I love this weather"") 1 """""" "," def is_bored(S): """""" You'll be given a string of words, and your task is to count the number of boredoms. A boredom is a sentence that starts with the word ""I"". Sentences are delimited by '.', '?' or '!'. For example: >>> is_bored(""Hello world"") 1 >>> is_bored(""The sky is blue. The sun is shining. I love this weather"") 3 """""" "," def is_bored(S): """""" You'll be given a string of words, and your task is to count the number of boredoms. """""" "," def is_bored(S): """""" You'll be given a string of words, and your task is to count the number of boredoms. A boredom is a sentence that starts with a given word (such as ""W"", ""I""). Sentences are delimited by '.', '?' or '!'. For example: >>> is_bored(""Hello world"") 1 >>> is_bored(""The sky is blue. The sun is shining. I love this weather"") 3 """""" ",,,," def is_bored(S): """""" You'll be given a string of words, and your task is to count the number of boredoms. A boredom is a sentence that starts with the word ""I"". Sentences are delimited by '.', '?' or '!'. For example: >>> is_bored(""Hello world"") 0 >>> is_bored(""The sky is blue. The sun is shining. I love this weather"") 1 """""" import re sentences = re.split(r'[.?!]\s*', S) return sum(sentence[0:2] == 'I ' for sentence in sentences) ","[{'input': '""Hello world""', 'output': '0', 'relation': '=='}, {'input': '""Is the sky blue?""', 'output': '0', 'relation': '=='}, {'input': '""I love It !""', 'output': '1', 'relation': '=='}, {'input': '""bIt""', 'output': '0', 'relation': '=='}, {'input': '""I feel good today. I will be productive. will kill It""', 'output': '2', 'relation': '=='}, {'input': '""You and I are going for a walk""', 'output': '0', 'relation': '=='}]" any_int,HumanEval/92," def any_int(x, y, z): ''' Create a function that takes 3 numbers. Returns true if one of the numbers is equal to the sum of the other two, and all numbers are integers. Returns false in any other cases. Examples any_int(5, 2, 7) ➞ True any_int(3, 2, 2) ➞ False any_int(3, -2, 1) ➞ True any_int(3.6, -2.2, 2) ➞ False ''' "," def any_int(x, y, z): ''' Create a function that takes 3 numbers. Returns true if one of the numbers meets certain condition (such as larger than, or equal to the sum of the other two), and all numbers are integers. Returns false in any other cases. Examples any_int(5, 2, 7) ➞ True any_int(3, 2, 2) ➞ False any_int(3, -2, 1) ➞ True any_int(3.6, -2.2, 2) ➞ False ''' "," def any_int(x, y, z): ''' Create a function that takes 3 numbers. Returns true if one of the numbers is equal to the sum of the other two, and all numbers are integers. Returns false in any other cases. Examples any_int(5, 2, 7) ➞ False any_int(3, 2, 2) ➞ True any_int(3, -2, 1) ➞ False any_int(3.6, -2.2, 2) ➞ True ''' "," def any_int(x, y, z): ''' Create a function that takes 3 numbers. Returns true if one of the numbers is equal to ''' "," def any_int(x, y, z): ''' Create a function that takes 3 numbers. Returns true if one of the numbers meets certain condition (such as larger than, or equal to the sum of the other two), and all numbers are integers. Returns false in any other cases. Examples any_int(5, 2, 7) ➞ False any_int(3, 2, 2) ➞ True any_int(3, -2, 1) ➞ False any_int(3.6, -2.2, 2) ➞ True ''' "," def any_int(x, y, z): ''' Create a function that takes 3 numbers. Returns true if one of the numbers meets certain condition (such as larger than, or equal to ''' ",,," def any_int(x, y, z): ''' Create a function that takes 3 numbers. Returns true if one of the numbers is equal to the sum of the other two, and all numbers are integers. Returns false in any other cases. Examples any_int(5, 2, 7) ➞ True any_int(3, 2, 2) ➞ False any_int(3, -2, 1) ➞ True any_int(3.6, -2.2, 2) ➞ False ''' if isinstance(x,int) and isinstance(y,int) and isinstance(z,int): if (x+y==z) or (x+z==y) or (y+z==x): return True return False return False ","[{'input': '2, 3, 1', 'output': 'True', 'relation': '=='}, {'input': '2.5, 2, 3', 'output': 'False', 'relation': '=='}, {'input': '1.5, 5, 3.5', 'output': 'False', 'relation': '=='}, {'input': '2, 6, 2', 'output': 'False', 'relation': '=='}, {'input': '4, 2, 2', 'output': 'True', 'relation': '=='}, {'input': '2.2, 2.2, 2.2', 'output': 'False', 'relation': '=='}, {'input': '-4, 6, 2', 'output': 'True', 'relation': '=='}, {'input': '2, 1, 1', 'output': 'True', 'relation': '=='}, {'input': '3, 4, 7', 'output': 'True', 'relation': '=='}, {'input': '3.0, 4, 7', 'output': 'False', 'relation': '=='}]" encode,HumanEval/93," def encode(message): """""" Write a function that takes a message, and encodes in such a way that it swaps case of all letters, replaces all vowels in the message with the letter that appears 2 places ahead of that vowel in the english alphabet. Assume only letters. Examples: >>> encode('test') 'TGST' >>> encode('This is a message') 'tHKS KS C MGSSCGG' """""" "," def encode(message): """""" Write a function that takes a message, and encodes in such a way that it swaps case of all letters, replaces all vowels in the message with the letter that appears several places ahead of that vowel in the english alphabet. Assume only letters. Examples: >>> encode('test') 'TGST' >>> encode('This is a message') 'tHKS KS C MGSSCGG' """""" "," def encode(message): """""" Write a function that takes a message, and encodes in such a way that it swaps case of all letters, replaces all vowels in the message with the letter that appears 2 places ahead of that vowel in the english alphabet. Assume only letters. Examples: >>> encode('test') 'TEST' >>> encode('This is a message') 'tHIS IS A MESSAGE' """""" "," def encode(message): """""" Write a function that takes a message, and encodes in such a way that it swaps case of all letters, replaces all vowels in the message with the letter that appears """""" "," def encode(message): """""" Write a function that takes a message, and encodes in such a way that it swaps case of all letters, replaces all vowels in the message with the letter that appears several places ahead of that vowel in the english alphabet. Assume only letters. Examples: >>> encode('test') 'TEST' >>> encode('This is a message') 'tHIS IS A MESSAGE' """""" ",,,," def encode(message): """""" Write a function that takes a message, and encodes in such a way that it swaps case of all letters, replaces all vowels in the message with the letter that appears 2 places ahead of that vowel in the english alphabet. Assume only letters. Examples: >>> encode('test') 'TGST' >>> encode('This is a message') 'tHKS KS C MGSSCGG' """""" vowels = ""aeiouAEIOU"" vowels_replace = dict([(i, chr(ord(i) + 2)) for i in vowels]) message = message.swapcase() return ''.join([vowels_replace[i] if i in vowels else i for i in message]) ","[{'input': ""'TEST'"", 'output': 'tgst', 'relation': '=='}, {'input': ""'Mudasir'"", 'output': 'mWDCSKR', 'relation': '=='}, {'input': ""'YES'"", 'output': 'ygs', 'relation': '=='}, {'input': ""'This is a message'"", 'output': 'tHKS KS C MGSSCGG', 'relation': '=='}, {'input': '""I DoNt KnOw WhAt tO WrItE""', 'output': 'k dQnT kNqW wHcT Tq wRkTg', 'relation': '=='}]" skjkasdkd,HumanEval/94," def skjkasdkd(lst): """"""You are given a list of integers. You need to find the largest prime value and return the sum of its digits. Examples: For lst = [0,3,2,1,3,5,7,4,5,5,5,2,181,32,4,32,3,2,32,324,4,3] the output should be 10 For lst = [1,0,1,8,2,4597,2,1,3,40,1,2,1,2,4,2,5,1] the output should be 25 For lst = [1,3,1,32,5107,34,83278,109,163,23,2323,32,30,1,9,3] the output should be 13 For lst = [0,724,32,71,99,32,6,0,5,91,83,0,5,6] the output should be 11 For lst = [0,81,12,3,1,21] the output should be 3 For lst = [0,8,1,2,1,7] the output should be 7 """""" "," def skjkasdkd(lst): """"""You are given a list of integers. You need to find the smallest or largest prime value and return. Examples: For lst = [0,3,2,1,3,5,7,4,5,5,5,2,181,32,4,32,3,2,32,324,4,3] the output should be 10 For lst = [1,0,1,8,2,4597,2,1,3,40,1,2,1,2,4,2,5,1] the output should be 25 For lst = [1,3,1,32,5107,34,83278,109,163,23,2323,32,30,1,9,3] the output should be 13 For lst = [0,724,32,71,99,32,6,0,5,91,83,0,5,6] the output should be 11 For lst = [0,81,12,3,1,21] the output should be 3 For lst = [0,8,1,2,1,7] the output should be 7 """""" "," def skjkasdkd(lst): """"""You are given a list of integers. You need to find the largest prime value and return the sum of its digits. Examples: For lst = [0,3,2,1,3,5,7,4,5,5,5,2,181,32,4,32,3,2,32,324,4,3] the output should be 2 For lst = [1,0,1,8,2,4597,2,1,3,40,1,2,1,2,4,2,5,1] the output should be 2 For lst = [1,3,1,32,5107,34,83278,109,163,23,2323,32,30,1,9,3] the output should be 3 For lst = [0,724,32,71,99,32,6,0,5,91,83,0,5,6] the output should be 5 For lst = [0,81,12,3,1,21] the output should be 3 For lst = [0,8,1,2,1,7] the output should be 2 """""" "," def skjkasdkd(lst): """"""You are given a list of integers. Examples: For lst = [0,3,2,1,3,5,7,4,5,5,5,2,181,32,4,32,3,2,32,324,4,3] the output should be 10 For lst = [1,0,1,8,2,4597,2,1,3,40,1,2,1,2,4,2,5,1] the output should be 25 For lst = [1,3,1,32,5107,34,83278,109,163,23,2323,32,30,1,9,3] the output should be 13 For lst = [0,724,32,71,99,32,6,0,5,91,83,0,5,6] the output should be 11 For lst = [0,81,12,3,1,21] the output should be 3 For lst = [0,8,1,2,1,7] the output should be 7 """""" "," def skjkasdkd(lst): """"""You are given a list of integers. You need to find the smallest or largest prime value and return. Examples: For lst = [0,3,2,1,3,5,7,4,5,5,5,2,181,32,4,32,3,2,32,324,4,3] the output should be 2 For lst = [1,0,1,8,2,4597,2,1,3,40,1,2,1,2,4,2,5,1] the output should be 2 For lst = [1,3,1,32,5107,34,83278,109,163,23,2323,32,30,1,9,3] the output should be 3 For lst = [0,724,32,71,99,32,6,0,5,91,83,0,5,6] the output should be 5 For lst = [0,81,12,3,1,21] the output should be 3 For lst = [0,8,1,2,1,7] the output should be 2 """""" ",," def skjkasdkd(lst): """"""You are given a list of integers. Examples: For lst = [0,3,2,1,3,5,7,4,5,5,5,2,181,32,4,32,3,2,32,324,4,3] the output should be 2 For lst = [1,0,1,8,2,4597,2,1,3,40,1,2,1,2,4,2,5,1] the output should be 2 For lst = [1,3,1,32,5107,34,83278,109,163,23,2323,32,30,1,9,3] the output should be 3 For lst = [0,724,32,71,99,32,6,0,5,91,83,0,5,6] the output should be 5 For lst = [0,81,12,3,1,21] the output should be 3 For lst = [0,8,1,2,1,7] the output should be 2 """""" ",," def skjkasdkd(lst): """"""You are given a list of integers. You need to find the largest prime value and return the sum of its digits. Examples: For lst = [0,3,2,1,3,5,7,4,5,5,5,2,181,32,4,32,3,2,32,324,4,3] the output should be 10 For lst = [1,0,1,8,2,4597,2,1,3,40,1,2,1,2,4,2,5,1] the output should be 25 For lst = [1,3,1,32,5107,34,83278,109,163,23,2323,32,30,1,9,3] the output should be 13 For lst = [0,724,32,71,99,32,6,0,5,91,83,0,5,6] the output should be 11 For lst = [0,81,12,3,1,21] the output should be 3 For lst = [0,8,1,2,1,7] the output should be 7 """""" def isPrime(n): for i in range(2,int(n**0.5)+1): if n%i==0: return False return True maxx = 0 i = 0 while i < len(lst): if(lst[i] > maxx and isPrime(lst[i])): maxx = lst[i] i+=1 result = sum(int(digit) for digit in str(maxx)) return result ","[{'input': '[0,3,2,1,3,5,7,4,5,5,5,2,181,32,4,32,3,2,32,324,4,3]', 'output': '10', 'relation': '=='}, {'input': '[1,0,1,8,2,4597,2,1,3,40,1,2,1,2,4,2,5,1]', 'output': '25', 'relation': '=='}, {'input': '[1,3,1,32,5107,34,83278,109,163,23,2323,32,30,1,9,3]', 'output': '13', 'relation': '=='}, {'input': '[0,724,32,71,99,32,6,0,5,91,83,0,5,6]', 'output': '11', 'relation': '=='}, {'input': '[0,81,12,3,1,21]', 'output': '3', 'relation': '=='}, {'input': '[0,8,1,2,1,7]', 'output': '7', 'relation': '=='}, {'input': '[8191]', 'output': '19', 'relation': '=='}, {'input': '[8191, 123456, 127, 7]', 'output': '19', 'relation': '=='}, {'input': '[127, 97, 8192]', 'output': '10', 'relation': '=='}]" check_dict_case,HumanEval/95," def check_dict_case(dict): """""" Given a dictionary, return True if all keys are strings in lower case or all keys are strings in upper case, else return False. The function should return False is the given dictionary is empty. Examples: check_dict_case({""a"":""apple"", ""b"":""banana""}) should return True. check_dict_case({""a"":""apple"", ""A"":""banana"", ""B"":""banana""}) should return False. check_dict_case({""a"":""apple"", 8:""banana"", ""a"":""apple""}) should return False. check_dict_case({""Name"":""John"", ""Age"":""36"", ""City"":""Houston""}) should return False. check_dict_case({""STATE"":""NC"", ""ZIP"":""12345"" }) should return True. """""" "," def check_dict_case(dict): """""" Given a dictionary, return True if some or all keys are strings in lower case or some or all keys are strings in upper case, else return False. The function should return False is the given dictionary is empty. Examples: check_dict_case({""a"":""apple"", ""b"":""banana""}) should return True. check_dict_case({""a"":""apple"", ""A"":""banana"", ""B"":""banana""}) should return False. check_dict_case({""a"":""apple"", 8:""banana"", ""a"":""apple""}) should return False. check_dict_case({""Name"":""John"", ""Age"":""36"", ""City"":""Houston""}) should return False. check_dict_case({""STATE"":""NC"", ""ZIP"":""12345"" }) should return True. """""" "," def check_dict_case(dict): """""" Given a dictionary, return True if all keys are strings in lower case or all keys are strings in upper case, else return False. The function should return False is the given dictionary is empty. Examples: check_dict_case({""a"":""apple"", ""b"":""banana""}) should return False. check_dict_case({""a"":""apple"", ""A"":""banana"", ""B"":""banana""}) should return True. check_dict_case({""a"":""apple"", 8:""banana"", ""a"":""apple""}) should return False. check_dict_case({""Name"":""John"", ""Age"":""36"", ""City"":""Houston""}) should return True. check_dict_case({""STATE"":""NC"", ""ZIP"":""12345"" }) should return False. """""" "," def check_dict_case(dict): """""" Given a dictionary, return True if all keys are strings in lower case or all keys are strings in. """""" "," def check_dict_case(dict): """""" Given a dictionary, return True if some or all keys are strings in lower case or some or all keys are strings in upper case, else return False. The function should return False is the given dictionary is empty. Examples: check_dict_case({""a"":""apple"", ""b"":""banana""}) should return False. check_dict_case({""a"":""apple"", ""A"":""banana"", ""B"":""banana""}) should return True. check_dict_case({""a"":""apple"", 8:""banana"", ""a"":""apple""}) should return True. check_dict_case({""Name"":""John"", ""Age"":""36"", ""City"":""Houston""}) should return True. check_dict_case({""STATE"":""NC"", ""ZIP"":""12345"" }) should return False. """""" "," def check_dict_case(dict): """""" Given a dictionary, return True if some or all keys are strings in lower case or some or all keys are strings in. """""" ",,," def check_dict_case(dict): """""" Given a dictionary, return True if all keys are strings in lower case or all keys are strings in upper case, else return False. The function should return False is the given dictionary is empty. Examples: check_dict_case({""a"":""apple"", ""b"":""banana""}) should return True. check_dict_case({""a"":""apple"", ""A"":""banana"", ""B"":""banana""}) should return False. check_dict_case({""a"":""apple"", 8:""banana"", ""a"":""apple""}) should return False. check_dict_case({""Name"":""John"", ""Age"":""36"", ""City"":""Houston""}) should return False. check_dict_case({""STATE"":""NC"", ""ZIP"":""12345"" }) should return True. """""" if len(dict.keys()) == 0: return False else: state = ""start"" for key in dict.keys(): if isinstance(key, str) == False: state = ""mixed"" break if state == ""start"": if key.isupper(): state = ""upper"" elif key.islower(): state = ""lower"" else: break elif (state == ""upper"" and not key.isupper()) or (state == ""lower"" and not key.islower()): state = ""mixed"" break else: break return state == ""upper"" or state == ""lower"" ","[{'input': '{""p"":""pineapple"", ""b"":""banana""}', 'output': 'True', 'relation': '=='}, {'input': '{""p"":""pineapple"", ""A"":""banana"", ""B"":""banana""}', 'output': 'False', 'relation': '=='}, {'input': '{""p"":""pineapple"", 5:""banana"", ""a"":""apple""}', 'output': 'False', 'relation': '=='}, {'input': '{""Name"":""John"", ""Age"":""36"", ""City"":""Houston""}', 'output': 'False', 'relation': '=='}, {'input': '{""STATE"":""NC"", ""ZIP"":""12345"" }', 'output': 'True', 'relation': '=='}, {'input': '{""fruit"":""Orange"", ""taste"":""Sweet"" }', 'output': 'True', 'relation': '=='}, {'input': '{}', 'output': 'False', 'relation': '=='}]" count_up_to,HumanEval/96," def count_up_to(n): """"""Implement a function that takes an non-negative integer and returns an array of the first n integers that are prime numbers and less than n. for example: count_up_to(5) => [2,3] count_up_to(11) => [2,3,5,7] count_up_to(0) => [] count_up_to(20) => [2,3,5,7,11,13,17,19] count_up_to(1) => [] count_up_to(18) => [2,3,5,7,11,13,17] """""" "," def count_up_to(n): """"""Implement a function that takes an non-negative integer and returns an array of the last or first n integers that are prime numbers and more or less than n. for example: count_up_to(5) => [2,3] count_up_to(11) => [2,3,5,7] count_up_to(0) => [] count_up_to(20) => [2,3,5,7,11,13,17,19] count_up_to(1) => [] count_up_to(18) => [2,3,5,7,11,13,17] """""" "," def count_up_to(n): """"""Implement a function that takes an non-negative integer and returns an array of the first n integers that are prime numbers and less than n. for example: count_up_to(5) => [1,2,3] count_up_to(11) => [1,2,3,5,7] count_up_to(0) => [] count_up_to(20) => [1,2,3,5,7,11,13,17,19] count_up_to(1) => [1] count_up_to(18) => [1,2,3,5,7,11,13,17] """""" "," def count_up_to(n): """"""Implement a function that takes an non-negative integer and returns an array of the first n integers that are prime numbers and """""" "," def count_up_to(n): """"""Implement a function that takes an non-negative integer and returns an array of the last or first n integers that are prime numbers and more or less than n. for example: count_up_to(5) => [1,2,3] count_up_to(11) => [1,2,3,5,7] count_up_to(0) => [] count_up_to(20) => [1,2,3,5,7,11,13,17,19] count_up_to(1) => [1] count_up_to(18) => [1,2,3,5,7,11,13,17] """""" "," def count_up_to(n): """"""Implement a function that takes an non-negative integer and returns an array of the last or first n integers that are prime numbers and """""" ",,," def count_up_to(n): """"""Implement a function that takes an non-negative integer and returns an array of the first n integers that are prime numbers and less than n. for example: count_up_to(5) => [2,3] count_up_to(11) => [2,3,5,7] count_up_to(0) => [] count_up_to(20) => [2,3,5,7,11,13,17,19] count_up_to(1) => [] count_up_to(18) => [2,3,5,7,11,13,17] """""" primes = [] for i in range(2, n): is_prime = True for j in range(2, i): if i % j == 0: is_prime = False break if is_prime: primes.append(i) return primes ","[{'input': '5', 'output': '[2, 3]', 'relation': '=='}, {'input': '6', 'output': '[2, 3, 5]', 'relation': '=='}, {'input': '7', 'output': '[2, 3, 5]', 'relation': '=='}, {'input': '10', 'output': '[2, 3, 5, 7]', 'relation': '=='}, {'input': '0', 'output': '[]', 'relation': '=='}, {'input': '22', 'output': '[2, 3, 5, 7, 11, 13, 17, 19]', 'relation': '=='}, {'input': '1', 'output': '[]', 'relation': '=='}, {'input': '18', 'output': '[2, 3, 5, 7, 11, 13, 17]', 'relation': '=='}, {'input': '47', 'output': '[2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43]', 'relation': '=='}, {'input': '101', 'output': '[2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97]', 'relation': '=='}]" multiply,HumanEval/97," def multiply(a, b): """"""Complete the function that takes two integers and returns the product of their unit digits. Assume the input is always valid. Examples: multiply(148, 412) should return 16. multiply(19, 28) should return 72. multiply(2020, 1851) should return 0. multiply(14,-15) should return 20. """""" "," def candidate(a, b): """"""Complete the function that takes two integers and returns the sum or product of their unit digits. Assume the input is always valid. Examples: candidate(148, 412) should return 16. candidate(19, 28) should return 72. candidate(2020, 1851) should return 0. candidate(14,-15) should return 20. """""" "," def multiply(a, b): """"""Complete the function that takes two integers and returns the product of their unit digits. Assume the input is always valid. Examples: multiply(148, 412) should return 4. multiply(19, 28) should return 2. multiply(2020, 1851) should return 10. multiply(14,-15) should return 1. """""" "," def multiply(a, b): """"""Complete the function that takes two integers and returns the product of their. """""" "," def candidate(a, b): """"""Complete the function that takes two integers and returns the sum or product of their unit digits. Assume the input is always valid. Examples: candidate(148, 412) should return 4. candidate(19, 28) should return 2. candidate(2020, 1851) should return 10. candidate(14,-15) should return 1. """""" "," def candidate(a, b): """"""Complete the function that takes two integers and returns the sum or product of their. """""" ",,," def multiply(a, b): """"""Complete the function that takes two integers and returns the product of their unit digits. Assume the input is always valid. Examples: multiply(148, 412) should return 16. multiply(19, 28) should return 72. multiply(2020, 1851) should return 0. multiply(14,-15) should return 20. """""" return abs(a % 10) * abs(b % 10) ","[{'input': '148, 412', 'output': '16', 'relation': '=='}, {'input': '19, 28', 'output': '72', 'relation': '=='}, {'input': '2020, 1851', 'output': '0', 'relation': '=='}, {'input': '14,-15', 'output': '20', 'relation': '=='}, {'input': '76, 67', 'output': '42', 'relation': '=='}, {'input': '17, 27', 'output': '49', 'relation': '=='}, {'input': '0, 1', 'output': '0', 'relation': '=='}, {'input': '0, 0', 'output': '0', 'relation': '=='}]" count_upper,HumanEval/98," def count_upper(s): """""" Given a string s, count the number of uppercase vowels in even indices. For example: count_upper('aBCdEf') returns 1 count_upper('abcdefg') returns 0 count_upper('dBBE') returns 0 """""" "," def count_upper(s): """""" Given a string s, count the number of uppercase vowels in odd or even indices. For example: count_upper('aBCdEf') returns 1 count_upper('abcdefg') returns 0 count_upper('dBBE') returns 0 """""" "," def count_upper(s): """""" Given a string s, count the number of uppercase vowels in even indices. For example: count_upper('aBCdEf') returns 2 count_upper('abcdefg') returns 1 count_upper('dBBE') returns 1 """""" "," def count_upper(s): """""" Given a string s, count the number of uppercase vowels in """""" "," def count_upper(s): """""" Given a string s, count the number of uppercase vowels in odd or even indices. For example: count_upper('aBCdEf') returns 2 count_upper('abcdefg') returns 1 count_upper('dBBE') returns 1 """""" ",,,," def count_upper(s): """""" Given a string s, count the number of uppercase vowels in even indices. For example: count_upper('aBCdEf') returns 1 count_upper('abcdefg') returns 0 count_upper('dBBE') returns 0 """""" count = 0 for i in range(0,len(s),2): if s[i] in ""AEIOU"": count += 1 return count ","[{'input': ""'abcdefg'"", 'output': '0', 'relation': '=='}, {'input': ""'dBBE'"", 'output': '0', 'relation': '=='}, {'input': ""''"", 'output': '0', 'relation': '=='}, {'input': ""'EEEE'"", 'output': '2', 'relation': '=='}]" closest_integer,HumanEval/99," def closest_integer(value): ''' Create a function that takes a value (string) representing a number and returns the closest integer to it. If the number is equidistant from two integers, round it away from zero. Examples >>> closest_integer(""10"") 10 >>> closest_integer(""15.3"") 15 Note: Rounding away from zero means that if the given number is equidistant from two integers, the one you should return is the one that is the farthest from zero. For example closest_integer(""14.5"") should return 15 and closest_integer(""-14.5"") should return -15. ''' "," def candidate(value): ''' Create a function that takes a value (string) representing a number and returns the farthest or closest integer to it. If the number is equidistant from two integers, round it away from zero. Examples >>> candidate(""10"") 10 >>> candidate(""15.3"") 15 Note: Rounding away from zero means that if the given number is equidistant from two integers, the one you should return is the one that is the farthest from zero. For example candidate(""14.5"") should return 15 and candidate(""-14.5"") should return -15. ''' "," def closest_integer(value): ''' Create a function that takes a value (string) representing a number and returns the closest integer to it. If the number is equidistant from two integers, round it away from zero. Examples >>> closest_integer(""10"") 10 >>> closest_integer(""15.3"") 20 Note: Rounding away from zero means that if the given number is equidistant from two integers, the one you should return is the one that is the farthest from zero. For example closest_integer(""14.5"") should return 10 and closest_integer(""-14.5"") should return -10. ''' "," def closest_integer(value): ''' Create a function that takes a value (string) representing a number and returns the closest ''' "," def candidate(value): ''' Create a function that takes a value (string) representing a number and returns the farthest or closest integer to it. If the number is equidistant from two integers, round it away from zero. Examples >>> candidate(""10"") 10 >>> candidate(""15.3"") 20 Note: Rounding away from zero means that if the given number is equidistant from two integers, the one you should return is the one that is the farthest from zero. For example closest_integer(""14.5"") should return 10 and closest_integer(""-14.5"") should return -10. ''' "," def candidate(value): ''' Create a function that takes a value (string) representing a number and returns the farthest or closest ''' ",,," def closest_integer(value): ''' Create a function that takes a value (string) representing a number and returns the closest integer to it. If the number is equidistant from two integers, round it away from zero. Examples >>> closest_integer(""10"") 10 >>> closest_integer(""15.3"") 15 Note: Rounding away from zero means that if the given number is equidistant from two integers, the one you should return is the one that is the farthest from zero. For example closest_integer(""14.5"") should return 15 and closest_integer(""-14.5"") should return -15. ''' from math import floor, ceil if value.count('.') == 1: # remove trailing zeros while (value[-1] == '0'): value = value[:-1] num = float(value) if value[-2:] == '.5': if num > 0: res = ceil(num) else: res = floor(num) elif len(value) > 0: res = int(round(num)) else: res = 0 return res ","[{'input': '""10""', 'output': '10', 'relation': '=='}, {'input': '""14.5""', 'output': '15', 'relation': '=='}, {'input': '""-15.5""', 'output': '-16', 'relation': '=='}, {'input': '""15.3""', 'output': '15', 'relation': '=='}, {'input': '""0""', 'output': '0', 'relation': '=='}]" make_a_pile,HumanEval/100," def make_a_pile(n): """""" Given a positive integer n, you have to make a pile of n levels of stones. The first level has n stones. The number of stones in the next level is: - the next odd number if n is odd. - the next even number if n is even. Return the number of stones in each level in a list, where element at index i represents the number of stones in the level (i+1). Examples: >>> make_a_pile(3) [3, 5, 7] """""" "," def make_a_pile(n): """""" Given a positive integer n, you have to make a pile of 2*n or n levels of stones. The first level has n stones. The number of stones in the next level is: - the next odd number if n is odd. - the next even number if n is even. Return the number of stones in each level in a list, where element at index i represents the number of stones in the level (i+1). Examples: >>> make_a_pile(3) [3, 5, 7] """""" "," def make_a_pile(n): """""" Given a positive integer n, you have to make a pile of n levels of stones. The first level has n stones. The number of stones in the next level is: - the next odd number if n is odd. - the next even number if n is even. Return the number of stones in each level in a list, where element at index i represents the number of stones in the level (i+1). Examples: >>> make_a_pile(3) [3, 1, -1] """""" "," def make_a_pile(n): """""" Given a positive integer n, you have to make a pile of n levels of stones. The first level has n stones. The number of stones in the next level is: - the next odd number if n is odd. - the next even number if n is even. """""" "," def make_a_pile(n): """""" Given a positive integer n, you have to make a pile of 2*n or n levels of stones. The first level has n stones. The number of stones in the next level is: - the next odd number if n is odd. - the next even number if n is even. Return the number of stones in each level in a list, where element at index i represents the number of stones in the level (i+1). Examples: >>> make_a_pile(3) [3, 1, -1] """""" "," def make_a_pile(n): """""" Given a positive integer n, you have to make a pile of 2*n or n levels of stones. The first level has n stones. The number of stones in the next level is: - the next odd number if n is odd. - the next even number if n is even. """""" ",,," def make_a_pile(n): """""" Given a positive integer n, you have to make a pile of n levels of stones. The first level has n stones. The number of stones in the next level is: - the next odd number if n is odd. - the next even number if n is even. Return the number of stones in each level in a list, where element at index i represents the number of stones in the level (i+1). Examples: >>> make_a_pile(3) [3, 5, 7] """""" return [n + 2*i for i in range(n)] ","[{'input': '3', 'output': '[3, 5, 7]', 'relation': '=='}, {'input': '4', 'output': '[4, 6, 8, 10]', 'relation': '=='}, {'input': '5', 'output': '[5, 7, 9, 11, 13]', 'relation': '=='}, {'input': '6', 'output': '[6, 8, 10, 12, 14, 16]', 'relation': '=='}, {'input': '8', 'output': '[8, 10, 12, 14, 16, 18, 20, 22]', 'relation': '=='}]" words_string,HumanEval/101," def words_string(s): """""" You will be given a string of words separated by commas or spaces. Your task is to split the string into words and return an array of the words. For example: words_string(""Hi, my name is John"") == [""Hi"", ""my"", ""name"", ""is"", ""John""] words_string(""One, two, three, four, five, six"") == [""One"", ""two"", ""three"", ""four"", ""five"", ""six""] """""" "," def words_string(s): """""" You will be given a string of words separated by letters or commas or spaces. Your task is to split the string into words and return an array of the words. For example: words_string(""Hi, my name is John"") == [""Hi"", ""my"", ""name"", ""is"", ""John""] words_string(""One, two, three, four, five, six"") == [""One"", ""two"", ""three"", ""four"", ""five"", ""six""] """""" "," def words_string(s): """""" You will be given a string of words separated by commas or spaces. Your task is to split the string into words and return an array of the words. For example: words_string(""Hi, my name is John"") == [""John""] words_string(""One, two, three, four, five, six"") == [""six""] """""" "," def words_string(s): """""" You will be given a string of words separated by commas or spaces. Your task is to split the string into words. """""" "," def words_string(s): """""" You will be given a string of words separated by letters or commas or spaces. Your task is to split the string into words and return an array of the words. For example: words_string(""Hi, my name is John"") == [""John""] words_string(""One, two, three, four, five, six"") == [""six""] """""" "," def words_string(s): """""" You will be given a string of words separated by letters or commas or spaces. Your task is to split the string into words. """""" ",,," def words_string(s): """""" You will be given a string of words separated by commas or spaces. Your task is to split the string into words and return an array of the words. For example: words_string(""Hi, my name is John"") == [""Hi"", ""my"", ""name"", ""is"", ""John""] words_string(""One, two, three, four, five, six"") == [""One"", ""two"", ""three"", ""four"", ""five"", ""six""] """""" if not s: return [] s_list = [] for letter in s: if letter == ',': s_list.append(' ') else: s_list.append(letter) s_list = """".join(s_list) return s_list.split() ","[{'input': '""Hi, my name is John""', 'output': ""['Hi', 'my', 'name', 'is', 'John']"", 'relation': '=='}, {'input': '""One, two, three, four, five, six""', 'output': ""['One', 'two', 'three', 'four', 'five', 'six']"", 'relation': '=='}, {'input': '""Hi, my name""', 'output': ""['Hi', 'my', 'name']"", 'relation': '=='}, {'input': '""One,, two, three, four, five, six,""', 'output': ""['One', 'two', 'three', 'four', 'five', 'six']"", 'relation': '=='}, {'input': '""""', 'output': '[]', 'relation': '=='}, {'input': '""ahmed , gamal""', 'output': ""['ahmed', 'gamal']"", 'relation': '=='}]" choose_num,HumanEval/102," def choose_num(x, y): """"""This function takes two positive numbers x and y and returns the biggest even integer number that is in the range [x, y] inclusive. If there's no such number, then the function should return -1. For example: choose_num(12, 15) = 14 choose_num(13, 12) = -1 """""" "," def choose_num(x, y): """"""This function takes two positive numbers x and y and returns the biggest odd or even integer number that is in the range [x, y] inclusive. If there's no such number, then the function should return -1. For example: choose_num(12, 15) = 14 choose_num(13, 12) = -1 """""" "," def choose_num(x, y): """"""This function takes two positive numbers x and y and returns the biggest even integer number that is in the range [x, y] inclusive. If there's no such number, then the function should return -1. For example: choose_num(12, 15) = 12 choose_num(13, 12) = 13 """""" "," def choose_num(x, y): """"""This function takes two positive numbers x and y and returns the biggest even integer number """""" "," def choose_num(x, y): """"""This function takes two positive numbers x and y and returns the biggest odd or even integer number that is in the range [x, y] inclusive. If there's no such number, then the function should return -1. For example: choose_num(12, 15) = 12 choose_num(13, 12) = 13 """""" "," def choose_num(x, y): """"""This function takes two positive numbers x and y and returns the biggest odd or even integer number """""" ",,," def choose_num(x, y): """"""This function takes two positive numbers x and y and returns the biggest even integer number that is in the range [x, y] inclusive. If there's no such number, then the function should return -1. For example: choose_num(12, 15) = 14 choose_num(13, 12) = -1 """""" if x > y: return -1 if y % 2 == 0: return y if x == y: return -1 return y - 1 ","[{'input': '12, 15', 'output': '14', 'relation': '=='}, {'input': '13, 12', 'output': '-1', 'relation': '=='}, {'input': '33, 12354', 'output': '12354', 'relation': '=='}, {'input': '5234, 5233', 'output': '-1', 'relation': '=='}, {'input': '6, 29', 'output': '28', 'relation': '=='}, {'input': '27, 10', 'output': '-1', 'relation': '=='}, {'input': '7, 7', 'output': '-1', 'relation': '=='}, {'input': '546, 546', 'output': '546', 'relation': '=='}]" rounded_avg,HumanEval/103," def rounded_avg(n, m): """"""You are given two positive integers n and m, and your task is to compute the average of the integers from n through m (including n and m). Round the answer to the nearest integer and convert that to binary. If n is greater than m, return -1. Example: rounded_avg(1, 5) => ""0b11"" rounded_avg(7, 5) => -1 rounded_avg(10, 20) => ""0b1111"" rounded_avg(20, 33) => ""0b11010"" """""" "," def rounded_avg(n, m): """"""You are given two positive integers n and m, and your task is to compute the max or average of the integers from n through m (including n and m). Round the answer to the nearest integer and convert that to binary. If n is greater than m, return -1. Example: rounded_avg(1, 5) => ""0b11"" rounded_avg(7, 5) => -1 rounded_avg(10, 20) => ""0b1111"" rounded_avg(20, 33) => ""0b11010"" """""" "," def rounded_avg(n, m): """"""You are given two positive integers n and m, and your task is to compute the average of the integers from n through m (including n and m). Round the answer to the nearest integer and convert that to binary. If n is greater than m, return -1. Example: rounded_avg(1, 5) => ""0b1"" rounded_avg(7, 5) => -1 rounded_avg(10, 20) => ""0b1010"" rounded_avg(20, 33) => ""0b10100"" """""" "," def candidate(n, m): """"""You are given two positive integers n and m, and your task is to compute the average of the integers from n through m (including n and m). """""" "," def rounded_avg(n, m): """"""You are given two positive integers n and m, and your task is to compute the max or average of the integers from n through m (including n and m). Round the answer to the nearest integer and convert that to binary. If n is greater than m, return -1. Example: rounded_avg(1, 5) => ""0b1"" rounded_avg(7, 5) => -1 rounded_avg(10, 20) => ""0b1010"" rounded_avg(20, 33) => ""0b10100"" """""" "," def candidate(n, m): """"""You are given two positive integers n and m, and your task is to compute the max or average of the integers from n through m (including n and m). """""" ",,," def rounded_avg(n, m): """"""You are given two positive integers n and m, and your task is to compute the average of the integers from n through m (including n and m). Round the answer to the nearest integer and convert that to binary. If n is greater than m, return -1. Example: rounded_avg(1, 5) => ""0b11"" rounded_avg(7, 5) => -1 rounded_avg(10, 20) => ""0b1111"" rounded_avg(20, 33) => ""0b11010"" """""" if m < n: return -1 summation = 0 for i in range(n, m+1): summation += i return bin(round(summation/(m - n + 1))) ","[{'input': '1, 5', 'output': '0b11', 'relation': '=='}, {'input': '7, 13', 'output': '0b1010', 'relation': '=='}, {'input': '964,977', 'output': '0b1111001010', 'relation': '=='}, {'input': '996,997', 'output': '0b1111100100', 'relation': '=='}, {'input': '560,851', 'output': '0b1011000010', 'relation': '=='}, {'input': '185,546', 'output': '0b101101110', 'relation': '=='}, {'input': '362,496', 'output': '0b110101101', 'relation': '=='}, {'input': '350,902', 'output': '0b1001110010', 'relation': '=='}, {'input': '197,233', 'output': '0b11010111', 'relation': '=='}, {'input': '7, 5', 'output': '-1', 'relation': '=='}, {'input': '5, 1', 'output': '-1', 'relation': '=='}, {'input': '5, 5', 'output': '0b101', 'relation': '=='}]" unique_digits,HumanEval/104," def unique_digits(x): """"""Given a list of positive integers x. return a sorted list of all elements that hasn't any even digit. Note: Returned list should be sorted in increasing order. For example: >>> unique_digits([15, 33, 1422, 1]) [1, 15, 33] >>> unique_digits([152, 323, 1422, 10]) [] """""" "," def unique_digits(x): """"""Given a list of positive integers x. return a sorted list of all elements that hasn't any odd or even digit. Note: Returned list should be sorted in increasing order. For example: >>> unique_digits([15, 33, 1422, 1]) [1, 15, 33] >>> unique_digits([152, 323, 1422, 10]) [] """""" "," def unique_digits(x): """"""Given a list of positive integers x. return a sorted list of all elements that hasn't any even digit. Note: Returned list should be sorted in increasing order. For example: >>> unique_digits([15, 33, 1422, 1]) [1422] >>> unique_digits([152, 323, 1422, 10]) [323, 10] """""" "," def unique_digits(x): """"""Given a list of positive integers x. return a sorted list of all elements that hasn't any. """""" "," def unique_digits(x): """"""Given a list of positive integers x. return a sorted list of all elements that hasn't any odd or even digit. Note: Returned list should be sorted in increasing order. For example: >>> unique_digits([15, 33, 1422, 1]) [1422] >>> unique_digits([152, 323, 1422, 10]) [323, 10] """""" ",,,," def unique_digits(x): """"""Given a list of positive integers x. return a sorted list of all elements that hasn't any even digit. Note: Returned list should be sorted in increasing order. For example: >>> unique_digits([15, 33, 1422, 1]) [1, 15, 33] >>> unique_digits([152, 323, 1422, 10]) [] """""" odd_digit_elements = [] for i in x: if all (int(c) % 2 == 1 for c in str(i)): odd_digit_elements.append(i) return sorted(odd_digit_elements) ","[{'input': '[15, 33, 1422, 1]', 'output': '[1, 15, 33]', 'relation': '=='}, {'input': '[152, 323, 1422, 10]', 'output': '[]', 'relation': '=='}, {'input': '[12345, 2033, 111, 151]', 'output': '[111, 151]', 'relation': '=='}, {'input': '[135, 103, 31]', 'output': '[31, 135]', 'relation': '=='}]" by_length,HumanEval/105," def by_length(arr): """""" Given an array of integers, sort the integers that are between 1 and 9 inclusive, reverse the resulting array, and then replace each digit by its corresponding name from ""One"", ""Two"", ""Three"", ""Four"", ""Five"", ""Six"", ""Seven"", ""Eight"", ""Nine"". For example: arr = [2, 1, 1, 4, 5, 8, 2, 3] -> sort arr -> [1, 1, 2, 2, 3, 4, 5, 8] -> reverse arr -> [8, 5, 4, 3, 2, 2, 1, 1] return [""Eight"", ""Five"", ""Four"", ""Three"", ""Two"", ""Two"", ""One"", ""One""] If the array is empty, return an empty array: arr = [] return [] If the array has any strange number ignore it: arr = [1, -1 , 55] -> sort arr -> [-1, 1, 55] -> reverse arr -> [55, 1, -1] return = ['One'] """""" "," def by_length(arr): """""" Given an array of integers, sort the integers descendingly or ascendingly that are between 1 and 9 inclusive, reverse the resulting array, and then replace each digit by its corresponding name from ""One"", ""Two"", ""Three"", ""Four"", ""Five"", ""Six"", ""Seven"", ""Eight"", ""Nine"". For example: arr = [2, 1, 1, 4, 5, 8, 2, 3] -> sort arr -> [1, 1, 2, 2, 3, 4, 5, 8] -> reverse arr -> [8, 5, 4, 3, 2, 2, 1, 1] return [""Eight"", ""Five"", ""Four"", ""Three"", ""Two"", ""Two"", ""One"", ""One""] If the array is empty, return an empty array: arr = [] return [] If the array has any strange number ignore it: arr = [1, -1 , 55] -> sort arr -> [-1, 1, 55] -> reverse arr -> [55, 1, -1] return = ['One'] """""" "," def by_length(arr): """""" Given an array of integers, sort the integers that are between 1 and 9 inclusive, reverse the resulting array, and then replace each digit by its corresponding name from ""One"", ""Two"", ""Three"", ""Four"", ""Five"", ""Six"", ""Seven"", ""Eight"", ""Nine"". For example: arr = [2, 1, 1, 4, 5, 8, 2, 3] -> sort arr -> [1, 1, 2, 2, 3, 4, 5, 8] -> reverse arr -> [8, 5, 4, 3, 2, 2, 1, 1] return [""Eight"", ""Five"", ""Four"", ""Three"", ""Two"", ""One""] If the array is empty, return an empty array: arr = [] return [] If the array has any strange number ignore it: arr = [1, -1 , 55] -> sort arr -> [-1, 1, 55] -> reverse arr -> [55, 1, -1] return = ['Minus One'] """""" "," def by_length(arr): """""" Given an array of integers, sort the integers that are between 1 and 9 inclusive, reverse the resulting array, and then replace each digit by its corresponding name from """""" "," def by_length(arr): """""" Given an array of integers, sort the integers descendingly or ascendingly that are between 1 and 9 inclusive, reverse the resulting array, and then replace each digit by its corresponding name from ""One"", ""Two"", ""Three"", ""Four"", ""Five"", ""Six"", ""Seven"", ""Eight"", ""Nine"". For example: arr = [2, 1, 1, 4, 5, 8, 2, 3] -> sort arr -> [1, 1, 2, 2, 3, 4, 5, 8] -> reverse arr -> [8, 5, 4, 3, 2, 2, 1, 1] return [""Eight"", ""Five"", ""Four"", ""Three"", ""Two"", ""One""] If the array is empty, return an empty array: arr = [] return [] If the array has any strange number ignore it: arr = [1, -1 , 55] -> sort arr -> [-1, 1, 55] -> reverse arr -> [55, 1, -1] return = ['Minus One'] """""" "," def by_length(arr): """""" Given an array of integers, sort the integers descendingly or ascendingly that are between 1 and 9 inclusive, reverse the resulting array, and then replace each digit by its corresponding name from """""" ",,," def by_length(arr): """""" Given an array of integers, sort the integers that are between 1 and 9 inclusive, reverse the resulting array, and then replace each digit by its corresponding name from ""One"", ""Two"", ""Three"", ""Four"", ""Five"", ""Six"", ""Seven"", ""Eight"", ""Nine"". For example: arr = [2, 1, 1, 4, 5, 8, 2, 3] -> sort arr -> [1, 1, 2, 2, 3, 4, 5, 8] -> reverse arr -> [8, 5, 4, 3, 2, 2, 1, 1] return [""Eight"", ""Five"", ""Four"", ""Three"", ""Two"", ""Two"", ""One"", ""One""] If the array is empty, return an empty array: arr = [] return [] If the array has any strange number ignore it: arr = [1, -1 , 55] -> sort arr -> [-1, 1, 55] -> reverse arr -> [55, 1, -1] return = ['One'] """""" dic = { 1: ""One"", 2: ""Two"", 3: ""Three"", 4: ""Four"", 5: ""Five"", 6: ""Six"", 7: ""Seven"", 8: ""Eight"", 9: ""Nine"", } sorted_arr = sorted(arr, reverse=True) new_arr = [] for var in sorted_arr: try: new_arr.append(dic[var]) except: pass return new_arr ","[{'input': '[2, 1, 1, 4, 5, 8, 2, 3]', 'output': ""['Eight', 'Five', 'Four', 'Three', 'Two', 'Two', 'One', 'One']"", 'relation': '=='}, {'input': '[]', 'output': '[]', 'relation': '=='}, {'input': '[1, -1 , 55]', 'output': ""['One']"", 'relation': '=='}, {'input': '[1, -1, 3, 2]', 'output': ""['Three', 'Two', 'One']"", 'relation': '=='}, {'input': '[9, 4, 8]', 'output': ""['Nine', 'Eight', 'Four']"", 'relation': '=='}]" f,HumanEval/106," def f(n): """""" Implement the function f that takes n as a parameter, and returns a list of size n, such that the value of the element at index i is the factorial of i if i is even or the sum of numbers from 1 to i otherwise. i starts from 1. the factorial of i is the multiplication of the numbers from 1 to i (1 * 2 * ... * i). Example: f(5) == [1, 2, 6, 24, 15] """""" "," def f(n): """""" Implement the function f that takes n as a parameter, and returns a list of size n, such that the value of the element at index i is the factorial of i if i is odd or even or the sum of numbers from 1 to i otherwise. i starts from 1. the factorial of i is the multiplication of the numbers from 1 to i (1 * 2 * ... * i). Example: f(5) == [1, 2, 6, 24, 15] """""" "," def f(n): """""" Implement the function f that takes n as a parameter, and returns a list of size n, such that the value of the element at index i is the factorial of i if i is even or the sum of numbers from 1 to i otherwise. i starts from 1. the factorial of i is the multiplication of the numbers from 1 to i (1 * 2 * ... * i). Example: f(5) == [15, 24, 6, 2, 1] """""" "," def f(n): """""" Implement the function f that takes n as a parameter, and returns a list of size n, such that the value of the element at index i is the factorial of i if i is even """""" "," def f(n): """""" Implement the function f that takes n as a parameter, and returns a list of size n, such that the value of the element at index i is the factorial of i if i is odd or even or the sum of numbers from 1 to i otherwise. i starts from 1. the factorial of i is the multiplication of the numbers from 1 to i (1 * 2 * ... * i). Example: f(5) == [15, 24, 6, 2, 1] """""" "," def f(n): """""" Implement the function f that takes n as a parameter, and returns a list of size n, such that the value of the element at index i is the factorial of i if i is odd or even """""" ",,," def f(n): """""" Implement the function f that takes n as a parameter, and returns a list of size n, such that the value of the element at index i is the factorial of i if i is even or the sum of numbers from 1 to i otherwise. i starts from 1. the factorial of i is the multiplication of the numbers from 1 to i (1 * 2 * ... * i). Example: f(5) == [1, 2, 6, 24, 15] """""" ret = [] for i in range(1,n+1): if i%2 == 0: x = 1 for j in range(1,i+1): x *= j ret += [x] else: x = 0 for j in range(1,i+1): x += j ret += [x] return ret ","[{'input': '5', 'output': '[1, 2, 6, 24, 15]', 'relation': '=='}, {'input': '7', 'output': '[1, 2, 6, 24, 15, 720, 28]', 'relation': '=='}, {'input': '1', 'output': '[1]', 'relation': '=='}, {'input': '3', 'output': '[1, 2, 6]', 'relation': '=='}]" even_odd_palindrome,HumanEval/107," def even_odd_palindrome(n): """""" Given a positive integer n, return a tuple that has the number of even and odd integer palindromes that fall within the range(1, n), inclusive. Example 1: Input: 3 Output: (1, 2) Explanation: Integer palindrome are 1, 2, 3. one of them is even, and two of them are odd. Example 2: Input: 12 Output: (4, 6) Explanation: Integer palindrome are 1, 2, 3, 4, 5, 6, 7, 8, 9, 11. four of them are even, and 6 of them are odd. Note: 1. 1 <= n <= 10^3 2. returned tuple has the number of even and odd integer palindromes respectively. """""" "," def even_odd_palindrome(n): """""" Given a positive integer n, return a tuple that has the number of even and odd integer palindromes that fall within the range(1, 2*n) or range(1, n), inclusive. Example 1: Input: 3 Output: (1, 2) Explanation: Integer palindrome are 1, 2, 3. one of them is even, and two of them are odd. Example 2: Input: 12 Output: (4, 6) Explanation: Integer palindrome are 1, 2, 3, 4, 5, 6, 7, 8, 9, 11. four of them are even, and 6 of them are odd. Note: 1. 1 <= n <= 10^3 2. returned tuple has the number of even and odd integer palindromes respectively. """""" "," def even_odd_palindrome(n): """""" Given a positive integer n, return a tuple that has the number of even and odd integer palindromes that fall within the range(1, n), inclusive. Example 1: Input: 3 Output: (2, 1) Explanation: Integer palindrome are 1, 2, 3. one of them is even, and two of them are odd. Example 2: Input: 12 Output: (6, 4) Explanation: Integer palindrome are 1, 2, 3, 4, 5, 6, 7, 8, 9, 11. four of them are even, and 6 of them are odd. Note: 1. 1 <= n <= 10^3 2. returned tuple has the number of even and odd integer palindromes respectively. """""" "," def even_odd_palindrome(n): """""" Given a positive integer n, return a tuple that has the number of even and odd integer palindromes that fall within the range, inclusive. """""" "," def even_odd_palindrome(n): """""" Given a positive integer n, return a tuple that has the number of even and odd integer palindromes that fall within the range(1, 2*n) or range(1, n), inclusive. Example 1: Input: 3 Output: (2, 1) Explanation: Integer palindrome are 1, 2, 3. one of them is even, and two of them are odd. Example 2: Input: 12 Output: (6, 4) Explanation: Integer palindrome are 1, 2, 3, 4, 5, 6, 7, 8, 9, 11. four of them are even, and 6 of them are odd. Note: 1. 1 <= n <= 10^3 2. returned tuple has the number of even and odd integer palindromes respectively. """""" ",,,," def even_odd_palindrome(n): """""" Given a positive integer n, return a tuple that has the number of even and odd integer palindromes that fall within the range(1, n), inclusive. Example 1: Input: 3 Output: (1, 2) Explanation: Integer palindrome are 1, 2, 3. one of them is even, and two of them are odd. Example 2: Input: 12 Output: (4, 6) Explanation: Integer palindrome are 1, 2, 3, 4, 5, 6, 7, 8, 9, 11. four of them are even, and 6 of them are odd. Note: 1. 1 <= n <= 10^3 2. returned tuple has the number of even and odd integer palindromes respectively. """""" def is_palindrome(n): return str(n) == str(n)[::-1] even_palindrome_count = 0 odd_palindrome_count = 0 for i in range(1, n+1): if i%2 == 1 and is_palindrome(i): odd_palindrome_count += 1 elif i%2 == 0 and is_palindrome(i): even_palindrome_count += 1 return (even_palindrome_count, odd_palindrome_count) ","[{'input': '123', 'output': '(8, 13)', 'relation': '=='}, {'input': '12', 'output': '(4, 6)', 'relation': '=='}, {'input': '3', 'output': '(1, 2)', 'relation': '=='}, {'input': '63', 'output': '(6, 8)', 'relation': '=='}, {'input': '25', 'output': '(5, 6)', 'relation': '=='}, {'input': '19', 'output': '(4, 6)', 'relation': '=='}, {'input': '9', 'output': '(4, 5)', 'relation': '=='}, {'input': '1', 'output': '(0, 1)', 'relation': '=='}]" count_nums,HumanEval/108," def count_nums(arr): """""" Write a function count_nums which takes an array of integers and returns the number of elements which has a sum of digits > 0. If a number is negative, then its first signed digit will be negative: e.g. -123 has signed digits -1, 2, and 3. >>> count_nums([]) == 0 >>> count_nums([-1, 11, -11]) == 1 >>> count_nums([1, 1, 2]) == 3 """""" "," def count_nums(arr): """""" Write a function count_nums which takes an array of integers and returns the number of elements which has a sum of digits > 0. If a number is positive or negative, then its first signed digit will be negative: e.g. -123 has signed digits -1, 2, and 3. >>> count_nums([]) == 0 >>> count_nums([-1, 11, -11]) == 1 >>> count_nums([1, 1, 2]) == 3 """""" "," def count_nums(arr): """""" Write a function count_nums which takes an array of integers and returns the number of elements which has a sum of digits > 0. If a number is negative, then its first signed digit will be negative: e.g. -123 has signed digits -1, 2, and 3. >>> count_nums([]) == 0 >>> count_nums([-1, 11, -11]) == 2 >>> count_nums([1, 1, 2]) == 0 """""" "," def count_nums(arr): """""" Write a function count_nums which takes an array of integers and returns the number of elements which has a sum of """""" "," def count_nums(arr): """""" Write a function count_nums which takes an array of integers and returns the number of elements which has a sum of digits > 0. If a number is positive or negative, then its first signed digit will be negative: e.g. -123 has signed digits -1, 2, and 3. >>> count_nums([]) == 0 >>> count_nums([-1, 11, -11]) == 2 >>> count_nums([1, 1, 2]) == 0 """""" ",,,," def count_nums(arr): """""" Write a function count_nums which takes an array of integers and returns the number of elements which has a sum of digits > 0. If a number is negative, then its first signed digit will be negative: e.g. -123 has signed digits -1, 2, and 3. >>> count_nums([]) == 0 >>> count_nums([-1, 11, -11]) == 1 >>> count_nums([1, 1, 2]) == 3 """""" def digits_sum(n): neg = 1 if n < 0: n, neg = -1 * n, -1 n = [int(i) for i in str(n)] n[0] = n[0] * neg return sum(n) return len(list(filter(lambda x: x > 0, [digits_sum(i) for i in arr]))) ","[{'input': '[]', 'output': '0', 'relation': '=='}, {'input': '[-1, -2, 0]', 'output': '0', 'relation': '=='}, {'input': '[1, 1, 2, -2, 3, 4, 5]', 'output': '6', 'relation': '=='}, {'input': '[1, 6, 9, -6, 0, 1, 5]', 'output': '5', 'relation': '=='}, {'input': '[1, 100, 98, -7, 1, -1]', 'output': '4', 'relation': '=='}, {'input': '[12, 23, 34, -45, -56, 0]', 'output': '5', 'relation': '=='}, {'input': '[-0, 1**0]', 'output': '1', 'relation': '=='}, {'input': '[1]', 'output': '1', 'relation': '=='}]" move_one_ball,HumanEval/109," def move_one_ball(arr): """"""We have an array 'arr' of N integers arr[1], arr[2], ..., arr[N].The numbers in the array will be randomly ordered. Your task is to determine if it is possible to get an array sorted in non-decreasing order by performing the following operation on the given array: You are allowed to perform right shift operation any number of times. One right shift operation means shifting all elements of the array by one position in the right direction. The last element of the array will be moved to the starting position in the array i.e. 0th index. If it is possible to obtain the sorted array by performing the above operation then return True else return False. If the given array is empty then return True. Note: The given list is guaranteed to have unique elements. For Example: move_one_ball([3, 4, 5, 1, 2])==>True Explanation: By performin 2 right shift operations, non-decreasing order can be achieved for the given array. move_one_ball([3, 5, 4, 1, 2])==>False Explanation:It is not possible to get non-decreasing order for the given array by performing any number of right shift operations. """""" "," def move_one_ball(arr): """"""We have an array 'arr' of N integers arr[1], arr[2], ..., arr[N].The numbers in the array will be randomly ordered. Your task is to determine if it is possible to get an array sorted in non-increasing or non-decreasing order by performing the following operation on the given array: You are allowed to perform right shift operation any number of times. One right shift operation means shifting all elements of the array by one position in the right direction. The last element of the array will be moved to the starting position in the array i.e. 0th index. If it is possible to obtain the sorted array by performing the above operation then return True else return False. If the given array is empty then return True. Note: The given list is guaranteed to have unique elements. For Example: move_one_ball([3, 4, 5, 1, 2])==>True Explanation: By performin 2 right shift operations, non-decreasing order can be achieved for the given array. move_one_ball([3, 5, 4, 1, 2])==>False Explanation:It is not possible to get non-decreasing order for the given array by performing any number of right shift operations. """""" "," def move_one_ball(arr): """"""We have an array 'arr' of N integers arr[1], arr[2], ..., arr[N].The numbers in the array will be randomly ordered. Your task is to determine if it is possible to get an array sorted in non-decreasing order by performing the following operation on the given array: You are allowed to perform right shift operation any number of times. One right shift operation means shifting all elements of the array by one position in the right direction. The last element of the array will be moved to the starting position in the array i.e. 0th index. If it is possible to obtain the sorted array by performing the above operation then return True else return False. If the given array is empty then return True. Note: The given list is guaranteed to have unique elements. For Example: move_one_ball([3, 4, 5, 1, 2])==>False Explanation: By performin 2 right shift operations, non-decreasing order can be achieved for the given array. move_one_ball([3, 5, 4, 1, 2])==>True Explanation:It is not possible to get non-decreasing order for the given array by performing any number of right shift operations. """""" "," def move_one_ball(arr): """"""We have an array 'arr' of N integers arr[1], arr[2], ..., arr[N].The numbers in the array will be randomly ordered. You are allowed to perform right shift operation any number of times. One right shift operation means shifting all elements of the array by one position in the right direction. The last element of the array will be moved to the starting position in the array i.e. 0th index. If it is possible to obtain the array by performing the above operation then return True else return False. If the given array is empty then return True. Note: The given list is guaranteed to have unique elements. """""" "," def move_one_ball(arr): """"""We have an array 'arr' of N integers arr[1], arr[2], ..., arr[N].The numbers in the array will be randomly ordered. Your task is to determine if it is possible to get an array sorted in non-increasing or non-decreasing order by performing the following operation on the given array: You are allowed to perform right shift operation any number of times. One right shift operation means shifting all elements of the array by one position in the right direction. The last element of the array will be moved to the starting position in the array i.e. 0th index. If it is possible to obtain the sorted array by performing the above operation then return True else return False. If the given array is empty then return True. Note: The given list is guaranteed to have unique elements. For Example: move_one_ball([3, 4, 5, 1, 2])==>False Explanation: By performin 2 right shift operations, non-decreasing order can be achieved for the given array. move_one_ball([3, 5, 4, 1, 2])==>True Explanation:It is not possible to get non-decreasing order for the given array by performing any number of right shift operations. """""" ",,,," def move_one_ball(arr): """"""We have an array 'arr' of N integers arr[1], arr[2], ..., arr[N].The numbers in the array will be randomly ordered. Your task is to determine if it is possible to get an array sorted in non-decreasing order by performing the following operation on the given array: You are allowed to perform right shift operation any number of times. One right shift operation means shifting all elements of the array by one position in the right direction. The last element of the array will be moved to the starting position in the array i.e. 0th index. If it is possible to obtain the sorted array by performing the above operation then return True else return False. If the given array is empty then return True. Note: The given list is guaranteed to have unique elements. For Example: move_one_ball([3, 4, 5, 1, 2])==>True Explanation: By performin 2 right shift operations, non-decreasing order can be achieved for the given array. move_one_ball([3, 5, 4, 1, 2])==>False Explanation:It is not possible to get non-decreasing order for the given array by performing any number of right shift operations. """""" if len(arr)==0: return True sorted_array=sorted(arr) my_arr=[] min_value=min(arr) min_index=arr.index(min_value) my_arr=arr[min_index:]+arr[0:min_index] for i in range(len(arr)): if my_arr[i]!=sorted_array[i]: return False return True ","[{'input': '[3, 4, 5, 1, 2]', 'output': 'True', 'relation': '=='}, {'input': '[3, 5, 10, 1, 2]', 'output': 'True', 'relation': '=='}, {'input': '[4, 3, 1, 2]', 'output': 'False', 'relation': '=='}, {'input': '[3, 5, 4, 1, 2]', 'output': 'False', 'relation': '=='}, {'input': '[]', 'output': 'True', 'relation': '=='}]" exchange,HumanEval/110," def exchange(lst1, lst2): """"""In this problem, you will implement a function that takes two lists of numbers, and determines whether it is possible to perform an exchange of elements between them to make lst1 a list of only even numbers. There is no limit on the number of exchanged elements between lst1 and lst2. If it is possible to exchange elements between the lst1 and lst2 to make all the elements of lst1 to be even, return ""YES"". Otherwise, return ""NO"". For example: exchange([1, 2, 3, 4], [1, 2, 3, 4]) => ""YES"" exchange([1, 2, 3, 4], [1, 5, 3, 4]) => ""NO"" It is assumed that the input lists will be non-empty. """""" "," def exchange(lst1, lst2): """"""In this problem, you will implement a function that takes two lists of numbers, and determines whether it is possible to perform an exchange of elements between them to make lst1 a list of only odd or even numbers. There is no limit on the number of exchanged elements between lst1 and lst2. If it is possible to exchange elements between the lst1 and lst2 to make all the elements of lst1 to be even, return ""YES"". Otherwise, return ""NO"". For example: exchange([1, 2, 3, 4], [1, 2, 3, 4]) => ""YES"" exchange([1, 2, 3, 4], [1, 5, 3, 4]) => ""NO"" It is assumed that the input lists will be non-empty. """""" "," def exchange(lst1, lst2): """"""In this problem, you will implement a function that takes two lists of numbers, and determines whether it is possible to perform an exchange of elements between them to make lst1 a list of only even numbers. There is no limit on the number of exchanged elements between lst1 and lst2. If it is possible to exchange elements between the lst1 and lst2 to make all the elements of lst1 to be even, return ""YES"". Otherwise, return ""NO"". For example: exchange([1, 2, 3, 4], [1, 2, 3, 4]) => ""NO"" exchange([1, 2, 3, 4], [1, 5, 3, 4]) => ""YES"" It is assumed that the input lists will be non-empty. """""" "," def exchange(lst1, lst2): """"""In this problem, you will implement a function that takes two lists of numbers, and determines whether it is possible to perform an exchange of elements between them """""" "," def exchange(lst1, lst2): """"""In this problem, you will implement a function that takes two lists of numbers, and determines whether it is possible to perform an exchange of elements between them to make lst1 a list of only odd or even numbers. There is no limit on the number of exchanged elements between lst1 and lst2. If it is possible to exchange elements between the lst1 and lst2 to make all the elements of lst1 to be even, return ""YES"". Otherwise, return ""NO"". For example: exchange([1, 2, 3, 4], [1, 2, 3, 4]) => ""NO"" exchange([1, 2, 3, 4], [1, 5, 3, 4]) => ""YES"" It is assumed that the input lists will be non-empty. """""" ",,,," def exchange(lst1, lst2): """"""In this problem, you will implement a function that takes two lists of numbers, and determines whether it is possible to perform an exchange of elements between them to make lst1 a list of only even numbers. There is no limit on the number of exchanged elements between lst1 and lst2. If it is possible to exchange elements between the lst1 and lst2 to make all the elements of lst1 to be even, return ""YES"". Otherwise, return ""NO"". For example: exchange([1, 2, 3, 4], [1, 2, 3, 4]) => ""YES"" exchange([1, 2, 3, 4], [1, 5, 3, 4]) => ""NO"" It is assumed that the input lists will be non-empty. """""" odd = 0 even = 0 for i in lst1: if i%2 == 1: odd += 1 for i in lst2: if i%2 == 0: even += 1 if even >= odd: return ""YES"" return ""NO"" ","[{'input': '[1, 2, 3, 4], [1, 2, 3, 4]', 'output': 'YES', 'relation': '=='}, {'input': '[1, 2, 3, 4], [1, 5, 3, 4]', 'output': 'NO', 'relation': '=='}, {'input': '[1, 2, 3, 4], [2, 1, 4, 3]', 'output': 'YES', 'relation': '=='}, {'input': '[5, 7, 3], [2, 6, 4]', 'output': 'YES', 'relation': '=='}, {'input': '[5, 7, 3], [2, 6, 3]', 'output': 'NO', 'relation': '=='}, {'input': '[3, 2, 6, 1, 8, 9], [3, 5, 5, 1, 1, 1]', 'output': 'NO', 'relation': '=='}, {'input': '[100, 200], [200, 200]', 'output': 'YES', 'relation': '=='}]" histogram,HumanEval/111," def histogram(test): """"""Given a string representing a space separated lowercase letters, return a dictionary of the letter with the most repetition and containing the corresponding count. If several letters have the same occurrence, return all of them. Example: histogram('a b c') == {'a': 1, 'b': 1, 'c': 1} histogram('a b b a') == {'a': 2, 'b': 2} histogram('a b c a b') == {'a': 2, 'b': 2} histogram('b b b b a') == {'b': 4} histogram('') == {} """""" "," def histogram(test): """"""Given a string representing a space separated lowercase letters, return a dictionary of the letter with the least or most repetition and containing the corresponding count. If several letters have the same occurrence, return all of them. Example: histogram('a b c') == {'a': 1, 'b': 1, 'c': 1} histogram('a b b a') == {'a': 2, 'b': 2} histogram('a b c a b') == {'a': 2, 'b': 2} histogram('b b b b a') == {'b': 4} histogram('') == {} """""" "," def histogram(test): """"""Given a string representing a space separated lowercase letters, return a dictionary of the letter with the most repetition and containing the corresponding count. If several letters have the same occurrence, return all of them. Example: histogram('a b c') == {'a': 1} histogram('a b b a') == {'a': 2} histogram('a b c a b') == {'a': 2} histogram('b b b b a') == {'b': 4} histogram('') == {} """""" "," def histogram(test): """"""Given a string representing a space separated lowercase letters, return a dictionary of the letter """""" "," def histogram(test): """"""Given a string representing a space separated lowercase letters, return a dictionary of the letter with the least or most repetition and containing the corresponding count. If several letters have the same occurrence, return all of them. Example: histogram('a b c') == {'a': 1} histogram('a b b a') == {'a': 2} histogram('a b c a b') == {'a': 2} histogram('b b b b a') == {'b': 4} histogram('') == {} """""" ",,,," def histogram(test): """"""Given a string representing a space separated lowercase letters, return a dictionary of the letter with the most repetition and containing the corresponding count. If several letters have the same occurrence, return all of them. Example: histogram('a b c') == {'a': 1, 'b': 1, 'c': 1} histogram('a b b a') == {'a': 2, 'b': 2} histogram('a b c a b') == {'a': 2, 'b': 2} histogram('b b b b a') == {'b': 4} histogram('') == {} """""" dict1={} list1=test.split("" "") t=0 for i in list1: if(list1.count(i)>t) and i!='': t=list1.count(i) if t>0: for i in list1: if(list1.count(i)==t): dict1[i]=t return dict1 ","[{'input': ""'a b b a'"", 'output': ""{'a': 2, 'b': 2}"", 'relation': '=='}, {'input': ""'a b c a b'"", 'output': ""{'a': 2, 'b': 2}"", 'relation': '=='}, {'input': ""'a b c d g'"", 'output': ""{'a': 1, 'b': 1, 'c': 1, 'd': 1, 'g': 1}"", 'relation': '=='}, {'input': ""'r t g'"", 'output': ""{'r': 1, 't': 1, 'g': 1}"", 'relation': '=='}, {'input': ""'b b b b a'"", 'output': ""{'b': 4}"", 'relation': '=='}, {'input': ""''"", 'output': '{}', 'relation': '=='}, {'input': ""'a'"", 'output': ""{'a': 1}"", 'relation': '=='}]" reverse_delete,HumanEval/112," def reverse_delete(s,c): """"""Task We are given two strings s and c, you have to deleted all the characters in s that are equal to any character in c then check if the result string is palindrome. A string is called palindrome if it reads the same backward as forward. You should return a tuple containing the result string and True/False for the check. Example For s = ""abcde"", c = ""ae"", the result should be ('bcd',False) For s = ""abcdef"", c = ""b"" the result should be ('acdef',False) For s = ""abcdedcba"", c = ""ab"", the result should be ('cdedc',True) """""" "," def reverse_delete(s,c): """"""Task We are given two strings s and c, you have to deleted all the characters in s that are related to any character in c then check if the result string is palindrome. A string is called palindrome if it reads the same backward as forward. You should return a tuple containing the result string and True/False for the check. Example For s = ""abcde"", c = ""ae"", the result should be ('bcd',False) For s = ""abcdef"", c = ""b"" the result should be ('acdef',False) For s = ""abcdedcba"", c = ""ab"", the result should be ('cdedc',True) """""" "," def reverse_delete(s,c): """"""Task We are given two strings s and c, you have to deleted all the characters in s that are equal to any character in c then check if the result string is palindrome. A string is called palindrome if it reads the same backward as forward. You should return a tuple containing the result string and True/False for the check. Example For s = ""abcde"", c = ""ae"", the result should be ('abcde',True) For s = ""abcdef"", c = ""b"" the result should be ('abcdef',True) For s = ""abcdedcba"", c = ""ab"", the result should be ('abcdedcba',False) """""" "," def reverse_delete(s,c): """"""Task We are given two strings s and c, you have to deleted all the characters in s that are equal to any character in c then check if the result string is . """""" "," def reverse_delete(s,c): """"""Task We are given two strings s and c, you have to deleted all the characters in s that are related to any character in c then check if the result string is palindrome. A string is called palindrome if it reads the same backward as forward. You should return a tuple containing the result string and True/False for the check. Example For s = ""abcde"", c = ""ae"", the result should be ('abcde',True) For s = ""abcdef"", c = ""b"" the result should be ('abcdef',True) For s = ""abcdedcba"", c = ""ab"", the result should be ('abcdedcba',False) """""" "," def reverse_delete(s,c): """"""Task We are given two strings s and c, you have to deleted all the characters in s that are related to any character in c then check if the result string is . """""" ",,," def reverse_delete(s,c): """"""Task We are given two strings s and c, you have to deleted all the characters in s that are equal to any character in c then check if the result string is palindrome. A string is called palindrome if it reads the same backward as forward. You should return a tuple containing the result string and True/False for the check. Example For s = ""abcde"", c = ""ae"", the result should be ('bcd',False) For s = ""abcdef"", c = ""b"" the result should be ('acdef',False) For s = ""abcdedcba"", c = ""ab"", the result should be ('cdedc',True) """""" s = ''.join([char for char in s if char not in c]) return (s,s[::-1] == s) ","[{'input': '""abcde"",""ae""', 'output': ""('bcd', False)"", 'relation': '=='}, {'input': '""abcdef"", ""b""', 'output': ""('acdef', False)"", 'relation': '=='}, {'input': '""abcdedcba"",""ab""', 'output': ""('cdedc', True)"", 'relation': '=='}, {'input': '""dwik"",""w""', 'output': ""('dik', False)"", 'relation': '=='}, {'input': '""a"",""a""', 'output': ""('', True)"", 'relation': '=='}, {'input': '""abcdedcba"",""""', 'output': ""('abcdedcba', True)"", 'relation': '=='}, {'input': '""abcdedcba"",""v""', 'output': ""('abcdedcba', True)"", 'relation': '=='}, {'input': '""vabba"",""v""', 'output': ""('abba', True)"", 'relation': '=='}, {'input': '""mamma"", ""mia""', 'output': ""('', True)"", 'relation': '=='}]" odd_count,HumanEval/113," def odd_count(lst): """"""Given a list of strings, where each string consists of only digits, return a list. Each element i of the output should be ""the number of odd elements in the string i of the input."" where all the i's should be replaced by the number of odd digits in the i'th string of the input. >>> odd_count(['1234567']) [""the number of odd elements 4n the str4ng 4 of the 4nput.""] >>> odd_count(['3',""11111111""]) [""the number of odd elements 1n the str1ng 1 of the 1nput."", ""the number of odd elements 8n the str8ng 8 of the 8nput.""] """""" "," def odd_count(lst): """"""Given a list of strings, where each string consists of only digits, return a list. Each element i of the output should be ""the number of odd elements in the string i of the input."" where all the i's should be replaced by the number of even or odd digits in the i'th string of the input. >>> odd_count(['1234567']) [""the number of odd elements 4n the str4ng 4 of the 4nput.""] >>> odd_count(['3',""11111111""]) [""the number of odd elements 1n the str1ng 1 of the 1nput."", ""the number of odd elements 8n the str8ng 8 of the 8nput.""] """""" "," def odd_count(lst): """"""Given a list of strings, where each string consists of only digits, return a list. Each element i of the output should be ""the number of odd elements in the string i of the input."" where all the i's should be replaced by the number of odd digits in the i'th string of the input. >>> odd_count(['1234567']) [""the number of odd elements 14n the str14ng 14 of the 14nput.""] >>> odd_count(['3',""11111111""]) [""the number of odd elements 11n the str11ng 11 of the 11nput."", ""the number of odd elements 18n the str18ng 18 of the 18nput.""] """""" "," def odd_count(lst): """"""Given a list of strings, where each string consists of only digits, return a list. Each element i of the output should be ""the number of odd elements in the string i of the input."" where all the i's should be replaced by """""" "," def odd_count(lst): """"""Given a list of strings, where each string consists of only digits, return a list. Each element i of the output should be ""the number of odd elements in the string i of the input."" where all the i's should be replaced by the number of even or odd digits in the i'th string of the input. >>> odd_count(['1234567']) [""the number of odd elements 14n the str14ng 14 of the 14nput.""] >>> odd_count(['3',""11111111""]) [""the number of odd elements 11n the str11ng 11 of the 11nput."", ""the number of odd elements 18n the str18ng 18 of the 18nput.""] """""" ",,,," def odd_count(lst): """"""Given a list of strings, where each string consists of only digits, return a list. Each element i of the output should be ""the number of odd elements in the string i of the input."" where all the i's should be replaced by the number of odd digits in the i'th string of the input. >>> odd_count(['1234567']) [""the number of odd elements 4n the str4ng 4 of the 4nput.""] >>> odd_count(['3',""11111111""]) [""the number of odd elements 1n the str1ng 1 of the 1nput."", ""the number of odd elements 8n the str8ng 8 of the 8nput.""] """""" res = [] for arr in lst: n = sum(int(d)%2==1 for d in arr) res.append(""the number of odd elements "" + str(n) + ""n the str""+ str(n) +""ng ""+ str(n) +"" of the ""+ str(n) +""nput."") return res ","[{'input': ""['1234567']"", 'output': ""['the number of odd elements 4n the str4ng 4 of the 4nput.']"", 'relation': '=='}, {'input': ""['3','11111111']"", 'output': ""['the number of odd elements 1n the str1ng 1 of the 1nput.', 'the number of odd elements 8n the str8ng 8 of the 8nput.']"", 'relation': '=='}, {'input': ""['271', '137', '314']"", 'output': ""['the number of odd elements 2n the str2ng 2 of the 2nput.', 'the number of odd elements 3n the str3ng 3 of the 3nput.', 'the number of odd elements 2n the str2ng 2 of the 2nput.']"", 'relation': '=='}]" minSubArraySum,HumanEval/114," def minSubArraySum(nums): """""" Given an array of integers nums, find the minimum sum of any non-empty sub-array of nums. Example minSubArraySum([2, 3, 4, 1, 2, 4]) == 1 minSubArraySum([-1, -2, -3]) == -6 """""" "," def candidate(nums): """""" Given an array of integers nums, find a certain sum of any non-empty sub-array of nums. Example candidate([2, 3, 4, 1, 2, 4]) == 1 candidate([-1, -2, -3]) == -6 """""" "," def minSubArraySum(nums): """""" Given an array of integers nums, find the minimum sum of any non-empty sub-array of nums. Example minSubArraySum([2, 3, 4, 1, 2, 4]) == 3 minSubArraySum([-1, -2, -3]) == -5 """""" "," def candidate(nums): """""" Given an array of integers nums, find the minimum sum """""" "," def candidate(nums): """""" Given an array of integers nums, find a certain sum of any non-empty sub-array of nums. Example candidate([2, 3, 4, 1, 2, 4]) == 3 candidate([-1, -2, -3]) == -5 """""" "," def candidate(nums): """""" Given an array of integers nums, find a certain sum """""" ",,," def minSubArraySum(nums): """""" Given an array of integers nums, find the minimum sum of any non-empty sub-array of nums. Example minSubArraySum([2, 3, 4, 1, 2, 4]) == 1 minSubArraySum([-1, -2, -3]) == -6 """""" max_sum = 0 s = 0 for num in nums: s += -num if (s < 0): s = 0 max_sum = max(s, max_sum) if max_sum == 0: max_sum = max(-i for i in nums) min_sum = -max_sum return min_sum ","[{'input': '[2, 3, 4, 1, 2, 4]', 'output': '1', 'relation': '=='}, {'input': '[-1, -2, -3]', 'output': '-6', 'relation': '=='}, {'input': '[-1, -2, -3, 2, -10]', 'output': '-14', 'relation': '=='}, {'input': '[-9999999999999999]', 'output': '-9999999999999999', 'relation': '=='}, {'input': '[0, 10, 20, 1000000]', 'output': '0', 'relation': '=='}, {'input': '[-1, -2, -3, 10, -5]', 'output': '-6', 'relation': '=='}, {'input': '[100, -1, -2, -3, 10, -5]', 'output': '-6', 'relation': '=='}, {'input': '[10, 11, 13, 8, 3, 4]', 'output': '3', 'relation': '=='}, {'input': '[100, -33, 32, -1, 0, -2]', 'output': '-33', 'relation': '=='}, {'input': '[-10]', 'output': '-10', 'relation': '=='}, {'input': '[7]', 'output': '7', 'relation': '=='}, {'input': '[1, -1]', 'output': '-1', 'relation': '=='}]" max_fill,HumanEval/115," def max_fill(grid, capacity): import math """""" You are given a rectangular grid of wells. Each row represents a single well, and each 1 in a row represents a single unit of water. Each well has a corresponding bucket that can be used to extract water from it, and all buckets have the same capacity. Your task is to use the buckets to empty the wells. Output the number of times you need to lower the buckets. Example 1: Input: grid : [[0,0,1,0], [0,1,0,0], [1,1,1,1]] bucket_capacity : 1 Output: 6 Example 2: Input: grid : [[0,0,1,1], [0,0,0,0], [1,1,1,1], [0,1,1,1]] bucket_capacity : 2 Output: 5 Example 3: Input: grid : [[0,0,0], [0,0,0]] bucket_capacity : 5 Output: 0 Constraints: * all wells have the same length * 1 <= grid.length <= 10^2 * 1 <= grid[:,1].length <= 10^2 * grid[i][j] -> 0 | 1 * 1 <= capacity <= 10 """""" "," def max_fill(grid, capacity): import math """""" You are given a rectangular grid of wells. Each row represents a single well, and each 0 or 1 in a row represents a single unit of water. Each well has a corresponding bucket that can be used to extract water from it, and all buckets have the same capacity. Your task is to use the buckets to empty the wells. Output something to lower the buckets. Example 1: Input: grid : [[0,0,1,0], [0,1,0,0], [1,1,1,1]] bucket_capacity : 1 Output: 6 Example 2: Input: grid : [[0,0,1,1], [0,0,0,0], [1,1,1,1], [0,1,1,1]] bucket_capacity : 2 Output: 5 Example 3: Input: grid : [[0,0,0], [0,0,0]] bucket_capacity : 5 Output: 0 Constraints: * all wells have the same length * 1 <= grid.length <= 10^2 * 1 <= grid[:,1].length <= 10^2 * grid[i][j] -> 0 | 1 * 1 <= capacity <= 10 """""" "," def max_fill(grid, capacity): import math """""" You are given a rectangular grid of wells. Each row represents a single well, and each 1 in a row represents a single unit of water. Each well has a corresponding bucket that can be used to extract water from it, and all buckets have the same capacity. Your task is to use the buckets to empty the wells. Output the number of times you need to lower the buckets. Example 1: Input: grid : [[0,0,1,0], [0,1,0,0], [1,1,1,1]] bucket_capacity : 1 Output: 3 Example 2: Input: grid : [[0,0,1,1], [0,0,0,0], [1,1,1,1], [0,1,1,1]] bucket_capacity : 2 Output: 2 Example 3: Input: grid : [[0,0,0], [0,0,0]] bucket_capacity : 5 Output: 3 Constraints: * all wells have the same length * 1 <= grid.length <= 10^2 * 1 <= grid[:,1].length <= 10^2 * grid[i][j] -> 0 | 1 * 1 <= capacity <= 10 """""" "," def max_fill(grid, capacity): import math """""" You are given a rectangular grid of wells. Each row represents a single well, and each 1 in a row represents a single unit of water. Each well has a corresponding bucket that can be used to extract water from it, and all buckets have the same capacity. """""" "," def max_fill(grid, capacity): import math """""" You are given a rectangular grid of wells. Each row represents a single well, and each 0 or 1 in a row represents a single unit of water. Each well has a corresponding bucket that can be used to extract water from it, and all buckets have the same capacity. Your task is to use the buckets to empty the wells. Output something to lower the buckets. Example 1: Input: grid : [[0,0,1,0], [0,1,0,0], [1,1,1,1]] bucket_capacity : 1 Output: 3 Example 2: Input: grid : [[0,0,1,1], [0,0,0,0], [1,1,1,1], [0,1,1,1]] bucket_capacity : 2 Output: 2 Example 3: Input: grid : [[0,0,0], [0,0,0]] bucket_capacity : 5 Output: 3 Constraints: * all wells have the same length * 1 <= grid.length <= 10^2 * 1 <= grid[:,1].length <= 10^2 * grid[i][j] -> 0 | 1 * 1 <= capacity <= 10 """""" "," def max_fill(grid, capacity): import math """""" You are given a rectangular grid of wells. Each row represents a single well, and each 0 or 1 in a row represents a single unit of water. Each well has a corresponding bucket that can be used to extract water from it, and all buckets have the same capacity. """""" ",,," def max_fill(grid, capacity): import math """""" You are given a rectangular grid of wells. Each row represents a single well, and each 1 in a row represents a single unit of water. Each well has a corresponding bucket that can be used to extract water from it, and all buckets have the same capacity. Your task is to use the buckets to empty the wells. Output the number of times you need to lower the buckets. Example 1: Input: grid : [[0,0,1,0], [0,1,0,0], [1,1,1,1]] bucket_capacity : 1 Output: 6 Example 2: Input: grid : [[0,0,1,1], [0,0,0,0], [1,1,1,1], [0,1,1,1]] bucket_capacity : 2 Output: 5 Example 3: Input: grid : [[0,0,0], [0,0,0]] bucket_capacity : 5 Output: 0 Constraints: * all wells have the same length * 1 <= grid.length <= 10^2 * 1 <= grid[:,1].length <= 10^2 * grid[i][j] -> 0 | 1 * 1 <= capacity <= 10 """""" return sum([math.ceil(sum(arr)/capacity) for arr in grid]) ","[{'input': '[[0,0,1,0], [0,1,0,0], [1,1,1,1]], 1', 'output': '6', 'relation': '=='}, {'input': '[[0,0,1,1], [0,0,0,0], [1,1,1,1], [0,1,1,1]], 2', 'output': '5', 'relation': '=='}, {'input': '[[0,0,0], [0,0,0]], 5', 'output': '0', 'relation': '=='}, {'input': '[[1,1,1,1], [1,1,1,1]], 2', 'output': '4', 'relation': '=='}, {'input': '[[1,1,1,1], [1,1,1,1]], 9', 'output': '2', 'relation': '=='}]" sort_array,HumanEval/116," def sort_array(arr): """""" In this Kata, you have to sort an array of non-negative integers according to number of ones in their binary representation in ascending order. For similar number of ones, sort based on decimal value. It must be implemented like this: >>> sort_array([1, 5, 2, 3, 4]) == [1, 2, 3, 4, 5] >>> sort_array([-2, -3, -4, -5, -6]) == [-6, -5, -4, -3, -2] >>> sort_array([1, 0, 2, 3, 4]) [0, 1, 2, 3, 4] """""" "," def sort_array(arr): """""" In this Kata, you have to sort an array of non-negative integers according to number of ones in their Hexadecimal or binary representation in ascending order. For similar number of ones, sort based on decimal value. It must be implemented like this: >>> sort_array([1, 5, 2, 3, 4]) == [1, 2, 3, 4, 5] >>> sort_array([-2, -3, -4, -5, -6]) == [-6, -5, -4, -3, -2] >>> sort_array([1, 0, 2, 3, 4]) [0, 1, 2, 3, 4] """""" "," def sort_array(arr): """""" In this Kata, you have to sort an array of non-negative integers according to number of ones in their binary representation in descending order. For similar number of ones, sort based on decimal value. It must be implemented like this: >>> sort_array([1, 5, 2, 3, 4]) == [1, 2, 3, 4, 5] >>> sort_array([-2, -3, -4, -5, -6]) == [-6, -5, -4, -3, -2] >>> sort_array([1, 0, 2, 3, 4]) [0, 1, 2, 3, 4] """""" "," def sort_array(arr): """""" In this Kata, you have to sort an array of non-negative integers according to number of ones in their """""" "," def sort_array(arr): """""" In this Kata, you have to sort an array of non-negative integers according to number of ones in their Hexadecimal or binary representation in descending order. For similar number of ones, sort based on decimal value. It must be implemented like this: >>> sort_array([1, 5, 2, 3, 4]) == [1, 2, 3, 4, 5] >>> sort_array([-2, -3, -4, -5, -6]) == [-6, -5, -4, -3, -2] >>> sort_array([1, 0, 2, 3, 4]) [0, 1, 2, 3, 4] """""" ",,,," def sort_array(arr): """""" In this Kata, you have to sort an array of non-negative integers according to number of ones in their binary representation in ascending order. For similar number of ones, sort based on decimal value. It must be implemented like this: >>> sort_array([1, 5, 2, 3, 4]) == [1, 2, 3, 4, 5] >>> sort_array([-2, -3, -4, -5, -6]) == [-6, -5, -4, -3, -2] >>> sort_array([1, 0, 2, 3, 4]) [0, 1, 2, 3, 4] """""" return sorted(sorted(arr), key=lambda x: bin(x)[2:].count('1')) ","[{'input': '[1,5,2,3,4]', 'output': '[1, 2, 4, 3, 5]', 'relation': '=='}, {'input': '[-2,-3,-4,-5,-6]', 'output': '[-4, -2, -6, -5, -3]', 'relation': '=='}, {'input': '[1,0,2,3,4]', 'output': '[0, 1, 2, 4, 3]', 'relation': '=='}, {'input': '[]', 'output': '[]', 'relation': '=='}, {'input': '[2,5,77,4,5,3,5,7,2,3,4]', 'output': '[2, 2, 4, 4, 3, 3, 5, 5, 5, 7, 77]', 'relation': '=='}, {'input': '[3,6,44,12,32,5]', 'output': '[32, 3, 5, 6, 12, 44]', 'relation': '=='}, {'input': '[2,4,8,16,32]', 'output': '[2, 4, 8, 16, 32]', 'relation': '=='}, {'input': '[2,4,8,16,32]', 'output': '[2, 4, 8, 16, 32]', 'relation': '=='}]" select_words,HumanEval/117," def select_words(s, n): """"""Given a string s and a natural number n, you have been tasked to implement a function that returns a list of all words from string s that contain exactly n consonants, in order these words appear in the string s. If the string s is empty then the function should return an empty list. Note: you may assume the input string contains only letters and spaces. Examples: select_words(""Mary had a little lamb"", 4) ==> [""little""] select_words(""Mary had a little lamb"", 3) ==> [""Mary"", ""lamb""] select_words(""simple white space"", 2) ==> [] select_words(""Hello world"", 4) ==> [""world""] select_words(""Uncle sam"", 3) ==> [""Uncle""] """""" "," def select_words(s, n): """"""Given a string s and a natural number n, you have been tasked to implement a function that returns a list of all words from string s that contain certain consonants, in order these words appear in the string s. If the string s is empty then the function should return an empty list. Note: you may assume the input string contains only letters and spaces. Examples: select_words(""Mary had a little lamb"", 4) ==> [""little""] select_words(""Mary had a little lamb"", 3) ==> [""Mary"", ""lamb""] select_words(""simple white space"", 2) ==> [] select_words(""Hello world"", 4) ==> [""world""] select_words(""Uncle sam"", 3) ==> [""Uncle""] """""" "," def select_words(s, n): """"""Given a string s and a natural number n, you have been tasked to implement a function that returns a list of all words from string s that contain exactly n consonants, in order these words appear in the string s. If the string s is empty then the function should return an empty list. Note: you may assume the input string contains only letters and spaces. Examples: select_words(""Mary had a little lamb"", 4) ==> [""had""] select_words(""Mary had a little lamb"", 3) ==> [""lamb""] select_words(""simple white space"", 2) ==> [""white""] select_words(""Hello world"", 4) ==> [""Hello""] select_words(""Uncle sam"", 3) ==> [""sam""] """""" "," def select_words(s, n): """"""Given a string s and a natural number n, you have been tasked to implement a function that returns a list of all words from string s that contain exactly """""" "," def select_words(s, n): """"""Given a string s and a natural number n, you have been tasked to implement a function that returns a list of all words from string s that contain certain consonants, in order these words appear in the string s. If the string s is empty then the function should return an empty list. Note: you may assume the input string contains only letters and spaces. Examples: select_words(""Mary had a little lamb"", 4) ==> [""had""] select_words(""Mary had a little lamb"", 3) ==> [""lamb""] select_words(""simple white space"", 2) ==> [""white""] select_words(""Hello world"", 4) ==> [""Hello""] select_words(""Uncle sam"", 3) ==> [""sam""] """""" "," def select_words(s, n): """"""Given a string s and a natural number n, you have been tasked to implement a function that returns a list of all words from string s that contain certain """""" ",,," def select_words(s, n): """"""Given a string s and a natural number n, you have been tasked to implement a function that returns a list of all words from string s that contain exactly n consonants, in order these words appear in the string s. If the string s is empty then the function should return an empty list. Note: you may assume the input string contains only letters and spaces. Examples: select_words(""Mary had a little lamb"", 4) ==> [""little""] select_words(""Mary had a little lamb"", 3) ==> [""Mary"", ""lamb""] select_words(""simple white space"", 2) ==> [] select_words(""Hello world"", 4) ==> [""world""] select_words(""Uncle sam"", 3) ==> [""Uncle""] """""" result = [] for word in s.split(): n_consonants = 0 for i in range(0, len(word)): if word[i].lower() not in [""a"",""e"",""i"",""o"",""u""]: n_consonants += 1 if n_consonants == n: result.append(word) return result ","[{'input': '""Mary had a little lamb"", 4', 'output': ""['little']"", 'relation': '=='}, {'input': '""Mary had a little lamb"", 3', 'output': ""['Mary', 'lamb']"", 'relation': '=='}, {'input': '""simple white space"", 2', 'output': '[]', 'relation': '=='}, {'input': '""Hello world"", 4', 'output': ""['world']"", 'relation': '=='}, {'input': '""Uncle sam"", 3', 'output': ""['Uncle']"", 'relation': '=='}, {'input': '"""", 4', 'output': '[]', 'relation': '=='}, {'input': '""a b c d e f"", 1', 'output': ""['b', 'c', 'd', 'f']"", 'relation': '=='}]" get_closest_vowel,HumanEval/118," def get_closest_vowel(word): """"""You are given a word. Your task is to find the closest vowel that stands between two consonants from the right side of the word (case sensitive). Vowels in the beginning and ending doesn't count. Return empty string if you didn't find any vowel met the above condition. You may assume that the given string contains English letter only. Example: get_closest_vowel(""yogurt"") ==> ""u"" get_closest_vowel(""FULL"") ==> ""U"" get_closest_vowel(""quick"") ==> """" get_closest_vowel(""ab"") ==> """" """""" "," def candidate(word): """"""You are given a word. Your task is to find the farthest or closest vowel that stands between two consonants from the left or right side of the word (case sensitive). Vowels in the beginning and ending doesn't count. Return empty string if you didn't find any vowel met the above condition. You may assume that the given string contains English letter only. Example: candidate(""yogurt"") ==> ""u"" candidate(""FULL"") ==> ""U"" candidate(""quick"") ==> """" candidate(""ab"") ==> """" """""" "," def get_closest_vowel(word): """"""You are given a word. Your task is to find the closest vowel that stands between two consonants from the right side of the word (case sensitive). Vowels in the beginning and ending doesn't count. Return empty string if you didn't find any vowel met the above condition. You may assume that the given string contains English letter only. Example: get_closest_vowel(""yogurt"") ==> ""g"" get_closest_vowel(""FULL"") ==> ""F"" get_closest_vowel(""quick"") ==> ""i"" get_closest_vowel(""ab"") ==> ""a"" """""" "," def get_closest_vowel(word): """"""You are given a word. Your task is to find the closest vowel that stands """""" "," def candidate(word): """"""You are given a word. Your task is to find the farthest or closest vowel that stands between two consonants from the left or right side of the word (case sensitive). Vowels in the beginning and ending doesn't count. Return empty string if you didn't find any vowel met the above condition. You may assume that the given string contains English letter only. Example: candidate(""yogurt"") ==> ""g"" candidate(""FULL"") ==> ""F"" candidate(""quick"") ==> ""i"" candidate(""ab"") ==> ""a"" """""" "," def candidate(word): """"""You are given a word. Your task is to find the farthest or closest vowel that stands """""" ",,," def get_closest_vowel(word): """"""You are given a word. Your task is to find the closest vowel that stands between two consonants from the right side of the word (case sensitive). Vowels in the beginning and ending doesn't count. Return empty string if you didn't find any vowel met the above condition. You may assume that the given string contains English letter only. Example: get_closest_vowel(""yogurt"") ==> ""u"" get_closest_vowel(""FULL"") ==> ""U"" get_closest_vowel(""quick"") ==> """" get_closest_vowel(""ab"") ==> """" """""" if len(word) < 3: return """" vowels = {""a"", ""e"", ""i"", ""o"", ""u"", ""A"", ""E"", 'O', 'U', 'I'} for i in range(len(word)-2, 0, -1): if word[i] in vowels: if (word[i+1] not in vowels) and (word[i-1] not in vowels): return word[i] return """" ","[{'input': '""yogurt""', 'output': 'u', 'relation': '=='}, {'input': '""full""', 'output': 'u', 'relation': '=='}, {'input': '""easy""', 'output': '', 'relation': '=='}, {'input': '""eAsy""', 'output': '', 'relation': '=='}, {'input': '""ali""', 'output': '', 'relation': '=='}, {'input': '""bad""', 'output': 'a', 'relation': '=='}, {'input': '""most""', 'output': 'o', 'relation': '=='}, {'input': '""ab""', 'output': '', 'relation': '=='}, {'input': '""ba""', 'output': '', 'relation': '=='}, {'input': '""quick""', 'output': '', 'relation': '=='}, {'input': '""anime""', 'output': 'i', 'relation': '=='}, {'input': '""Asia""', 'output': '', 'relation': '=='}, {'input': '""Above""', 'output': 'o', 'relation': '=='}]" match_parens,HumanEval/119," def match_parens(lst): ''' You are given a list of two strings, both strings consist of open parentheses '(' or close parentheses ')' only. Your job is to check if it is possible to concatenate the two strings in some order, that the resulting string will be good. A string S is considered to be good if and only if all parentheses in S are balanced. For example: the string '(())()' is good, while the string '())' is not. Return 'Yes' if there's a way to make a good string, and return 'No' otherwise. Examples: match_parens(['()(', ')']) == 'Yes' match_parens([')', ')']) == 'No' ''' "," def candidate(lst): ''' You are given a list of two strings, both strings consist of open parentheses '(' or close parentheses ')' only. Your job is to check if it is possible to process the two strings in some order, that the resulting string will be good. A string S is considered to be good if and only if all parentheses in S are balanced. For example: the string '(())()' is good, while the string '())' is not. Return 'Yes' if there's a way to make a good string, and return 'No' otherwise. Examples: candidate(['()(', ')']) == 'Yes' candidate([')', ')']) == 'No' ''' "," def match_parens(lst): ''' You are given a list of two strings, both strings consist of open parentheses '(' or close parentheses ')' only. Your job is to check if it is possible to concatenate the two strings in some order, that the resulting string will be good. A string S is considered to be good if and only if all parentheses in S are balanced. For example: the string '(())()' is good, while the string '())' is not. Return 'Yes' if there's a way to make a good string, and return 'No' otherwise. Examples: match_parens(['()(', ')']) == 'No' match_parens([')', ')']) == 'Yes' ''' "," def candidate(lst): ''' You are given a list of two strings, both strings consist of open parentheses '(' or close parentheses ')' only. Your job is to check if it is possible to concatenate the two strings in some order, that the resulting string will be good. ''' "," def candidate(lst): ''' You are given a list of two strings, both strings consist of open parentheses '(' or close parentheses ')' only. Your job is to check if it is possible to process the two strings in some order, that the resulting string will be good. A string S is considered to be good if and only if all parentheses in S are balanced. For example: the string '(())()' is good, while the string '())' is not. Return 'Yes' if there's a way to make a good string, and return 'No' otherwise. Examples: candidate(['()(', ')']) == 'No' candidate([')', ')']) == 'Yes' ''' "," def candidate(lst): ''' You are given a list of two strings, both strings consist of open parentheses '(' or close parentheses ')' only. Your job is to check if it is possible to process the two strings in some order, that the resulting string will be good. ''' ",,," def match_parens(lst): ''' You are given a list of two strings, both strings consist of open parentheses '(' or close parentheses ')' only. Your job is to check if it is possible to concatenate the two strings in some order, that the resulting string will be good. A string S is considered to be good if and only if all parentheses in S are balanced. For example: the string '(())()' is good, while the string '())' is not. Return 'Yes' if there's a way to make a good string, and return 'No' otherwise. Examples: match_parens(['()(', ')']) == 'Yes' match_parens([')', ')']) == 'No' ''' def check(s): val = 0 for i in s: if i == '(': val = val + 1 else: val = val - 1 if val < 0: return False return True if val == 0 else False S1 = lst[0] + lst[1] S2 = lst[1] + lst[0] return 'Yes' if check(S1) or check(S2) else 'No' ","[{'input': ""['()(', ')']"", 'output': 'Yes', 'relation': '=='}, {'input': ""[')', ')']"", 'output': 'No', 'relation': '=='}, {'input': ""['(()(())', '())())']"", 'output': 'No', 'relation': '=='}, {'input': ""[')())', '(()()(']"", 'output': 'Yes', 'relation': '=='}, {'input': ""['(())))', '(()())((']"", 'output': 'Yes', 'relation': '=='}, {'input': ""['()', '())']"", 'output': 'No', 'relation': '=='}, {'input': ""['(()(', '()))()']"", 'output': 'Yes', 'relation': '=='}, {'input': ""['((((', '((())']"", 'output': 'No', 'relation': '=='}, {'input': ""[')(()', '(()(']"", 'output': 'No', 'relation': '=='}, {'input': ""[')(', ')(']"", 'output': 'No', 'relation': '=='}, {'input': ""['(', ')']"", 'output': 'Yes', 'relation': '=='}, {'input': ""[')', '(']"", 'output': 'Yes', 'relation': '=='}]" maximum,HumanEval/120," def maximum(arr, k): """""" Given an array arr of integers and a positive integer k, return a sorted list of length k with the maximum k numbers in arr. Example 1: Input: arr = [-3, -4, 5], k = 3 Output: [-4, -3, 5] Example 2: Input: arr = [4, -4, 4], k = 2 Output: [4, 4] Example 3: Input: arr = [-3, 2, 1, 2, -1, -2, 1], k = 1 Output: [2] Note: 1. The length of the array will be in the range of [1, 1000]. 2. The elements in the array will be in the range of [-1000, 1000]. 3. 0 <= k <= len(arr) """""" "," def candidate(arr, k): """""" Given an array arr of integers and a positive integer k, return a sorted list of length k with the minimum or maximum k numbers in arr. Example 1: Input: arr = [-3, -4, 5], k = 3 Output: [-4, -3, 5] Example 2: Input: arr = [4, -4, 4], k = 2 Output: [4, 4] Example 3: Input: arr = [-3, 2, 1, 2, -1, -2, 1], k = 1 Output: [2] Note: 1. The length of the array will be in the range of [1, 1000]. 2. The elements in the array will be in the range of [-1000, 1000]. 3. 0 <= k <= len(arr) """""" "," def maximum(arr, k): """""" Given an array arr of integers and a positive integer k, return a sorted list of length k with the maximum k numbers in arr. Example 1: Input: arr = [-3, -4, 5], k = 3 Output: [-4, -3] Example 2: Input: arr = [4, -4, 4], k = 2 Output: [4] Example 3: Input: arr = [-3, 2, 1, 2, -1, -2, 1], k = 1 Output: [] Note: 1. The length of the array will be in the range of [1, 1000]. 2. The elements in the array will be in the range of [-1000, 1000]. 3. 0 <= k <= len(arr) """""" "," def maximum(arr, k): """""" Given an array arr of integers and a positive integer k, return a sorted list of length k with """""" "," def candidate(arr, k): """""" Given an array arr of integers and a positive integer k, return a sorted list of length k with the minimum or maximum k numbers in arr. Example 1: Input: arr = [-3, -4, 5], k = 3 Output: [-4, -3] Example 2: Input: arr = [4, -4, 4], k = 2 Output: [4] Example 3: Input: arr = [-3, 2, 1, 2, -1, -2, 1], k = 1 Output: [] Note: 1. The length of the array will be in the range of [1, 1000]. 2. The elements in the array will be in the range of [-1000, 1000]. 3. 0 <= k <= len(arr) """""" "," def candidate(arr, k): """""" Given an array arr of integers and a positive integer k, return a sorted list of length k with """""" ",,," def maximum(arr, k): """""" Given an array arr of integers and a positive integer k, return a sorted list of length k with the maximum k numbers in arr. Example 1: Input: arr = [-3, -4, 5], k = 3 Output: [-4, -3, 5] Example 2: Input: arr = [4, -4, 4], k = 2 Output: [4, 4] Example 3: Input: arr = [-3, 2, 1, 2, -1, -2, 1], k = 1 Output: [2] Note: 1. The length of the array will be in the range of [1, 1000]. 2. The elements in the array will be in the range of [-1000, 1000]. 3. 0 <= k <= len(arr) """""" if k == 0: return [] arr.sort() ans = arr[-k:] return ans ","[{'input': '[-3, -4, 5], 3', 'output': '[-4, -3, 5]', 'relation': '=='}, {'input': '[4, -4, 4], 2', 'output': '[4, 4]', 'relation': '=='}, {'input': '[-3, 2, 1, 2, -1, -2, 1], 1', 'output': '[2]', 'relation': '=='}, {'input': '[123, -123, 20, 0 , 1, 2, -3], 3', 'output': '[2, 20, 123]', 'relation': '=='}, {'input': '[-123, 20, 0 , 1, 2, -3], 4', 'output': '[0, 1, 2, 20]', 'relation': '=='}, {'input': '[5, 15, 0, 3, -13, -8, 0], 7', 'output': '[-13, -8, 0, 0, 3, 5, 15]', 'relation': '=='}, {'input': '[-1, 0, 2, 5, 3, -10], 2', 'output': '[3, 5]', 'relation': '=='}, {'input': '[1, 0, 5, -7], 1', 'output': '[5]', 'relation': '=='}, {'input': '[4, -4], 2', 'output': '[-4, 4]', 'relation': '=='}, {'input': '[-10, 10], 2', 'output': '[-10, 10]', 'relation': '=='}, {'input': '[1, 2, 3, -23, 243, -400, 0], 0', 'output': '[]', 'relation': '=='}]" solution,HumanEval/121," def solution(lst): """"""Given a non-empty list of integers, return the sum of all of the odd elements that are in even positions. Examples solution([5, 8, 7, 1]) ==> 12 solution([3, 3, 3, 3, 3]) ==> 9 solution([30, 13, 24, 321]) ==>0 """""" "," def solution(lst): """"""Given a non-empty list of integers, return the sum of all of the even or odd elements that are in even or odd positions. Examples solution([5, 8, 7, 1]) ==> 12 solution([3, 3, 3, 3, 3]) ==> 9 solution([30, 13, 24, 321]) ==>0 """""" "," def solution(lst): """"""Given a non-empty list of integers, return the sum of all of the odd elements that are in even positions. Examples solution([5, 8, 7, 1]) ==> 1 solution([3, 3, 3, 3, 3]) ==> 3 solution([30, 13, 24, 321]) ==>30 """""" "," def solution(lst): """"""Given a non-empty list of integers, return the sum of all of the odd elements that are """""" "," def solution(lst): """"""Given a non-empty list of integers, return the sum of all of the even or odd elements that are in even or odd positions. Examples solution([5, 8, 7, 1]) ==> 1 solution([3, 3, 3, 3, 3]) ==> 3 solution([30, 13, 24, 321]) ==>30 """""" "," def solution(lst): """"""Given a non-empty list of integers, return the sum of all of the even or odd elements that are """""" ",,," def solution(lst): """"""Given a non-empty list of integers, return the sum of all of the odd elements that are in even positions. Examples solution([5, 8, 7, 1]) ==> 12 solution([3, 3, 3, 3, 3]) ==> 9 solution([30, 13, 24, 321]) ==>0 """""" return sum([x for idx, x in enumerate(lst) if idx%2==0 and x%2==1]) ","[{'input': '[3, 3, 3, 3, 3]', 'output': '9', 'relation': '=='}, {'input': '[30, 13, 24, 321]', 'output': '0', 'relation': '=='}, {'input': '[5, 9]', 'output': '5', 'relation': '=='}, {'input': '[2, 4, 8]', 'output': '0', 'relation': '=='}, {'input': '[30, 13, 23, 32]', 'output': '23', 'relation': '=='}, {'input': '[3, 13, 2, 9]', 'output': '3', 'relation': '=='}]" add_elements,HumanEval/122," def add_elements(arr, k): """""" Given a non-empty array of integers arr and an integer k, return the sum of the elements with at most two digits from the first k elements of arr. Example: Input: arr = [111,21,3,4000,5,6,7,8,9], k = 4 Output: 24 # sum of 21 + 3 Constraints: 1. 1 <= len(arr) <= 100 2. 1 <= k <= len(arr) """""" "," def add_elements(arr, k): """""" Given a non-empty array of integers arr and an integer k, return the product or sum of the elements with at most two digits from the last or first k elements of arr. Example: Input: arr = [111,21,3,4000,5,6,7,8,9], k = 4 Output: 24 # sum of 21 + 3 Constraints: 1. 1 <= len(arr) <= 100 2. 1 <= k <= len(arr) """""" "," def add_elements(arr, k): """""" Given a non-empty array of integers arr and an integer k, return the sum of the elements with at most two digits from the first k elements of arr. Example: Input: arr = [111,21,3,4000,5,6,7,8,9], k = 4 Output: 12 # sum of 9 + 3 Constraints: 1. 1 <= len(arr) <= 100 2. 1 <= k <= len(arr) """""" "," def add_elements(arr, k): """""" Given a non-empty array of integers arr and an integer k, return the sum of the elements with at most two digits from """""" "," def add_elements(arr, k): """""" Given a non-empty array of integers arr and an integer k, return the product or sum of the elements with at most two digits from the last or first k elements of arr. Example: Input: arr = [111,21,3,4000,5,6,7,8,9], k = 4 Output: 12 # sum of 9 + 3 Constraints: 1. 1 <= len(arr) <= 100 2. 1 <= k <= len(arr) """""" "," def add_elements(arr, k): """""" Given a non-empty array of integers arr and an integer k, return the product or sum of the elements with at most two digits from """""" ",,," def add_elements(arr, k): """""" Given a non-empty array of integers arr and an integer k, return the sum of the elements with at most two digits from the first k elements of arr. Example: Input: arr = [111,21,3,4000,5,6,7,8,9], k = 4 Output: 24 # sum of 21 + 3 Constraints: 1. 1 <= len(arr) <= 100 2. 1 <= k <= len(arr) """""" return sum(elem for elem in arr[:k] if len(str(elem)) <= 2) ","[{'input': '[1,-2,-3,41,57,76,87,88,99], 3', 'output': '-4', 'relation': '=='}, {'input': '[111,121,3,4000,5,6], 2', 'output': '0', 'relation': '=='}, {'input': '[11,21,3,90,5,6,7,8,9], 4', 'output': '125', 'relation': '=='}, {'input': '[111,21,3,4000,5,6,7,8,9], 4', 'output': '24', 'relation': '=='}, {'input': '[1], 1', 'output': '1', 'relation': '=='}]" get_odd_collatz,HumanEval/123," def get_odd_collatz(n): """""" Given a positive integer n, return a sorted list that has the odd numbers in collatz sequence. The Collatz conjecture is a conjecture in mathematics that concerns a sequence defined as follows: start with any positive integer n. Then each term is obtained from the previous term as follows: if the previous term is even, the next term is one half of the previous term. If the previous term is odd, the next term is 3 times the previous term plus 1. The conjecture is that no matter what value of n, the sequence will always reach 1. Note: 1. Collatz(1) is [1]. 2. returned list sorted in increasing order. For example: get_odd_collatz(5) returns [1, 5] # The collatz sequence for 5 is [5, 16, 8, 4, 2, 1], so the odd numbers are only 1, and 5. """""" "," def get_odd_collatz(n): """""" Given a positive integer n, return a sorted list that has the odd numbers in collatz sequence. The Collatz conjecture is a conjecture in mathematics that concerns a sequence defined as follows: start with any positive integer n. Then each term is obtained from the previous term as follows: if the previous term is even or odd, the next term is one half of the previous term. If the previous term is even or odd, the next term is 3 times the previous term plus 1. The conjecture is that no matter what value of n, the sequence will always reach 1. Note: 1. Collatz(1) is [1]. 2. returned list sorted in increasing order. For example: get_odd_collatz(5) returns [1, 5] # The collatz sequence for 5 is [5, 16, 8, 4, 2, 1], so the odd numbers are only 1, and 5. """""" "," def get_odd_collatz(n): """""" Given a positive integer n, return a sorted list that has the odd numbers in collatz sequence. The Collatz conjecture is a conjecture in mathematics that concerns a sequence defined as follows: start with any positive integer n. Then each term is obtained from the previous term as follows: if the previous term is even, the next term is one half of the previous term. If the previous term is odd, the next term is 3 times the previous term plus 1. The conjecture is that no matter what value of n, the sequence will always reach 1. Note: 1. Collatz(1) is [1]. 2. returned list sorted in increasing order. For example: get_odd_collatz(5) returns [1] # The collatz sequence for 5 is [5, 16, 8, 4, 2, 1], so the odd numbers are only 2. """""" "," def get_odd_collatz(n): """""" Given a positive integer n, return a sorted list that has the odd numbers in collatz sequence. The Collatz conjecture is a conjecture in mathematics that concerns a sequence defined as follows: start with any positive integer n. """""" "," def get_odd_collatz(n): """""" Given a positive integer n, return a sorted list that has the odd numbers in collatz sequence. The Collatz conjecture is a conjecture in mathematics that concerns a sequence defined as follows: start with any positive integer n. Then each term is obtained from the previous term as follows: if the previous term is even or odd, the next term is one half of the previous term. If the previous term is even or odd, the next term is 3 times the previous term plus 1. The conjecture is that no matter what value of n, the sequence will always reach 1. Note: 1. Collatz(1) is [1]. 2. returned list sorted in increasing order. For example: get_odd_collatz(5) returns [1] # The collatz sequence for 5 is [5, 16, 8, 4, 2, 1], so the odd numbers are only 2. """""" ",,,," def get_odd_collatz(n): """""" Given a positive integer n, return a sorted list that has the odd numbers in collatz sequence. The Collatz conjecture is a conjecture in mathematics that concerns a sequence defined as follows: start with any positive integer n. Then each term is obtained from the previous term as follows: if the previous term is even, the next term is one half of the previous term. If the previous term is odd, the next term is 3 times the previous term plus 1. The conjecture is that no matter what value of n, the sequence will always reach 1. Note: 1. Collatz(1) is [1]. 2. returned list sorted in increasing order. For example: get_odd_collatz(5) returns [1, 5] # The collatz sequence for 5 is [5, 16, 8, 4, 2, 1], so the odd numbers are only 1, and 5. """""" if n%2==0: odd_collatz = [] else: odd_collatz = [n] while n > 1: if n % 2 == 0: n = n/2 else: n = n*3 + 1 if n%2 == 1: odd_collatz.append(int(n)) return sorted(odd_collatz) ","[{'input': '14', 'output': '[1, 5, 7, 11, 13, 17]', 'relation': '=='}, {'input': '5', 'output': '[1, 5]', 'relation': '=='}, {'input': '12', 'output': '[1, 3, 5]', 'relation': '=='}, {'input': '1', 'output': '[1]', 'relation': '=='}]" valid_date,HumanEval/124," def valid_date(date): """"""You have to write a function which validates a given date string and returns True if the date is valid otherwise False. The date is valid if all of the following rules are satisfied: 1. The date string is not empty. 2. The number of days is not less than 1 or higher than 31 days for months 1,3,5,7,8,10,12. And the number of days is not less than 1 or higher than 30 days for months 4,6,9,11. And, the number of days is not less than 1 or higher than 29 for the month 2. 3. The months should not be less than 1 or higher than 12. 4. The date should be in the format: mm-dd-yyyy for example: valid_date('03-11-2000') => True valid_date('15-01-2012') => False valid_date('04-0-2040') => False valid_date('06-04-2020') => True valid_date('06/04/2020') => False """""" "," def valid_date(date): """"""You have to write a function which validates a given date string and returns True if the date is valid otherwise False. The date is valid if all of the following rules are satisfied: 1. The date string is not empty. 2. The number of days is not less than 1 or higher than 31 days for months 1,3,5,7,8,10,12. And the number of days is not less than 1 or higher than 30 days for months 4,6,9,11. And, the number of days is not less than 1 or higher than 29 for the month 2. 3. The months should not be less than 1 or higher than 12. 4. The date should be in the format: dd-mm-yyyy or mm-dd-yyyy for example: valid_date('03-11-2000') => True valid_date('15-01-2012') => False valid_date('04-0-2040') => False valid_date('06-04-2020') => True valid_date('06/04/2020') => False """""" "," def valid_date(date): """"""You have to write a function which validates a given date string and returns True if the date is valid otherwise False. The date is valid if all of the following rules are satisfied: 1. The date string is not empty. 2. The number of days is not less than 1 or higher than 31 days for months 1,3,5,7,8,10,12. And the number of days is not less than 1 or higher than 30 days for months 4,6,9,11. And, the number of days is not less than 1 or higher than 29 for the month 2. 3. The months should not be less than 1 or higher than 12. 4. The date should be in the format: mm-dd-yyyy for example: valid_date('03-11-2000') => False valid_date('15-01-2012') => True valid_date('04-0-2040') => True valid_date('06-04-2020') => False valid_date('06/04/2020') => True """""" "," def valid_date(date): """"""You have to write a function which validates a given date string and returns True if the date is valid otherwise False. The date is valid if all of the following rules are satisfied: 1. """""" "," def valid_date(date): """"""You have to write a function which validates a given date string and returns True if the date is valid otherwise False. The date is valid if all of the following rules are satisfied: 1. The date string is not empty. 2. The number of days is not less than 1 or higher than 31 days for months 1,3,5,7,8,10,12. And the number of days is not less than 1 or higher than 30 days for months 4,6,9,11. And, the number of days is not less than 1 or higher than 29 for the month 2. 3. The months should not be less than 1 or higher than 12. 4. The date should be in the format: dd-mm-yyyy or mm-dd-yyyy for example: valid_date('03-11-2000') => False valid_date('15-01-2012') => True valid_date('04-0-2040') => True valid_date('06-04-2020') => False valid_date('06/04/2020') => True """""" ",,,," def valid_date(date): """"""You have to write a function which validates a given date string and returns True if the date is valid otherwise False. The date is valid if all of the following rules are satisfied: 1. The date string is not empty. 2. The number of days is not less than 1 or higher than 31 days for months 1,3,5,7,8,10,12. And the number of days is not less than 1 or higher than 30 days for months 4,6,9,11. And, the number of days is not less than 1 or higher than 29 for the month 2. 3. The months should not be less than 1 or higher than 12. 4. The date should be in the format: mm-dd-yyyy for example: valid_date('03-11-2000') => True valid_date('15-01-2012') => False valid_date('04-0-2040') => False valid_date('06-04-2020') => True valid_date('06/04/2020') => False """""" try: date = date.strip() month, day, year = date.split('-') month, day, year = int(month), int(day), int(year) if month < 1 or month > 12: return False if month in [1,3,5,7,8,10,12] and day < 1 or day > 31: return False if month in [4,6,9,11] and day < 1 or day > 30: return False if month == 2 and day < 1 or day > 29: return False except: return False return True ","[{'input': ""'03-11-2000'"", 'output': 'True', 'relation': '=='}, {'input': ""'15-01-2012'"", 'output': 'False', 'relation': '=='}, {'input': ""'04-0-2040'"", 'output': 'False', 'relation': '=='}, {'input': ""'06-04-2020'"", 'output': 'True', 'relation': '=='}, {'input': ""'01-01-2007'"", 'output': 'True', 'relation': '=='}, {'input': ""'03-32-2011'"", 'output': 'False', 'relation': '=='}, {'input': ""''"", 'output': 'False', 'relation': '=='}, {'input': ""'04-31-3000'"", 'output': 'False', 'relation': '=='}, {'input': ""'06-06-2005'"", 'output': 'True', 'relation': '=='}, {'input': ""'21-31-2000'"", 'output': 'False', 'relation': '=='}, {'input': ""'04-12-2003'"", 'output': 'True', 'relation': '=='}, {'input': ""'04122003'"", 'output': 'False', 'relation': '=='}, {'input': ""'20030412'"", 'output': 'False', 'relation': '=='}, {'input': ""'2003-04'"", 'output': 'False', 'relation': '=='}, {'input': ""'2003-04-12'"", 'output': 'False', 'relation': '=='}, {'input': ""'04-2003'"", 'output': 'False', 'relation': '=='}]" split_words,HumanEval/125," def split_words(txt): ''' Given a string of words, return a list of words split on whitespace, if no whitespaces exists in the text you should split on commas ',' if no commas exists you should return the number of lower-case letters with odd order in the alphabet, ord('a') = 0, ord('b') = 1, ... ord('z') = 25 Examples split_words(""Hello world!"") ➞ [""Hello"", ""world!""] split_words(""Hello,world!"") ➞ [""Hello"", ""world!""] split_words(""abcdef"") == 3 ''' "," def split_words(txt): ''' Given a string of words, return a list of words split on characters, if no characters exists in the text you should split on commas ',' if no commas exists you should return the number of lower-case letters with odd order in the alphabet, ord('a') = 0, ord('b') = 1, ... ord('z') = 25 Examples split_words(""Hello world!"") ➞ [""Hello"", ""world!""] split_words(""Hello,world!"") ➞ [""Hello"", ""world!""] split_words(""abcdef"") == 3 ''' "," def split_words(txt): ''' Given a string of words, return a list of words split on whitespace, if no whitespaces exists in the text you should split on commas ',' if no commas exists you should return the number of lower-case letters with odd order in the alphabet, ord('a') = 10, ord('b') = 11, ... ord('z') = 125 Examples split_words(""Hello world!"") ➞ [""Hello""] split_words(""Hello,world!"") ➞ [""world!""] split_words(""abcdef"") == 3 ''' "," def split_words(txt): ''' Given a string of words, return a list of words split on whitespace, if no whitespaces exists in the text you should split on commas ',' if no commas exists you should return the number of ''' "," def split_words(txt): ''' Given a string of words, return a list of words split on characters, if no characters exists in the text you should split on commas ',' if no commas exists you should return the number of lower-case letters with odd order in the alphabet, ord('a') = 10, ord('b') = 11, ... ord('z') = 125 Examples split_words(""Hello world!"") ➞ [""Hello""] split_words(""Hello,world!"") ➞ [""world!""] split_words(""abcdef"") == 3 ''' "," def split_words(txt): ''' Given a string of words, return a list of words split on characters, if no characters exists in the text you should split on commas ',' if no commas exists you should return the number of ''' ",,," def split_words(txt): ''' Given a string of words, return a list of words split on whitespace, if no whitespaces exists in the text you should split on commas ',' if no commas exists you should return the number of lower-case letters with odd order in the alphabet, ord('a') = 0, ord('b') = 1, ... ord('z') = 25 Examples split_words(""Hello world!"") ➞ [""Hello"", ""world!""] split_words(""Hello,world!"") ➞ [""Hello"", ""world!""] split_words(""abcdef"") == 3 ''' if "" "" in txt: return txt.split() elif "","" in txt: return txt.replace(',',' ').split() else: return len([i for i in txt if i.islower() and ord(i)%2 == 0]) ","[{'input': '""Hello world!""', 'output': ""['Hello', 'world!']"", 'relation': '=='}, {'input': '""Hello,world!""', 'output': ""['Hello', 'world!']"", 'relation': '=='}, {'input': '""Hello world,!""', 'output': ""['Hello', 'world,!']"", 'relation': '=='}, {'input': '""Hello,Hello,world !""', 'output': ""['Hello,Hello,world', '!']"", 'relation': '=='}, {'input': '""abcdef""', 'output': '3', 'relation': '=='}, {'input': '""aaabb""', 'output': '2', 'relation': '=='}, {'input': '""aaaBb""', 'output': '1', 'relation': '=='}, {'input': '""""', 'output': '0', 'relation': '=='}]" is_sorted,HumanEval/126," def is_sorted(lst): ''' Given a list of numbers, return whether or not they are sorted in ascending order. If list has more than 1 duplicate of the same number, return False. Assume no negative numbers and only integers. Examples is_sorted([5]) ➞ True is_sorted([1, 2, 3, 4, 5]) ➞ True is_sorted([1, 3, 2, 4, 5]) ➞ False is_sorted([1, 2, 3, 4, 5, 6]) ➞ True is_sorted([1, 2, 3, 4, 5, 6, 7]) ➞ True is_sorted([1, 3, 2, 4, 5, 6, 7]) ➞ False is_sorted([1, 2, 2, 3, 3, 4]) ➞ True is_sorted([1, 2, 2, 2, 3, 4]) ➞ False ''' "," def candidate(lst): ''' Given a list of numbers, return whether or not they are sorted in a specific order. If list has certain duplicate of the same number, return False. Assume no negative numbers and only integers. Examples candidate([5]) ➞ True candidate([1, 2, 3, 4, 5]) ➞ True candidate([1, 3, 2, 4, 5]) ➞ False candidate([1, 2, 3, 4, 5, 6]) ➞ True candidate([1, 2, 3, 4, 5, 6, 7]) ➞ True candidate([1, 3, 2, 4, 5, 6, 7]) ➞ False candidate([1, 2, 2, 3, 3, 4]) ➞ True candidate([1, 2, 2, 2, 3, 4]) ➞ False ''' "," def is_sorted(lst): ''' Given a list of numbers, return whether or not they are sorted in ascending order. If list has more than 1 duplicate of the same number, return False. Assume no negative numbers and only integers. Examples is_sorted([5]) ➞ False is_sorted([1, 2, 3, 4, 5]) ➞ False is_sorted([1, 3, 2, 4, 5]) ➞ True is_sorted([1, 2, 3, 4, 5, 6]) ➞ False is_sorted([1, 2, 3, 4, 5, 6, 7]) ➞ False is_sorted([1, 3, 2, 4, 5, 6, 7]) ➞ True is_sorted([1, 2, 2, 3, 3, 4]) ➞ False is_sorted([1, 2, 2, 2, 3, 4]) ➞ True ''' "," def is_sorted(lst): ''' Given a list of numbers, return whether or not they are sorted in ascending order. If list has more than 1 duplicate of the same number, ''' "," def candidate(lst): ''' Given a list of numbers, return whether or not they are sorted in a specific order. If list has certain duplicate of the same number, return False. Assume no negative numbers and only integers. Examples candidate([5]) ➞ False candidate([1, 2, 3, 4, 5]) ➞ False candidate([1, 3, 2, 4, 5]) ➞ True candidate([1, 2, 3, 4, 5, 6]) ➞ False candidate([1, 2, 3, 4, 5, 6, 7]) ➞ False candidate([1, 3, 2, 4, 5, 6, 7]) ➞ True candidate([1, 2, 2, 3, 3, 4]) ➞ False candidate([1, 2, 2, 2, 3, 4]) ➞ True ''' "," def candidate(lst): ''' Given a list of numbers, return whether or not they are sorted in a specific order. If list has certain duplicate of the same number, ''' ",,," def is_sorted(lst): ''' Given a list of numbers, return whether or not they are sorted in ascending order. If list has more than 1 duplicate of the same number, return False. Assume no negative numbers and only integers. Examples is_sorted([5]) ➞ True is_sorted([1, 2, 3, 4, 5]) ➞ True is_sorted([1, 3, 2, 4, 5]) ➞ False is_sorted([1, 2, 3, 4, 5, 6]) ➞ True is_sorted([1, 2, 3, 4, 5, 6, 7]) ➞ True is_sorted([1, 3, 2, 4, 5, 6, 7]) ➞ False is_sorted([1, 2, 2, 3, 3, 4]) ➞ True is_sorted([1, 2, 2, 2, 3, 4]) ➞ False ''' count_digit = dict([(i, 0) for i in lst]) for i in lst: count_digit[i]+=1 if any(count_digit[i] > 2 for i in lst): return False if all(lst[i-1] <= lst[i] for i in range(1, len(lst))): return True else: return False ","[{'input': '[5]', 'output': 'True', 'relation': '=='}, {'input': '[1, 2, 3, 4, 5]', 'output': 'True', 'relation': '=='}, {'input': '[1, 3, 2, 4, 5]', 'output': 'False', 'relation': '=='}, {'input': '[1, 2, 3, 4, 5, 6]', 'output': 'True', 'relation': '=='}, {'input': '[1, 2, 3, 4, 5, 6, 7]', 'output': 'True', 'relation': '=='}, {'input': '[1, 3, 2, 4, 5, 6, 7]', 'output': 'False', 'relation': '=='}, {'input': '[]', 'output': 'True', 'relation': '=='}, {'input': '[1]', 'output': 'True', 'relation': '=='}, {'input': '[3, 2, 1]', 'output': 'False', 'relation': '=='}, {'input': '[1, 2, 2, 2, 3, 4]', 'output': 'False', 'relation': '=='}, {'input': '[1, 2, 3, 3, 3, 4]', 'output': 'False', 'relation': '=='}, {'input': '[1, 2, 2, 3, 3, 4]', 'output': 'True', 'relation': '=='}, {'input': '[1, 2, 3, 4]', 'output': 'True', 'relation': '=='}]" intersection,HumanEval/127," def intersection(interval1, interval2): """"""You are given two intervals, where each interval is a pair of integers. For example, interval = (start, end) = (1, 2). The given intervals are closed which means that the interval (start, end) includes both start and end. For each given interval, it is assumed that its start is less or equal its end. Your task is to determine whether the length of intersection of these two intervals is a prime number. Example, the intersection of the intervals (1, 3), (2, 4) is (2, 3) which its length is 1, which not a prime number. If the length of the intersection is a prime number, return ""YES"", otherwise, return ""NO"". If the two intervals don't intersect, return ""NO"". [input/output] samples: intersection((1, 2), (2, 3)) ==> ""NO"" intersection((-1, 1), (0, 4)) ==> ""NO"" intersection((-3, -1), (-5, 5)) ==> ""YES"" """""" "," def intersection(interval1, interval2): """"""You are given two intervals, where each interval is a pair of integers. For example, interval = (start, end) = (1, 2). The given intervals are closed which means that the interval (start, end) includes both start and end. For each given interval, it is assumed that its start is less or equal its end. Your task is to determine whether the length of intersection of these two intervals is an even or odd or prime number. Example, the intersection of the intervals (1, 3), (2, 4) is (2, 3) which its length is 1, which not a prime number. If the length of the intersection is a prime number, return ""YES"", otherwise, return ""NO"". If the two intervals don't intersect, return ""NO"". [input/output] samples: intersection((1, 2), (2, 3)) ==> ""NO"" intersection((-1, 1), (0, 4)) ==> ""NO"" intersection((-3, -1), (-5, 5)) ==> ""YES"" """""" "," def intersection(interval1, interval2): """"""You are given two intervals, where each interval is a pair of integers. For example, interval = (start, end) = (1, 2). The given intervals are closed which means that the interval (start, end) includes both start and end. For each given interval, it is assumed that its start is less or equal its end. Your task is to determine whether the length of intersection of these two intervals is a prime number. Example, the intersection of the intervals (1, 3), (2, 4) is (2, 3) which its length is 1, which not a prime number. If the length of the intersection is a prime number, return ""YES"", otherwise, return ""NO"". If the two intervals don't intersect, return ""NO"". [input/output] samples: intersection((1, 2), (2, 3)) ==> ""YES"" intersection((-1, 1), (0, 4)) ==> ""YES"" intersection((-3, -1), (-5, 5)) ==> ""NO"" """""" "," def intersection(interval1, interval2): """"""You are given two intervals, where each interval is a pair of integers. For example, interval = (start, end) = (1, 2). The given intervals are closed which means that the interval (start, end) includes both start and end. For each given interval, it is assumed that its start is less or equal its end. Your task is to determine whether """""" "," def intersection(interval1, interval2): """"""You are given two intervals, where each interval is a pair of integers. For example, interval = (start, end) = (1, 2). The given intervals are closed which means that the interval (start, end) includes both start and end. For each given interval, it is assumed that its start is less or equal its end. Your task is to determine whether the length of intersection of these two intervals is an even or odd or prime number. Example, the intersection of the intervals (1, 3), (2, 4) is (2, 3) which its length is 1, which not a prime number. If the length of the intersection is a prime number, return ""YES"", otherwise, return ""NO"". If the two intervals don't intersect, return ""NO"". [input/output] samples: intersection((1, 2), (2, 3)) ==> ""YES"" intersection((-1, 1), (0, 4)) ==> ""YES"" intersection((-3, -1), (-5, 5)) ==> ""NO"" """""" ",,,," def intersection(interval1, interval2): """"""You are given two intervals, where each interval is a pair of integers. For example, interval = (start, end) = (1, 2). The given intervals are closed which means that the interval (start, end) includes both start and end. For each given interval, it is assumed that its start is less or equal its end. Your task is to determine whether the length of intersection of these two intervals is a prime number. Example, the intersection of the intervals (1, 3), (2, 4) is (2, 3) which its length is 1, which not a prime number. If the length of the intersection is a prime number, return ""YES"", otherwise, return ""NO"". If the two intervals don't intersect, return ""NO"". [input/output] samples: intersection((1, 2), (2, 3)) ==> ""NO"" intersection((-1, 1), (0, 4)) ==> ""NO"" intersection((-3, -1), (-5, 5)) ==> ""YES"" """""" def is_prime(num): if num == 1 or num == 0: return False if num == 2: return True for i in range(2, num): if num%i == 0: return False return True l = max(interval1[0], interval2[0]) r = min(interval1[1], interval2[1]) length = r - l if length > 0 and is_prime(length): return ""YES"" return ""NO"" ","[{'input': '(1, 2), (2, 3)', 'output': 'NO', 'relation': '=='}, {'input': '(-1, 1), (0, 4)', 'output': 'NO', 'relation': '=='}, {'input': '(-3, -1), (-5, 5)', 'output': 'YES', 'relation': '=='}, {'input': '(-2, 2), (-4, 0)', 'output': 'YES', 'relation': '=='}, {'input': '(-11, 2), (-1, -1)', 'output': 'NO', 'relation': '=='}, {'input': '(1, 2), (3, 5)', 'output': 'NO', 'relation': '=='}, {'input': '(1, 2), (1, 2)', 'output': 'NO', 'relation': '=='}, {'input': '(-2, -2), (-3, -2)', 'output': 'NO', 'relation': '=='}]" prod_signs,HumanEval/128," def prod_signs(arr): """""" You are given an array arr of integers and you need to return sum of magnitudes of integers multiplied by product of all signs of each number in the array, represented by 1, -1 or 0. Note: return None for empty arr. Example: >>> prod_signs([1, 2, 2, -4]) == -9 >>> prod_signs([0, 1]) == 0 >>> prod_signs([]) == None """""" "," def candidate(arr): """""" You are given an array arr of integers and you need to return sum of magnitudes of integers multiplied by result of certain signs of each number in the array, represented by 1, -1 or 0. Note: return None for empty arr. Example: >>> candidate([1, 2, 2, -4]) == -9 >>> candidate([0, 1]) == 0 >>> candidate([]) == None """""" "," def prod_signs(arr): """""" You are given an array arr of integers and you need to return sum of magnitudes of integers multiplied by product of all signs of each number in the array, represented by 1, -1 or 0. Note: return None for empty arr. Example: >>> prod_signs([1, 2, 2, -4]) == 1 >>> prod_signs([0, 1]) == 1 >>> prod_signs([]) == None """""" "," def candidate(arr): """""" You are given an array arr of integers and you need to return sum of magnitudes of integers multiplied by """""" "," def candidate(arr): """""" You are given an array arr of integers and you need to return sum of magnitudes of integers multiplied by result of certain signs of each number in the array, represented by 1, -1 or 0. Note: return None for empty arr. Example: >>> candidate([1, 2, 2, -4]) == 1 >>> candidate([0, 1]) == 1 >>> candidate([]) == None """""" ",,,," def prod_signs(arr): """""" You are given an array arr of integers and you need to return sum of magnitudes of integers multiplied by product of all signs of each number in the array, represented by 1, -1 or 0. Note: return None for empty arr. Example: >>> prod_signs([1, 2, 2, -4]) == -9 >>> prod_signs([0, 1]) == 0 >>> prod_signs([]) == None """""" if not arr: return None prod = 0 if 0 in arr else (-1) ** len(list(filter(lambda x: x < 0, arr))) return prod * sum([abs(i) for i in arr]) ","[{'input': '[1, 2, 2, -4]', 'output': '-9', 'relation': '=='}, {'input': '[0, 1]', 'output': '0', 'relation': '=='}, {'input': '[1, 1, 1, 2, 3, -1, 1]', 'output': '-10', 'relation': '=='}, {'input': '[]', 'output': 'None', 'relation': '=='}, {'input': '[2, 4,1, 2, -1, -1, 9]', 'output': '20', 'relation': '=='}, {'input': '[-1, 1, -1, 1]', 'output': '4', 'relation': '=='}, {'input': '[-1, 1, 1, 1]', 'output': '-4', 'relation': '=='}, {'input': '[-1, 1, 1, 0]', 'output': '0', 'relation': '=='}]" minPath,HumanEval/129," def minPath(grid, k): """""" Given a grid with N rows and N columns (N >= 2) and a positive integer k, each cell of the grid contains a value. Every integer in the range [1, N * N] inclusive appears exactly once on the cells of the grid. You have to find the minimum path of length k in the grid. You can start from any cell, and in each step you can move to any of the neighbor cells, in other words, you can go to cells which share an edge with you current cell. Please note that a path of length k means visiting exactly k cells (not necessarily distinct). You CANNOT go off the grid. A path A (of length k) is considered less than a path B (of length k) if after making the ordered lists of the values on the cells that A and B go through (let's call them lst_A and lst_B), lst_A is lexicographically less than lst_B, in other words, there exist an integer index i (1 <= i <= k) such that lst_A[i] < lst_B[i] and for any j (1 <= j < i) we have lst_A[j] = lst_B[j]. It is guaranteed that the answer is unique. Return an ordered list of the values on the cells that the minimum path go through. Examples: Input: grid = [ [1,2,3], [4,5,6], [7,8,9]], k = 3 Output: [1, 2, 1] Input: grid = [ [5,9,3], [4,1,6], [7,8,2]], k = 1 Output: [1] """""" "," def path(grid, k): """""" Given a grid with N rows and N columns (N >= 2) and a positive integer k, each cell of the grid contains a value. Every integer in the range [1, N * N] inclusive appears exactly once on the cells of the grid. You have to find the path of length k in the grid. You can start from any cell, and in each step you can move to any of the neighbor cells, in other words, you can go to cells which share an edge with you current cell. Please note that a path of length k means visiting exactly k cells (not necessarily distinct). You CANNOT go off the grid. A path A (of length k) is considered less than a path B (of length k) if after making the ordered lists of the values on the cells that A and B go through (let's call them lst_A and lst_B), lst_A is lexicographically less than lst_B, in other words, there exist an integer index i (1 <= i <= k) such that lst_A[i] < lst_B[i] and for any j (1 <= j < i) we have lst_A[j] = lst_B[j]. It is guaranteed that the answer is unique. Return an ordered list of the values on the cells that the path go through. Examples: Input: grid = [ [1,2,3], [4,5,6], [7,8,9]], k = 3 Output: [1, 2, 1] Input: grid = [ [5,9,3], [4,1,6], [7,8,2]], k = 1 Output: [1] """""" "," def minPath(grid, k): """""" Given a grid with N rows and N columns (N >= 2) and a positive integer k, each cell of the grid contains a value. Every integer in the range [1, N * N] inclusive appears exactly once on the cells of the grid. You have to find the minimum path of length k in the grid. You can start from any cell, and in each step you can move to any of the neighbor cells, in other words, you can go to cells which share an edge with you current cell. Please note that a path of length k means visiting exactly k cells (not necessarily distinct). You CANNOT go off the grid. A path A (of length k) is considered less than a path B (of length k) if after making the ordered lists of the values on the cells that A and B go through (let's call them lst_A and lst_B), lst_A is lexicographically less than lst_B, in other words, there exist an integer index i (1 <= i <= k) such that lst_A[i] < lst_B[i] and for any j (1 <= j < i) we have lst_A[j] = lst_B[j]. It is guaranteed that the answer is unique. Return an ordered list of the values on the cells that the minimum path go through. Examples: Input: grid = [ [1,2,3], [4,5,6], [7,8,9]], k = 3 Output: [9, 8, 7] Input: grid = [ [5,9,3], [4,1,6], [7,8,2]], k = 1 Output: [9] """""" "," def minPath(grid, k): """""" Given a grid with N rows and N columns (N >= 2) and a positive integer k, each cell of the grid contains a value. Every integer in the range [1, N * N] inclusive appears exactly once on the cells of the grid. You have to find the minimum path of length k in the grid. You can start from any cell, and in each step you can move to any of the neighbor cells, in other words, you can go to cells which share an edge with you current cell. Please note that a path of length k means visiting exactly k cells (not necessarily distinct). You CANNOT go off the grid. """""" "," def path(grid, k): """""" Given a grid with N rows and N columns (N >= 2) and a positive integer k, each cell of the grid contains a value. Every integer in the range [1, N * N] inclusive appears exactly once on the cells of the grid. You have to find the path of length k in the grid. You can start from any cell, and in each step you can move to any of the neighbor cells, in other words, you can go to cells which share an edge with you current cell. Please note that a path of length k means visiting exactly k cells (not necessarily distinct). You CANNOT go off the grid. A path A (of length k) is considered less than a path B (of length k) if after making the ordered lists of the values on the cells that A and B go through (let's call them lst_A and lst_B), lst_A is lexicographically less than lst_B, in other words, there exist an integer index i (1 <= i <= k) such that lst_A[i] < lst_B[i] and for any j (1 <= j < i) we have lst_A[j] = lst_B[j]. It is guaranteed that the answer is unique. Return an ordered list of the values on the cells that the path go through. Examples: Input: grid = [ [1,2,3], [4,5,6], [7,8,9]], k = 3 Output: [9, 8, 7] Input: grid = [ [5,9,3], [4,1,6], [7,8,2]], k = 1 Output: [9] """""" "," def path(grid, k): """""" Given a grid with N rows and N columns (N >= 2) and a positive integer k, each cell of the grid contains a value. Every integer in the range [1, N * N] inclusive appears exactly once on the cells of the grid. You have to find the path of length k in the grid. You can start from any cell, and in each step you can move to any of the neighbor cells, in other words, you can go to cells which share an edge with you current cell. Please note that a path of length k means visiting exactly k cells (not necessarily distinct). You CANNOT go off the grid. """""" ",,," def minPath(grid, k): """""" Given a grid with N rows and N columns (N >= 2) and a positive integer k, each cell of the grid contains a value. Every integer in the range [1, N * N] inclusive appears exactly once on the cells of the grid. You have to find the minimum path of length k in the grid. You can start from any cell, and in each step you can move to any of the neighbor cells, in other words, you can go to cells which share an edge with you current cell. Please note that a path of length k means visiting exactly k cells (not necessarily distinct). You CANNOT go off the grid. A path A (of length k) is considered less than a path B (of length k) if after making the ordered lists of the values on the cells that A and B go through (let's call them lst_A and lst_B), lst_A is lexicographically less than lst_B, in other words, there exist an integer index i (1 <= i <= k) such that lst_A[i] < lst_B[i] and for any j (1 <= j < i) we have lst_A[j] = lst_B[j]. It is guaranteed that the answer is unique. Return an ordered list of the values on the cells that the minimum path go through. Examples: Input: grid = [ [1,2,3], [4,5,6], [7,8,9]], k = 3 Output: [1, 2, 1] Input: grid = [ [5,9,3], [4,1,6], [7,8,2]], k = 1 Output: [1] """""" n = len(grid) val = n * n + 1 for i in range(n): for j in range(n): if grid[i][j] == 1: temp = [] if i != 0: temp.append(grid[i - 1][j]) if j != 0: temp.append(grid[i][j - 1]) if i != n - 1: temp.append(grid[i + 1][j]) if j != n - 1: temp.append(grid[i][j + 1]) val = min(temp) ans = [] for i in range(k): if i % 2 == 0: ans.append(1) else: ans.append(val) return ans ","[{'input': '[[1, 2, 3], [4, 5, 6], [7, 8, 9]], 3', 'output': '[1, 2, 1]', 'relation': '=='}, {'input': '[[5, 9, 3], [4, 1, 6], [7, 8, 2]], 1', 'output': '[1]', 'relation': '=='}, {'input': '[[1, 2, 3, 4], [5, 6, 7, 8], [9, 10, 11, 12], [13, 14, 15, 16]], 4', 'output': '[1, 2, 1, 2]', 'relation': '=='}, {'input': '[[6, 4, 13, 10], [5, 7, 12, 1], [3, 16, 11, 15], [8, 14, 9, 2]], 7', 'output': '[1, 10, 1, 10, 1, 10, 1]', 'relation': '=='}, {'input': '[[8, 14, 9, 2], [6, 4, 13, 15], [5, 7, 1, 12], [3, 10, 11, 16]], 5', 'output': '[1, 7, 1, 7, 1]', 'relation': '=='}, {'input': '[[11, 8, 7, 2], [5, 16, 14, 4], [9, 3, 15, 6], [12, 13, 10, 1]], 9', 'output': '[1, 6, 1, 6, 1, 6, 1, 6, 1]', 'relation': '=='}, {'input': '[[12, 13, 10, 1], [9, 3, 15, 6], [5, 16, 14, 4], [11, 8, 7, 2]], 12', 'output': '[1, 6, 1, 6, 1, 6, 1, 6, 1, 6, 1, 6]', 'relation': '=='}, {'input': '[[2, 7, 4], [3, 1, 5], [6, 8, 9]], 8', 'output': '[1, 3, 1, 3, 1, 3, 1, 3]', 'relation': '=='}, {'input': '[[6, 1, 5], [3, 8, 9], [2, 7, 4]], 8', 'output': '[1, 5, 1, 5, 1, 5, 1, 5]', 'relation': '=='}, {'input': '[[1, 2], [3, 4]], 10', 'output': '[1, 2, 1, 2, 1, 2, 1, 2, 1, 2]', 'relation': '=='}, {'input': '[[1, 3], [3, 2]], 10', 'output': '[1, 3, 1, 3, 1, 3, 1, 3, 1, 3]', 'relation': '=='}]" tri,HumanEval/130," def tri(n): """"""Everyone knows Fibonacci sequence, it was studied deeply by mathematicians in the last couple centuries. However, what people don't know is Tribonacci sequence. Tribonacci sequence is defined by the recurrence: tri(1) = 3 tri(n) = 1 + n / 2, if n is even. tri(n) = tri(n - 1) + tri(n - 2) + tri(n + 1), if n is odd. For example: tri(2) = 1 + (2 / 2) = 2 tri(4) = 3 tri(3) = tri(2) + tri(1) + tri(4) = 2 + 3 + 3 = 8 You are given a non-negative integer number n, you have to a return a list of the first n + 1 numbers of the Tribonacci sequence. Examples: tri(3) = [1, 3, 2, 8] """""" "," def tri(n): """"""Everyone knows Fibonacci sequence, it was studied deeply by mathematicians in the last couple centuries. However, what people don't know is Tribonacci sequence. Tribonacci sequence is defined by the recurrence: tri(1) = 3 tri(n) = 1 + n / 2, if n is odd or even. tri(n) = tri(n - 1) + tri(n - 2) + tri(n + 1), if n is odd or even. For example: tri(2) = 1 + (2 / 2) = 2 tri(4) = 3 tri(3) = tri(2) + tri(1) + tri(4) = 2 + 3 + 3 = 8 You are given a non-negative integer number n, you have to a return a list of the first n + 1 numbers of the Tribonacci sequence. Examples: tri(3) = [1, 3, 2, 8] """""" "," def tri(n): """"""Everyone knows Fibonacci sequence, it was studied deeply by mathematicians in the last couple centuries. However, what people don't know is Tribonacci sequence. Tribonacci sequence is defined by the recurrence: tri(1) = 3 tri(n) = 1 + n / 2, if n is even. tri(n) = tri(n - 1) + tri(n - 2) + tri(n + 1), if n is odd. For example: tri(2) = 1 + (2 / 2) = 2 tri(4) = 3 tri(3) = tri(2) + tri(1) + tri(4) = 2 + 3 + 3 = 8 You are given a non-negative integer number n, you have to a return a list of the first n + 1 numbers of the Tribonacci sequence. Examples: tri(3) = [1, 1, 2, 3] """""" "," def tri(n): """"""Everyone knows Fibonacci sequence, it was studied deeply by mathematicians in the last couple centuries. However, what people don't know is Tribonacci sequence. Tribonacci sequence is defined by the recurrence: tri(1) = 3 tri(n) = 1 + n / 2, if n is even. """""" "," def tri(n): """"""Everyone knows Fibonacci sequence, it was studied deeply by mathematicians in the last couple centuries. However, what people don't know is Tribonacci sequence. Tribonacci sequence is defined by the recurrence: tri(1) = 3 tri(n) = 1 + n / 2, if n is odd or even. tri(n) = tri(n - 1) + tri(n - 2) + tri(n + 1), if n is odd or even. For example: tri(2) = 1 + (2 / 2) = 2 tri(4) = 3 tri(3) = tri(2) + tri(1) + tri(4) = 2 + 3 + 3 = 8 You are given a non-negative integer number n, you have to a return a list of the first n + 1 numbers of the Tribonacci sequence. Examples: tri(3) = [1, 1, 2, 3] """""" "," def tri(n): """"""Everyone knows Fibonacci sequence, it was studied deeply by mathematicians in the last couple centuries. However, what people don't know is Tribonacci sequence. Tribonacci sequence is defined by the recurrence: tri(1) = 3 tri(n) = 1 + n / 2, if n is odd or even. """""" ",,," def tri(n): """"""Everyone knows Fibonacci sequence, it was studied deeply by mathematicians in the last couple centuries. However, what people don't know is Tribonacci sequence. Tribonacci sequence is defined by the recurrence: tri(1) = 3 tri(n) = 1 + n / 2, if n is even. tri(n) = tri(n - 1) + tri(n - 2) + tri(n + 1), if n is odd. For example: tri(2) = 1 + (2 / 2) = 2 tri(4) = 3 tri(3) = tri(2) + tri(1) + tri(4) = 2 + 3 + 3 = 8 You are given a non-negative integer number n, you have to a return a list of the first n + 1 numbers of the Tribonacci sequence. Examples: tri(3) = [1, 3, 2, 8] """""" if n == 0: return [1] my_tri = [1, 3] for i in range(2, n + 1): if i % 2 == 0: my_tri.append(i / 2 + 1) else: my_tri.append(my_tri[i - 1] + my_tri[i - 2] + (i + 3) / 2) return my_tri ","[{'input': '3', 'output': '[1, 3, 2.0, 8.0]', 'relation': '=='}, {'input': '4', 'output': '[1, 3, 2.0, 8.0, 3.0]', 'relation': '=='}, {'input': '5', 'output': '[1, 3, 2.0, 8.0, 3.0, 15.0]', 'relation': '=='}, {'input': '6', 'output': '[1, 3, 2.0, 8.0, 3.0, 15.0, 4.0]', 'relation': '=='}, {'input': '7', 'output': '[1, 3, 2.0, 8.0, 3.0, 15.0, 4.0, 24.0]', 'relation': '=='}, {'input': '8', 'output': '[1, 3, 2.0, 8.0, 3.0, 15.0, 4.0, 24.0, 5.0]', 'relation': '=='}, {'input': '9', 'output': '[1, 3, 2.0, 8.0, 3.0, 15.0, 4.0, 24.0, 5.0, 35.0]', 'relation': '=='}, {'input': '20', 'output': '[1, 3, 2.0, 8.0, 3.0, 15.0, 4.0, 24.0, 5.0, 35.0, 6.0, 48.0, 7.0, 63.0, 8.0, 80.0, 9.0, 99.0, 10.0, 120.0, 11.0]', 'relation': '=='}, {'input': '0', 'output': '[1]', 'relation': '=='}, {'input': '1', 'output': '[1, 3]', 'relation': '=='}]" digits,HumanEval/131," def digits(n): """"""Given a positive integer n, return the product of the odd digits. Return 0 if all digits are even. For example: digits(1) == 1 digits(4) == 0 digits(235) == 15 """""" "," def digits(n): """"""Given a positive integer n, return the sum or product of the odd digits. Return 0 if all digits are even. For example: digits(1) == 1 digits(4) == 0 digits(235) == 15 """""" "," def digits(n): """"""Given a positive integer n, return the product of the odd digits. Return 0 if all digits are even. For example: digits(1) == 1 digits(4) == 4 digits(235) == 30 """""" "," def digits(n): """"""Given a positive integer n, return the product """""" "," def digits(n): """"""Given a positive integer n, return the sum or product of the odd digits. Return 0 if all digits are even. For example: digits(1) == 1 digits(4) == 4 digits(235) == 30 """""" "," def digits(n): """"""Given a positive integer n, return the sum or product """""" ",,," def digits(n): """"""Given a positive integer n, return the product of the odd digits. Return 0 if all digits are even. For example: digits(1) == 1 digits(4) == 0 digits(235) == 15 """""" product = 1 odd_count = 0 for digit in str(n): int_digit = int(digit) if int_digit%2 == 1: product= product*int_digit odd_count+=1 if odd_count ==0: return 0 else: return product ","[{'input': '5', 'output': '5', 'relation': '=='}, {'input': '54', 'output': '5', 'relation': '=='}, {'input': '5014', 'output': '5', 'relation': '=='}, {'input': '98765', 'output': '315', 'relation': '=='}, {'input': '5576543', 'output': '2625', 'relation': '=='}, {'input': '2468', 'output': '0', 'relation': '=='}]" is_nested,HumanEval/132," def is_nested(string): ''' Create a function that takes a string as input which contains only square brackets. The function should return True if and only if there is a valid subsequence of brackets where at least one bracket in the subsequence is nested. is_nested('[[]]') ➞ True is_nested('[]]]]]]][[[[[]') ➞ False is_nested('[][]') ➞ False is_nested('[]') ➞ False is_nested('[[][]]') ➞ True is_nested('[[]][[') ➞ True ''' "," def is_nested(string): ''' Create a function that takes a string as input which contains only square brackets. The function should return True if and only if there is a valid subsequence of brackets where at least three or two or one brackets in the subsequence is nested. is_nested('[[]]') ➞ True is_nested('[]]]]]]][[[[[]') ➞ False is_nested('[][]') ➞ False is_nested('[]') ➞ False is_nested('[[][]]') ➞ True is_nested('[[]][[') ➞ True ''' "," def is_nested(string): ''' Create a function that takes a string as input which contains only square brackets. The function should return True if and only if there is a valid subsequence of brackets where at least one bracket in the subsequence is nested. is_nested('[[]]') ➞ False is_nested('[]]]]]]][[[[[]') ➞ True is_nested('[][]') ➞ True is_nested('[]') ➞ True is_nested('[[][]]') ➞ False is_nested('[[]][[') ➞ False ''' "," def is_nested(string): ''' Create a function that takes a string as input which contains only square brackets. The function should return True if and only if there is a valid subsequence of brackets where ''' "," def is_nested(string): ''' Create a function that takes a string as input which contains only square brackets. The function should return True if and only if there is a valid subsequence of brackets where at least three or two or one bracket in the subsequence is nested. is_nested('[[]]') ➞ False is_nested('[]]]]]]][[[[[]') ➞ True is_nested('[][]') ➞ True is_nested('[]') ➞ True is_nested('[[][]]') ➞ False is_nested('[[]][[') ➞ False ''' ",,,," def is_nested(string): ''' Create a function that takes a string as input which contains only square brackets. The function should return True if and only if there is a valid subsequence of brackets where at least one bracket in the subsequence is nested. is_nested('[[]]') ➞ True is_nested('[]]]]]]][[[[[]') ➞ False is_nested('[][]') ➞ False is_nested('[]') ➞ False is_nested('[[][]]') ➞ True is_nested('[[]][[') ➞ True ''' opening_bracket_index = [] closing_bracket_index = [] for i in range(len(string)): if string[i] == '[': opening_bracket_index.append(i) else: closing_bracket_index.append(i) closing_bracket_index.reverse() cnt = 0 i = 0 l = len(closing_bracket_index) for idx in opening_bracket_index: if i < l and idx < closing_bracket_index[i]: cnt += 1 i += 1 return cnt >= 2 ","[{'input': ""'[[]]'"", 'output': 'True', 'relation': '=='}, {'input': ""'[]]]]]]][[[[[]'"", 'output': 'False', 'relation': '=='}, {'input': ""'[][]'"", 'output': 'False', 'relation': '=='}, {'input': ""('[]')"", 'output': 'False', 'relation': '=='}, {'input': ""'[[[[]]]]'"", 'output': 'True', 'relation': '=='}, {'input': ""'[]]]]]]]]]]'"", 'output': 'False', 'relation': '=='}, {'input': ""'[][][[]]'"", 'output': 'True', 'relation': '=='}, {'input': ""'[[]'"", 'output': 'False', 'relation': '=='}, {'input': ""'[]]'"", 'output': 'False', 'relation': '=='}, {'input': ""'[[]][['"", 'output': 'True', 'relation': '=='}, {'input': ""'[[][]]'"", 'output': 'True', 'relation': '=='}, {'input': ""''"", 'output': 'False', 'relation': '=='}, {'input': ""'[[[[[[[['"", 'output': 'False', 'relation': '=='}, {'input': ""']]]]]]]]'"", 'output': 'False', 'relation': '=='}]" sum_squares,HumanEval/133," def sum_squares(lst): """"""You are given a list of numbers. You need to return the sum of squared numbers in the given list, round each element in the list to the upper int(Ceiling) first. Examples: For lst = [1,2,3] the output should be 14 For lst = [1,4,9] the output should be 98 For lst = [1,3,5,7] the output should be 84 For lst = [1.4,4.2,0] the output should be 29 For lst = [-2.4,1,1] the output should be 6 """""" "," def candidate(lst): """"""You are given a list of numbers. You need to return the product or sum of squared numbers in the given list, round each element in the list to the upper int(Ceiling) first. Examples: For lst = [1,2,3] the output should be 14 For lst = [1,4,9] the output should be 98 For lst = [1,3,5,7] the output should be 84 For lst = [1.4,4.2,0] the output should be 29 For lst = [-2.4,1,1] the output should be 6 """""" "," def sum_squares(lst): """"""You are given a list of numbers. You need to return the sum of squared numbers in the given list, round each element in the list to the upper int(Ceiling) first. Examples: For lst = [1,2,3] the output should be 6 For lst = [1,4,9] the output should be 14 For lst = [1,3,5,7] the output should be 16 For lst = [1.4,4.2,0] the output should be 5.6 For lst = [-2.4,1,1] the output should be -0.4 """""" "," def candidate(lst): """"""You are given a list of numbers. You need to return the sum of squared """""" "," def candidate(lst): """"""You are given a list of numbers. You need to return the product or sum of squared numbers in the given list, round each element in the list to the upper int(Ceiling) first. Examples: For lst = [1,2,3] the output should be 6 For lst = [1,4,9] the output should be 14 For lst = [1,3,5,7] the output should be 16 For lst = [1.4,4.2,0] the output should be 5.6 For lst = [-2.4,1,1] the output should be -0.4 """""" ",,,," def sum_squares(lst): """"""You are given a list of numbers. You need to return the sum of squared numbers in the given list, round each element in the list to the upper int(Ceiling) first. Examples: For lst = [1,2,3] the output should be 14 For lst = [1,4,9] the output should be 98 For lst = [1,3,5,7] the output should be 84 For lst = [1.4,4.2,0] the output should be 29 For lst = [-2.4,1,1] the output should be 6 """""" import math squared = 0 for i in lst: squared += math.ceil(i)**2 return squared ","[{'input': '[1, 2, 3]', 'output': '14', 'relation': '=='}, {'input': '[1.0, 2, 3]', 'output': '14', 'relation': '=='}, {'input': '[1,3,5,7]', 'output': '84', 'relation': '=='}, {'input': '[1.4,4.2,0]', 'output': '29', 'relation': '=='}, {'input': '[-2.4,1,1]', 'output': '6', 'relation': '=='}, {'input': '[100,1,15,2]', 'output': '10230', 'relation': '=='}, {'input': '[10000,10000]', 'output': '200000000', 'relation': '=='}, {'input': '[-1.4,4.6,6.3]', 'output': '75', 'relation': '=='}, {'input': '[-1.4,17.9,18.9,19.9]', 'output': '1086', 'relation': '=='}, {'input': '[0]', 'output': '0', 'relation': '=='}, {'input': '[-1]', 'output': '1', 'relation': '=='}, {'input': '[-1,1,0]', 'output': '2', 'relation': '=='}]" check_if_last_char_is_a_letter,HumanEval/134," def check_if_last_char_is_a_letter(txt): ''' Create a function that returns True if the last character of a given string is an alphabetical character and is not a part of a word, and False otherwise. Note: ""word"" is a group of characters separated by space. Examples: check_if_last_char_is_a_letter(""apple pie"") ➞ False check_if_last_char_is_a_letter(""apple pi e"") ➞ True check_if_last_char_is_a_letter(""apple pi e "") ➞ False check_if_last_char_is_a_letter("""") ➞ False ''' "," def candidate(txt): ''' Create a function that returns True if the character with given position of a given string is an alphabetical character and is not a part of a word, and False otherwise. Note: ""word"" is a group of characters separated by space. Examples: candidate(""apple pie"") ➞ False candidate(""apple pi e"") ➞ True candidate(""apple pi e "") ➞ False candidate("""") ➞ False ''' "," def check_if_last_char_is_a_letter(txt): ''' Create a function that returns True if the last character of a given string is an alphabetical character and is not a part of a word, and False otherwise. Note: ""word"" is a group of characters separated by space. Examples: check_if_last_char_is_a_letter(""apple pie"") ➞ True check_if_last_char_is_a_letter(""apple pi e"") ➞ False check_if_last_char_is_a_letter(""apple pi e "") ➞ True check_if_last_char_is_a_letter("""") ➞ True ''' "," def candidate(txt): ''' Create a function that returns True if the last character of a given string is , and False otherwise. Note: ""word"" is a group of characters separated by space. Examples: candidate(""apple pie"") ➞ False candidate(""apple pi e"") ➞ True candidate(""apple pi e "") ➞ False candidate("""") ➞ False ''' "," def candidate(txt): ''' Create a function that returns True if the character with given position of a given string is an alphabetical character and is not a part of a word, and False otherwise. Note: ""word"" is a group of characters separated by space. Examples: candidate(""apple pie"") ➞ True candidate(""apple pi e"") ➞ False candidate(""apple pi e "") ➞ True candidate("""") ➞ True ''' "," def candidate(txt): ''' Create a function that returns True if the character with given position of a given string is , and False otherwise. Note: ""word"" is a group of characters separated by space. Examples: candidate(""apple pie"") ➞ False candidate(""apple pi e"") ➞ True candidate(""apple pi e "") ➞ False candidate("""") ➞ False ''' "," def candidate(txt): ''' Create a function that returns True if the last character of a given string is , and False otherwise. Note: ""word"" is a group of characters separated by space. Examples: candidate(""apple pie"") ➞ True candidate(""apple pi e"") ➞ False candidate(""apple pi e "") ➞ True candidate("""") ➞ True ''' "," def candidate(txt): ''' Create a function that returns True if the character with given position of a given string is , and False otherwise. Note: ""word"" is a group of characters separated by space. Examples: candidate(""apple pie"") ➞ True candidate(""apple pi e"") ➞ False candidate(""apple pi e "") ➞ True candidate("""") ➞ True ''' "," def check_if_last_char_is_a_letter(txt): ''' Create a function that returns True if the last character of a given string is an alphabetical character and is not a part of a word, and False otherwise. Note: ""word"" is a group of characters separated by space. Examples: check_if_last_char_is_a_letter(""apple pie"") ➞ False check_if_last_char_is_a_letter(""apple pi e"") ➞ True check_if_last_char_is_a_letter(""apple pi e "") ➞ False check_if_last_char_is_a_letter("""") ➞ False ''' check = txt.split(' ')[-1] return True if len(check) == 1 and (97 <= ord(check.lower()) <= 122) else False ","[{'input': '""apple""', 'output': 'False', 'relation': '=='}, {'input': '""apple pi e""', 'output': 'True', 'relation': '=='}, {'input': '""eeeee""', 'output': 'False', 'relation': '=='}, {'input': '""A""', 'output': 'True', 'relation': '=='}, {'input': '""Pumpkin pie ""', 'output': 'False', 'relation': '=='}, {'input': '""Pumpkin pie 1""', 'output': 'False', 'relation': '=='}, {'input': '""""', 'output': 'False', 'relation': '=='}, {'input': '""eeeee e ""', 'output': 'False', 'relation': '=='}, {'input': '""apple pie""', 'output': 'False', 'relation': '=='}, {'input': '""apple pi e ""', 'output': 'False', 'relation': '=='}]" can_arrange,HumanEval/135," def can_arrange(arr): """"""Create a function which returns the largest index of an element which is not greater than or equal to the element immediately preceding it. If no such element exists then return -1. The given array will not contain duplicate values. Examples: can_arrange([1,2,4,3,5]) = 3 can_arrange([1,2,3]) = -1 """""" "," def can_arrange(arr): """"""Create a function which returns the smallest or largest index of an element which is not greater than or equal to the element immediately preceding it. If no such element exists then return -1. The given array will not contain duplicate values. Examples: can_arrange([1,2,4,3,5]) = 3 can_arrange([1,2,3]) = -1 """""" "," def can_arrange(arr): """"""Create a function which returns the largest index of an element which is not greater than or equal to the element immediately preceding it. If no such element exists then return -1. The given array will not contain duplicate values. Examples: can_arrange([1,2,4,3,5]) = 2 can_arrange([1,2,3]) = 2 """""" "," def can_arrange(arr): """"""Create a function which returns the largest index of an element which is not greater than or equal to """""" "," def can_arrange(arr): """"""Create a function which returns the smallest or largest index of an element which is not greater than or equal to the element immediately preceding it. If no such element exists then return -1. The given array will not contain duplicate values. Examples: can_arrange([1,2,4,3,5]) = 2 can_arrange([1,2,3]) = 2 """""" "," def can_arrange(arr): """"""Create a function which returns the smallest or largest index of an element which is not greater than or equal to """""" ",,," def can_arrange(arr): """"""Create a function which returns the largest index of an element which is not greater than or equal to the element immediately preceding it. If no such element exists then return -1. The given array will not contain duplicate values. Examples: can_arrange([1,2,4,3,5]) = 3 can_arrange([1,2,3]) = -1 """""" ind=-1 i=1 while i 0, lst)) return (max(smallest) if smallest else None, min(largest) if largest else None) ","[{'input': '[2, 4, 1, 3, 5, 7]', 'output': '(None, 1)', 'relation': '=='}, {'input': '[2, 4, 1, 3, 5, 7, 0]', 'output': '(None, 1)', 'relation': '=='}, {'input': '[1, 3, 2, 4, 5, 6, -2]', 'output': '(-2, 1)', 'relation': '=='}, {'input': '[4, 5, 3, 6, 2, 7, -7]', 'output': '(-7, 2)', 'relation': '=='}, {'input': '[7, 3, 8, 4, 9, 2, 5, -9]', 'output': '(-9, 2)', 'relation': '=='}, {'input': '[]', 'output': '(None, None)', 'relation': '=='}, {'input': '[0]', 'output': '(None, None)', 'relation': '=='}, {'input': '[-1, -3, -5, -6]', 'output': '(-1, None)', 'relation': '=='}, {'input': '[-1, -3, -5, -6, 0]', 'output': '(-1, None)', 'relation': '=='}, {'input': '[-6, -4, -4, -3, 1]', 'output': '(-3, 1)', 'relation': '=='}, {'input': '[-6, -4, -4, -3, -100, 1]', 'output': '(-3, 1)', 'relation': '=='}]" compare_one,HumanEval/137," def compare_one(a, b): """""" Create a function that takes integers, floats, or strings representing real numbers, and returns the larger variable in its given variable type. Return None if the values are equal. Note: If a real number is represented as a string, the floating point might be . or , compare_one(1, 2.5) ➞ 2.5 compare_one(1, ""2,3"") ➞ ""2,3"" compare_one(""5,1"", ""6"") ➞ ""6"" compare_one(""1"", 1) ➞ None """""" "," def compare_one(a, b): """""" Create a function that takes integers, floats, or strings representing real numbers, and returns the smaller or larger variable in its given variable type. Return None if the values are equal. Note: If a real number is represented as a string, the floating point might be . or , compare_one(1, 2.5) ➞ 2.5 compare_one(1, ""2,3"") ➞ ""2,3"" compare_one(""5,1"", ""6"") ➞ ""6"" compare_one(""1"", 1) ➞ None """""" "," def compare_one(a, b): """""" Create a function that takes integers, floats, or strings representing real numbers, and returns the larger variable in its given variable type. Return None if the values are equal. Note: If a real number is represented as a string, the floating point might be . or , compare_one(1, 2.5) ➞ 1 compare_one(1, ""2,3"") ➞ ""1"" compare_one(""5,1"", ""6"") ➞ ""5,1"" compare_one(""1"", 1) ➞ ""1"" """""" "," def compare_one(a, b): """""" Create a function that takes integers, floats, or strings representing real numbers, and returns the """""" "," def compare_one(a, b): """""" Create a function that takes integers, floats, or strings representing real numbers, and returns the smaller or larger variable in its given variable type. Return None if the values are equal. Note: If a real number is represented as a string, the floating point might be . or , compare_one(1, 2.5) ➞ 1 compare_one(1, ""2,3"") ➞ ""1"" compare_one(""5,1"", ""6"") ➞ ""5,1"" compare_one(""1"", 1) ➞ ""1"" """""" ",,,," def compare_one(a, b): """""" Create a function that takes integers, floats, or strings representing real numbers, and returns the larger variable in its given variable type. Return None if the values are equal. Note: If a real number is represented as a string, the floating point might be . or , compare_one(1, 2.5) ➞ 2.5 compare_one(1, ""2,3"") ➞ ""2,3"" compare_one(""5,1"", ""6"") ➞ ""6"" compare_one(""1"", 1) ➞ None """""" temp_a, temp_b = a, b if isinstance(temp_a, str): temp_a = temp_a.replace(',','.') if isinstance(temp_b, str): temp_b = temp_b.replace(',','.') if float(temp_a) == float(temp_b): return None return a if float(temp_a) > float(temp_b) else b ","[{'input': '1, 2', 'output': '2', 'relation': '=='}, {'input': '1, 2.5', 'output': '2.5', 'relation': '=='}, {'input': '2, 3', 'output': '3', 'relation': '=='}, {'input': '5, 6', 'output': '6', 'relation': '=='}, {'input': '1, ""2,3""', 'output': '2,3', 'relation': '=='}, {'input': '""5,1"", ""6""', 'output': '6', 'relation': '=='}, {'input': '""1"", ""2""', 'output': '2', 'relation': '=='}, {'input': '""1"", 1', 'output': 'None', 'relation': '=='}]" is_equal_to_sum_even,HumanEval/138," def is_equal_to_sum_even(n): """"""Evaluate whether the given number n can be written as the sum of exactly 4 positive even numbers Example is_equal_to_sum_even(4) == False is_equal_to_sum_even(6) == False is_equal_to_sum_even(8) == True """""" "," def candidate(n): """"""Evaluate whether the given number n can be written as the sum of 4 numbers Example candidate(4) == False candidate(6) == False candidate(8) == True """""" "," def is_equal_to_sum_even(n): """"""Evaluate whether the given number n can be written as the sum of exactly 4 positive even numbers Example is_equal_to_sum_even(4) == True is_equal_to_sum_even(6) == True is_equal_to_sum_even(8) == False """""" "," def is_equal_to_sum_even(n): """"""Evaluate whether the given number n can be written as the sum of exactly 4 """""" "," def candidate(n): """"""Evaluate whether the given number n can be written as the sum of 4 numbers Example candidate(4) == True candidate(6) == True candidate(8) == False """""" ",,,," def is_equal_to_sum_even(n): """"""Evaluate whether the given number n can be written as the sum of exactly 4 positive even numbers Example is_equal_to_sum_even(4) == False is_equal_to_sum_even(6) == False is_equal_to_sum_even(8) == True """""" return n%2 == 0 and n >= 8 ","[{'input': '4', 'output': 'False', 'relation': '=='}, {'input': '6', 'output': 'False', 'relation': '=='}, {'input': '8', 'output': 'True', 'relation': '=='}, {'input': '10', 'output': 'True', 'relation': '=='}, {'input': '11', 'output': 'False', 'relation': '=='}, {'input': '12', 'output': 'True', 'relation': '=='}, {'input': '13', 'output': 'False', 'relation': '=='}, {'input': '16', 'output': 'True', 'relation': '=='}]" special_factorial,HumanEval/139," def special_factorial(n): """"""The Brazilian factorial is defined as: brazilian_factorial(n) = n! * (n-1)! * (n-2)! * ... * 1! where n > 0 For example: >>> special_factorial(4) 288 The function will receive an integer as input and should return the special factorial of this integer. """""" "," def candidate(n): """"""The Brazilian factorial is defined as: brazilian_factorial(n) = n!, or, brazilian_factorial(n) = n! * (n-1)! * (n-2)! * ... * 1! where n > 0 For example: >>> candidate(4) 288 The function will receive an integer as input and should return the special factorial of this integer. """""" "," def special_factorial(n): """"""The Brazilian factorial is defined as: brazilian_factorial(n) = n! * (n-1)! * (n-2)! * ... * 1! where n > 0 For example: >>> special_factorial(4) 2 The function will receive an integer as input and should return the special factorial of this integer. """""" "," def special_factorial(n): """"""The Brazilian factorial is defined as: brazilian_factorial(n) = """""" "," def special_factorial(n): """"""The Brazilian factorial is defined as: brazilian_factorial(n) = n!, or, brazilian_factorial(n) = n! * (n-1)! * (n-2)! * ... * 1! where n > 0 For example: >>> special_factorial(4) 2 The function will receive an integer as input and should return the special factorial of this integer. """""" ",,,," def special_factorial(n): """"""The Brazilian factorial is defined as: brazilian_factorial(n) = n! * (n-1)! * (n-2)! * ... * 1! where n > 0 For example: >>> special_factorial(4) 288 The function will receive an integer as input and should return the special factorial of this integer. """""" fact_i = 1 special_fact = 1 for i in range(1, n+1): fact_i *= i special_fact *= fact_i return special_fact ","[{'input': '4', 'output': '288', 'relation': '=='}, {'input': '5', 'output': '34560', 'relation': '=='}, {'input': '7', 'output': '125411328000', 'relation': '=='}, {'input': '1', 'output': '1', 'relation': '=='}]" fix_spaces,HumanEval/140," def fix_spaces(text): """""" Given a string text, replace all spaces in it with underscores, and if a string has more than 2 consecutive spaces, then replace all consecutive spaces with - fix_spaces(""Example"") == ""Example"" fix_spaces(""Example 1"") == ""Example_1"" fix_spaces("" Example 2"") == ""_Example_2"" fix_spaces("" Example 3"") == ""_Example-3"" """""" "," def fix_spaces(text): """""" Given a string text, replace all spaces in it with underscores, and if a string has certain consecutive spaces, then replace all consecutive spaces with - fix_spaces(""Example"") == ""Example"" fix_spaces(""Example 1"") == ""Example_1"" fix_spaces("" Example 2"") == ""_Example_2"" fix_spaces("" Example 3"") == ""_Example-3"" """""" "," def fix_spaces(text): """""" Given a string text, replace all spaces in it with underscores, and if a string has more than 2 consecutive spaces, then replace all consecutive spaces with - fix_spaces(""Example"") == ""_Example"" fix_spaces(""Example 1"") == ""Example-1"" fix_spaces("" Example 2"") == ""-Example-2"" fix_spaces("" Example 3"") == ""-Example_3"" """""" "," def fix_spaces(text): """""" Given a string text, replace all spaces in it with underscores, and if a string has more than 2 consecutive spaces, then """""" "," def fix_spaces(text): """""" Given a string text, replace all spaces in it with underscores, and if a string has certain consecutive spaces, then replace all consecutive spaces with - fix_spaces(""Example"") == ""_Example"" fix_spaces(""Example 1"") == ""Example-1"" fix_spaces("" Example 2"") == ""-Example-2"" fix_spaces("" Example 3"") == ""-Example_3"" """""" "," def fix_spaces(text): """""" Given a string text, replace all spaces in it with underscores, and if a string has certain consecutive spaces, then """""" ",,," def fix_spaces(text): """""" Given a string text, replace all spaces in it with underscores, and if a string has more than 2 consecutive spaces, then replace all consecutive spaces with - fix_spaces(""Example"") == ""Example"" fix_spaces(""Example 1"") == ""Example_1"" fix_spaces("" Example 2"") == ""_Example_2"" fix_spaces("" Example 3"") == ""_Example-3"" """""" new_text = """" i = 0 start, end = 0, 0 while i < len(text): if text[i] == "" "": end += 1 else: if end - start > 2: new_text += ""-""+text[i] elif end - start > 0: new_text += ""_""*(end - start)+text[i] else: new_text += text[i] start, end = i+1, i+1 i+=1 if end - start > 2: new_text += ""-"" elif end - start > 0: new_text += ""_"" return new_text ","[{'input': '""Example""', 'output': 'Example', 'relation': '=='}, {'input': '""Mudasir Hanif ""', 'output': 'Mudasir_Hanif_', 'relation': '=='}, {'input': '""Yellow Yellow Dirty Fellow""', 'output': 'Yellow_Yellow__Dirty__Fellow', 'relation': '=='}, {'input': '""Exa mple""', 'output': 'Exa-mple', 'relation': '=='}, {'input': '"" Exa 1 2 2 mple""', 'output': '-Exa_1_2_2_mple', 'relation': '=='}]" file_name_check,HumanEval/141," def file_name_check(file_name): """"""Create a function which takes a string representing a file's name, and returns 'Yes' if the the file's name is valid, and returns 'No' otherwise. A file's name is considered to be valid if and only if all the following conditions are met: - There should not be more than three digits ('0'-'9') in the file's name. - The file's name contains exactly one dot '.' - The substring before the dot should not be empty, and it starts with a letter from the latin alphapet ('a'-'z' and 'A'-'Z'). - The substring after the dot should be one of these: ['txt', 'exe', 'dll'] Examples: file_name_check(""example.txt"") # => 'Yes' file_name_check(""1example.dll"") # => 'No' (the name should start with a latin alphapet letter) """""" "," def file_name_check(file_name): """"""Create a function which takes a string representing a file's name, and returns 'Yes' if the the file's name is valid, and returns 'No' otherwise. A file's name is considered to be valid if and only if all the following conditions are met: - There may not be less than or more than or exactly three digits ('0'-'9') in the file's name. - The file's name may contain less than or more than or exactly one dot '.' - The substring before the dot should not be empty, and it ends or starts with a letter from the latin alphapet ('a'-'z' and 'A'-'Z'). - The substring before or after the dot should be one of these: ['txt', 'exe', 'dll'] Examples: file_name_check(""example.txt"") # => 'Yes' file_name_check(""1example.dll"") # => 'No' (the name should start with a latin alphapet letter) """""" "," def file_name_check(file_name): """"""Create a function which takes a string representing a file's name, and returns 'Yes' if the the file's name is valid, and returns 'No' otherwise. A file's name is considered to be valid if and only if all the following conditions are met: - There should not be more than three digits ('0'-'9') in the file's name. - The file's name contains exactly one dot '.' - The substring before the dot should not be empty, and it starts with a letter from the latin alphapet ('a'-'z' and 'A'-'Z'). - The substring after the dot should be one of these: ['txt', 'exe', 'dll'] Examples: file_name_check(""example.txt"") # => 'No' file_name_check(""1example.dll"") # => 'Yes' (the name should start with a latin alphapet letter) """""" "," def file_name_check(file_name): """"""Create a function which takes a string representing a file's name, and returns 'Yes' if the the file's name is valid, and returns 'No' otherwise. Examples: file_name_check(""example.txt"") # => 'Yes' file_name_check(""1example.dll"") # => 'No' (the name should start with a latin alphapet letter) """""" "," def file_name_check(file_name): """"""Create a function which takes a string representing a file's name, and returns 'Yes' if the the file's name is valid, and returns 'No' otherwise. A file's name is considered to be valid if and only if all the following conditions are met: - There should not be less than or more than or exactly three digits ('0'-'9') in the file's name. - The file's name contains less than or more than or exactly one dot '.' - The substring before the dot should not be empty, and it ends or starts with a letter from the latin alphapet ('a'-'z' and 'A'-'Z'). - The substring before or after the dot should be one of these: ['txt', 'exe', 'dll'] Examples: file_name_check(""example.txt"") # => 'No' file_name_check(""1example.dll"") # => 'Yes' (the name should start with a latin alphapet letter) """""" ",," def file_name_check(file_name): """"""Create a function which takes a string representing a file's name, and returns 'Yes' if the the file's name is valid, and returns 'No' otherwise. Examples: file_name_check(""example.txt"") # => 'No' file_name_check(""1example.dll"") # => 'Yes' (the name should start with a latin alphapet letter) """""" ",," def file_name_check(file_name): """"""Create a function which takes a string representing a file's name, and returns 'Yes' if the the file's name is valid, and returns 'No' otherwise. A file's name is considered to be valid if and only if all the following conditions are met: - There should not be more than three digits ('0'-'9') in the file's name. - The file's name contains exactly one dot '.' - The substring before the dot should not be empty, and it starts with a letter from the latin alphapet ('a'-'z' and 'A'-'Z'). - The substring after the dot should be one of these: ['txt', 'exe', 'dll'] Examples: file_name_check(""example.txt"") # => 'Yes' file_name_check(""1example.dll"") # => 'No' (the name should start with a latin alphapet letter) """""" suf = ['txt', 'exe', 'dll'] lst = file_name.split(sep='.') if len(lst) != 2: return 'No' if not lst[1] in suf: return 'No' if len(lst[0]) == 0: return 'No' if not lst[0][0].isalpha(): return 'No' t = len([x for x in lst[0] if x.isdigit()]) if t > 3: return 'No' return 'Yes' ","[{'input': '""example.txt""', 'output': 'Yes', 'relation': '=='}, {'input': '""1example.dll""', 'output': 'No', 'relation': '=='}, {'input': ""'s1sdf3.asd'"", 'output': 'No', 'relation': '=='}, {'input': ""'K.dll'"", 'output': 'Yes', 'relation': '=='}, {'input': ""'MY16FILE3.exe'"", 'output': 'Yes', 'relation': '=='}, {'input': ""'His12FILE94.exe'"", 'output': 'No', 'relation': '=='}, {'input': ""'_Y.txt'"", 'output': 'No', 'relation': '=='}, {'input': ""'?aREYA.exe'"", 'output': 'No', 'relation': '=='}, {'input': ""'/this_is_valid.dll'"", 'output': 'No', 'relation': '=='}, {'input': ""'this_is_valid.wow'"", 'output': 'No', 'relation': '=='}, {'input': ""'this_is_valid.txt'"", 'output': 'Yes', 'relation': '=='}, {'input': ""'this_is_valid.txtexe'"", 'output': 'No', 'relation': '=='}, {'input': ""'#this2_i4s_5valid.ten'"", 'output': 'No', 'relation': '=='}, {'input': ""'@this1_is6_valid.exe'"", 'output': 'No', 'relation': '=='}, {'input': ""'this_is_12valid.6exe4.txt'"", 'output': 'No', 'relation': '=='}, {'input': ""'all.exe.txt'"", 'output': 'No', 'relation': '=='}, {'input': ""'I563_No.exe'"", 'output': 'Yes', 'relation': '=='}, {'input': ""'Is3youfault.txt'"", 'output': 'Yes', 'relation': '=='}, {'input': ""'no_one#knows.dll'"", 'output': 'Yes', 'relation': '=='}, {'input': ""'1I563_Yes3.exe'"", 'output': 'No', 'relation': '=='}, {'input': ""'I563_Yes3.txtt'"", 'output': 'No', 'relation': '=='}, {'input': ""'final..txt'"", 'output': 'No', 'relation': '=='}, {'input': ""'final132'"", 'output': 'No', 'relation': '=='}, {'input': ""'_f4indsartal132.'"", 'output': 'No', 'relation': '=='}, {'input': ""'.txt'"", 'output': 'No', 'relation': '=='}, {'input': ""'s.'"", 'output': 'No', 'relation': '=='}]" sum_squares,HumanEval/142," def sum_squares(lst): """""""" This function will take a list of integers. For all entries in the list, the function shall square the integer entry if its index is a multiple of 3 and will cube the integer entry if its index is a multiple of 4 and not a multiple of 3. The function will not change the entries in the list whose indexes are not a multiple of 3 or 4. The function shall then return the sum of all entries. Examples: For lst = [1,2,3] the output should be 6 For lst = [] the output should be 0 For lst = [-1,-5,2,-1,-5] the output should be -126 """""" "," def sum_squares(lst): """""""" This function will take a list of integers. For all entries in the list, the function shall cube or square the integer entry if its index is a multiple of 3 and will cube or square the integer entry if its index is a multiple of 4 and not a multiple of 3. The function will not change the entries in the list whose indexes are not a multiple of 3 or 4. The function shall then return the sum of all entries. Examples: For lst = [1,2,3] the output should be 6 For lst = [] the output should be 0 For lst = [-1,-5,2,-1,-5] the output should be -126 """""" "," def sum_squares(lst): """""""" This function will take a list of integers. For all entries in the list, the function shall square the integer entry if its index is a multiple of 3 and will cube the integer entry if its index is a multiple of 4 and not a multiple of 3. The function will not change the entries in the list whose indexes are not a multiple of 3 or 4. The function shall then return the sum of all entries. Examples: For lst = [1,2,3] the output should be 14 For lst = [] the output should be 0 For lst = [-1,-5,2,-1,-5] the output should be 4 """""" "," def sum_squares(lst): """""""" This function will take a list of integers. The function will not change the entries in the list whose indexes are not a multiple of 3 or 4. The function shall then return the sum of all entries. Examples: For lst = [1,2,3] the output should be 6 For lst = [] the output should be 0 For lst = [-1,-5,2,-1,-5] the output should be -126 """""" "," def sum_squares(lst): """""""" This function will take a list of integers. For all entries in the list, the function shall cube or square the integer entry if its index is a multiple of 3 and will cube or square the integer entry if its index is a multiple of 4 and not a multiple of 3. The function will not change the entries in the list whose indexes are not a multiple of 3 or 4. The function shall then return the sum of all entries. Examples: For lst = [1,2,3] the output should be 14 For lst = [] the output should be 0 For lst = [-1,-5,2,-1,-5] the output should be 4 """""" ",," def sum_squares(lst): """""""" This function will take a list of integers. The function will not change the entries in the list whose indexes are not a multiple of 3 or 4. The function shall then return the sum of all entries. Examples: For lst = [1,2,3] the output should be 14 For lst = [] the output should be 0 For lst = [-1,-5,2,-1,-5] the output should be 4 """""" ",," def sum_squares(lst): """""""" This function will take a list of integers. For all entries in the list, the function shall square the integer entry if its index is a multiple of 3 and will cube the integer entry if its index is a multiple of 4 and not a multiple of 3. The function will not change the entries in the list whose indexes are not a multiple of 3 or 4. The function shall then return the sum of all entries. Examples: For lst = [1,2,3] the output should be 6 For lst = [] the output should be 0 For lst = [-1,-5,2,-1,-5] the output should be -126 """""" result =[] for i in range(len(lst)): if i %3 == 0: result.append(lst[i]**2) elif i % 4 == 0 and i%3 != 0: result.append(lst[i]**3) else: result.append(lst[i]) return sum(result) ","[{'input': '[1,2,3]', 'output': '6', 'relation': '=='}, {'input': '[1,4,9]', 'output': '14', 'relation': '=='}, {'input': '[]', 'output': '0', 'relation': '=='}, {'input': '[1,1,1,1,1,1,1,1,1]', 'output': '9', 'relation': '=='}, {'input': '[-1,-1,-1,-1,-1,-1,-1,-1,-1]', 'output': '-3', 'relation': '=='}, {'input': '[0]', 'output': '0', 'relation': '=='}, {'input': '[-1,-5,2,-1,-5]', 'output': '-126', 'relation': '=='}, {'input': '[-56,-99,1,0,-2]', 'output': '3030', 'relation': '=='}, {'input': '[-1,0,0,0,0,0,0,0,-1]', 'output': '0', 'relation': '=='}, {'input': '[-16, -9, -2, 36, 36, 26, -20, 25, -40, 20, -4, 12, -26, 35, 37]', 'output': '-14196', 'relation': '=='}, {'input': '[-1, -3, 17, -1, -15, 13, -1, 14, -14, -12, -5, 14, -14, 6, 13, 11, 16, 16, 4, 10]', 'output': '-1448', 'relation': '=='}]" words_in_sentence,HumanEval/143," def words_in_sentence(sentence): """""" You are given a string representing a sentence, the sentence contains some words separated by a space, and you have to return a string that contains the words from the original sentence, whose lengths are prime numbers, the order of the words in the new string should be the same as the original one. Example 1: Input: sentence = ""This is a test"" Output: ""is"" Example 2: Input: sentence = ""lets go for swimming"" Output: ""go for"" Constraints: * 1 <= len(sentence) <= 100 * sentence contains only letters """""" "," def words_in_sentence(sentence): """""" You are given a string representing a sentence, the sentence contains some words separated by a space, and you have to return a string that contains the words from the original sentence, whose lengths are certain numbers, the order of the words in the new string should be the same as or different from the original one. Example 1: Input: sentence = ""This is a test"" Output: ""is"" Example 2: Input: sentence = ""lets go for swimming"" Output: ""go for"" Constraints: * 1 <= len(sentence) <= 100 * sentence contains only letters """""" "," def words_in_sentence(sentence): """""" You are given a string representing a sentence, the sentence contains some words separated by a space, and you have to return a string that contains the words from the original sentence, whose lengths are prime numbers, the order of the words in the new string should be the same as the original one. Example 1: Input: sentence = ""This is a test"" Output: ""test"" Example 2: Input: sentence = ""lets go for swimming"" Output: ""swimming"" Constraints: * 1 <= len(sentence) <= 100 * sentence contains only letters """""" "," def words_in_sentence(sentence): """""" Example 1: Input: sentence = ""This is a test"" Output: ""is"" Example 2: Input: sentence = ""lets go for swimming"" Output: ""go for"" Constraints: * 1 <= len(sentence) <= 100 * sentence contains only letters """""" "," def words_in_sentence(sentence): """""" You are given a string representing a sentence, the sentence contains some words separated by a space, and you have to return a string that contains the words from the original sentence, whose lengths are certain numbers, the order of the words in the new string should be the same as or different from the original one. Example 1: Input: sentence = ""This is a test"" Output: ""test"" Example 2: Input: sentence = ""lets go for swimming"" Output: ""swimming"" Constraints: * 1 <= len(sentence) <= 100 * sentence contains only letters """""" ",," def words_in_sentence(sentence): """""" Example 1: Input: sentence = ""This is a test"" Output: ""test"" Example 2: Input: sentence = ""lets go for swimming"" Output: ""swimming"" Constraints: * 1 <= len(sentence) <= 100 * sentence contains only letters """""" ",," def words_in_sentence(sentence): """""" You are given a string representing a sentence, the sentence contains some words separated by a space, and you have to return a string that contains the words from the original sentence, whose lengths are prime numbers, the order of the words in the new string should be the same as the original one. Example 1: Input: sentence = ""This is a test"" Output: ""is"" Example 2: Input: sentence = ""lets go for swimming"" Output: ""go for"" Constraints: * 1 <= len(sentence) <= 100 * sentence contains only letters """""" new_lst = [] for word in sentence.split(): flg = 0 if len(word) == 1: flg = 1 for i in range(2, len(word)): if len(word)%i == 0: flg = 1 if flg == 0 or len(word) == 2: new_lst.append(word) return "" "".join(new_lst) ","[{'input': '""This is a test""', 'output': 'is', 'relation': '=='}, {'input': '""lets go for swimming""', 'output': 'go for', 'relation': '=='}, {'input': '""there is no place available here""', 'output': 'there is no place', 'relation': '=='}, {'input': '""Hi I am Hussein""', 'output': 'Hi am Hussein', 'relation': '=='}, {'input': '""go for it""', 'output': 'go for it', 'relation': '=='}, {'input': '""here""', 'output': '', 'relation': '=='}, {'input': '""here is""', 'output': 'is', 'relation': '=='}]" simplify,HumanEval/144," def simplify(x, n): """"""Your task is to implement a function that will simplify the expression x * n. The function returns True if x * n evaluates to a whole number and False otherwise. Both x and n, are string representation of a fraction, and have the following format, / where both numerator and denominator are positive whole numbers. You can assume that x, and n are valid fractions, and do not have zero as denominator. simplify(""1/5"", ""5/1"") = True simplify(""1/6"", ""2/1"") = False simplify(""7/10"", ""10/2"") = False """""" "," def simplify(a, b): """"""Your task is to implement a function that will simplify the expression x * n, or x + n. The function returns True if x * n or x + n evaluates to a whole number and False otherwise. Both x and n, are string representation of a fraction, and have the following format, / where both numerator and denominator are positive whole numbers. You can assume that x, and n are valid fractions, and do not have zero as denominator. simplify(""1/5"", ""5/1"") = True simplify(""1/6"", ""2/1"") = False simplify(""7/10"", ""10/2"") = False """""" "," def simplify(x, n): """"""Your task is to implement a function that will simplify the expression x * n. The function returns True if x * n evaluates to a whole number and False otherwise. Both x and n, are string representation of a fraction, and have the following format, / where both numerator and denominator are positive whole numbers. You can assume that x, and n are valid fractions, and do not have zero as denominator. simplify(""1/5"", ""5/1"") = False simplify(""1/6"", ""2/1"") = True simplify(""7/10"", ""10/2"") = True """""" "," def simplify(x, n): """"""Your task is to implement a function that will simplify the expression You can assume that x, and n are valid fractions, and do not have zero as denominator. """""" "," def simplify(a, b): """"""Your task is to implement a function that will simplify the expression x * n, or x + n. The function returns True if x * n or x + n evaluates to a whole number and False otherwise. Both x and n, are string representation of a fraction, and have the following format, / where both numerator and denominator are positive whole numbers. You can assume that x, and n are valid fractions, and do not have zero as denominator. simplify(""1/5"", ""5/1"") = False simplify(""1/6"", ""2/1"") = True simplify(""7/10"", ""10/2"") = True """""" ",,,," def simplify(x, n): """"""Your task is to implement a function that will simplify the expression x * n. The function returns True if x * n evaluates to a whole number and False otherwise. Both x and n, are string representation of a fraction, and have the following format, / where both numerator and denominator are positive whole numbers. You can assume that x, and n are valid fractions, and do not have zero as denominator. simplify(""1/5"", ""5/1"") = True simplify(""1/6"", ""2/1"") = False simplify(""7/10"", ""10/2"") = False """""" a, b = x.split(""/"") c, d = n.split(""/"") numerator = int(a) * int(c) denom = int(b) * int(d) if (numerator/denom == int(numerator/denom)): return True return False ","[{'input': '""1/5"", ""5/1""', 'output': 'True', 'relation': '=='}, {'input': '""1/6"", ""2/1""', 'output': 'False', 'relation': '=='}, {'input': '""5/1"", ""3/1""', 'output': 'True', 'relation': '=='}, {'input': '""7/10"", ""10/2""', 'output': 'False', 'relation': '=='}, {'input': '""2/10"", ""50/10""', 'output': 'True', 'relation': '=='}, {'input': '""7/2"", ""4/2""', 'output': 'True', 'relation': '=='}, {'input': '""11/6"", ""6/1""', 'output': 'True', 'relation': '=='}, {'input': '""2/3"", ""5/2""', 'output': 'False', 'relation': '=='}, {'input': '""5/2"", ""3/5""', 'output': 'False', 'relation': '=='}, {'input': '""2/4"", ""8/4""', 'output': 'True', 'relation': '=='}, {'input': '""2/4"", ""4/2""', 'output': 'True', 'relation': '=='}, {'input': '""1/5"", ""5/1""', 'output': 'True', 'relation': '=='}, {'input': '""1/5"", ""1/5""', 'output': 'False', 'relation': '=='}]" order_by_points,HumanEval/145," def order_by_points(nums): """""" Write a function which sorts the given list of integers in ascending order according to the sum of their digits. Note: if there are several items with similar sum of their digits, order them based on their index in original list. For example: >>> order_by_points([1, 11, -1, -11, -12]) == [-1, -11, 1, -12, 11] >>> order_by_points([]) == [] """""" "," def candidate(nums): """""" Write a function which sorts the given list of integers in descending or ascending order according to the sum of their digits. Note: if there are several items with similar sum of their digits, order them based on their index in original list. For example: >>> candidate([1, 11, -1, -11, -12]) == [-1, -11, 1, -12, 11] >>> candidate([]) == [] """""" "," def order_by_points(nums): """""" Write a function which sorts the given list of integers in ascending order according to the sum of their digits. Note: if there are several items with similar sum of their digits, order them based on their index in original list. For example: >>> order_by_points([1, 11, -1, -11, -12]) == [1, 11, -1, -12, -11] >>> order_by_points([]) == [] """""" "," def candidate(nums): """""" Note: if there are several items with similar sum of their digits, order them based on their index in original list. For example: >>> candidate([1, 11, -1, -11, -12]) == [-1, -11, 1, -12, 11] >>> candidate([]) == [] """""" "," def candidate(nums): """""" Write a function which sorts the given list of integers in descending or ascending order according to the sum of their digits. Note: if there are several items with similar sum of their digits, order them based on their index in original list. For example: >>> candidate([1, 11, -1, -11, -12]) == [1, 11, -1, -12, -11] >>> candidate([]) == [] """""" ",," def candidate(nums): """""" Note: if there are several items with similar sum of their digits, order them based on their index in original list. For example: >>> candidate([1, 11, -1, -11, -12]) == [1, 11, -1, -12, -11] >>> candidate([]) == [] """""" ",," def order_by_points(nums): """""" Write a function which sorts the given list of integers in ascending order according to the sum of their digits. Note: if there are several items with similar sum of their digits, order them based on their index in original list. For example: >>> order_by_points([1, 11, -1, -11, -12]) == [-1, -11, 1, -12, 11] >>> order_by_points([]) == [] """""" def digits_sum(n): neg = 1 if n < 0: n, neg = -1 * n, -1 n = [int(i) for i in str(n)] n[0] = n[0] * neg return sum(n) return sorted(nums, key=digits_sum) ","[{'input': '[1, 11, -1, -11, -12]', 'output': '[-1, -11, 1, -12, 11]', 'relation': '=='}, {'input': '[1234,423,463,145,2,423,423,53,6,37,3457,3,56,0,46]', 'output': '[0, 2, 3, 6, 53, 423, 423, 423, 1234, 145, 37, 46, 56, 463, 3457]', 'relation': '=='}, {'input': '[]', 'output': '[]', 'relation': '=='}, {'input': '[1, -11, -32, 43, 54, -98, 2, -3]', 'output': '[-3, -32, -98, -11, 1, 2, 43, 54]', 'relation': '=='}, {'input': '[1,2,3,4,5,6,7,8,9,10,11]', 'output': '[1, 10, 2, 11, 3, 4, 5, 6, 7, 8, 9]', 'relation': '=='}, {'input': '[0,6,6,-76,-21,23,4]', 'output': '[-76, -21, 0, 4, 23, 6, 6]', 'relation': '=='}]" specialFilter,HumanEval/146," def specialFilter(nums): """"""Write a function that takes an array of numbers as input and returns the number of elements in the array that are greater than 10 and both first and last digits of a number are odd (1, 3, 5, 7, 9). For example: specialFilter([15, -73, 14, -15]) => 1 specialFilter([33, -2, -3, 45, 21, 109]) => 2 """""" "," def specialFilter(nums): """"""Write a function that takes an array of numbers as input and returns the number of elements in the array that are less than or greater than or exactly 10 and both first and last digits of a number are odd (1, 3, 5, 7, 9) or even (0, 2, 4, 6, 8). For example: specialFilter([15, -73, 14, -15]) => 1 specialFilter([33, -2, -3, 45, 21, 109]) => 2 """""" "," def specialFilter(nums): """"""Write a function that takes an array of numbers as input and returns the number of elements in the array that are greater than 10 and both first and last digits of a number are odd (1, 3, 5, 7, 9). For example: specialFilter([15, -73, 14, -15]) => 15 specialFilter([33, -2, -3, 45, 21, 109]) => 45 """""" "," def specialFilter(nums): """"""Write a function that takes an array of numbers as input. For example: specialFilter([15, -73, 14, -15]) => 1 specialFilter([33, -2, -3, 45, 21, 109]) => 2 """""" "," def specialFilter(nums): """"""Write a function that takes an array of numbers as input and returns the number of elements in the array that are less than or greater than or exactly 10 and both first and last digits of a number are odd (1, 3, 5, 7, 9) or even (0, 2, 4, 6, 8). For example: specialFilter([15, -73, 14, -15]) => 1 specialFilter([33, -2, -3, 45, 21, 109]) => 2 """""" ",," def specialFilter(nums): """"""Write a function that takes an array of numbers as input. For example: specialFilter([15, -73, 14, -15]) => 15 specialFilter([33, -2, -3, 45, 21, 109]) => 45 """""" ",," def specialFilter(nums): """"""Write a function that takes an array of numbers as input and returns the number of elements in the array that are greater than 10 and both first and last digits of a number are odd (1, 3, 5, 7, 9). For example: specialFilter([15, -73, 14, -15]) => 1 specialFilter([33, -2, -3, 45, 21, 109]) => 2 """""" count = 0 for num in nums: if num > 10: odd_digits = (1, 3, 5, 7, 9) number_as_string = str(num) if int(number_as_string[0]) in odd_digits and int(number_as_string[-1]) in odd_digits: count += 1 return count ","[{'input': '[5, -2, 1, -5]', 'output': '0 ', 'relation': '=='}, {'input': '[15, -73, 14, -15]', 'output': '1', 'relation': '=='}, {'input': '[33, -2, -3, 45, 21, 109]', 'output': '2', 'relation': '=='}, {'input': '[43, -12, 93, 125, 121, 109]', 'output': '4', 'relation': '=='}, {'input': '[71, -2, -33, 75, 21, 19]', 'output': '3', 'relation': '=='}, {'input': '[1]', 'output': '0 ', 'relation': '=='}, {'input': '[]', 'output': '0 ', 'relation': '=='}]" get_max_triples,HumanEval/147," def get_max_triples(n): """""" You are given a positive integer n. You have to create an integer array a of length n. For each i (1 ≤ i ≤ n), the value of a[i] = i * i - i + 1. Return the number of triples (a[i], a[j], a[k]) of a where i < j < k, and a[i] + a[j] + a[k] is a multiple of 3. Example : Input: n = 5 Output: 1 Explanation: a = [1, 3, 7, 13, 21] The only valid triple is (1, 7, 13). """""" "," def get_max_triples(n): """""" You are given a positive integer n. You have to create an integer array a of length n. For each i (1 ≤ i ≤ n), the value of a[i] = i * i + i - 1 or a[i] = i * i - i + 1. Return the number of triples (a[i], a[j], a[k]) of a where i < j < k, and a[i] + a[j] + a[k] is a multiple of 3. Example : Input: n = 5 Output: 1 Explanation: a = [1, 3, 7, 13, 21] The only valid triple is (1, 7, 13). """""" "," def get_max_triples(n): """""" You are given a positive integer n. You have to create an integer array a of length n. For each i (1 ≤ i ≤ n), the value of a[i] = i * i - i + 1. Return the number of triples (a[i], a[j], a[k]) of a where i < j < k, and a[i] + a[j] + a[k] is a multiple of 3. Example : Input: n = 5 Output: 0 Explanation: a = [1, 3, 7, 13, 21] There is no valid triple. """""" "," def get_max_triples(n): """""" You are given a positive integer n. You have to create an integer array a of length n. For each i (1 ≤ i ≤ n), the value of a[i] = i * i - i + 1. """""" "," def get_max_triples(n): """""" You are given a positive integer n. You have to create an integer array a of length n. For each i (1 ≤ i ≤ n), the value of a[i] = i * i + i - 1 or a[i] = i * i - i + 1. Return the number of triples (a[i], a[j], a[k]) of a where i < j < k, and a[i] + a[j] + a[k] is a multiple of 3. Example : Input: n = 5 Output: 0 Explanation: a = [1, 3, 7, 13, 21] There is no valid triple. """""" "," def get_max_triples(n): """""" You are given a positive integer n. You have to create an integer array a of length n. For each i (1 ≤ i ≤ n), the value of a[i] = i * i + i - 1 or a[i] = i * i - i + 1. """""" ",,," def get_max_triples(n): """""" You are given a positive integer n. You have to create an integer array a of length n. For each i (1 ≤ i ≤ n), the value of a[i] = i * i - i + 1. Return the number of triples (a[i], a[j], a[k]) of a where i < j < k, and a[i] + a[j] + a[k] is a multiple of 3. Example : Input: n = 5 Output: 1 Explanation: a = [1, 3, 7, 13, 21] The only valid triple is (1, 7, 13). """""" A = [i*i - i + 1 for i in range(1,n+1)] ans = [] for i in range(n): for j in range(i+1,n): for k in range(j+1,n): if (A[i]+A[j]+A[k])%3 == 0: ans += [(A[i],A[j],A[k])] return len(ans) ","[{'input': '5', 'output': '1', 'relation': '=='}, {'input': '6', 'output': '4', 'relation': '=='}, {'input': '10', 'output': '36', 'relation': '=='}, {'input': '100', 'output': '53361', 'relation': '=='}]" bf,HumanEval/148," def bf(planet1, planet2): ''' There are eight planets in our solar system: the closerst to the Sun is Mercury, the next one is Venus, then Earth, Mars, Jupiter, Saturn, Uranus, Neptune. Write a function that takes two planet names as strings planet1 and planet2. The function should return a tuple containing all planets whose orbits are located between the orbit of planet1 and the orbit of planet2, sorted by the proximity to the sun. The function should return an empty tuple if planet1 or planet2 are not correct planet names. Examples bf(""Jupiter"", ""Neptune"") ==> (""Saturn"", ""Uranus"") bf(""Earth"", ""Mercury"") ==> (""Venus"") bf(""Mercury"", ""Uranus"") ==> (""Venus"", ""Earth"", ""Mars"", ""Jupiter"", ""Saturn"") ''' "," def bf(planet1, planet2): ''' There are eight planets in our solar system: the closerst to the Sun is Mercury, the next one is Venus, then Earth, Mars, Jupiter, Saturn, Uranus, Neptune. Write a function that takes two planet names as strings planet1 and planet2. The function should return a tuple containing only one or all planets whose orbits are located between the orbit of planet1 and the orbit of planet2, sorted by the proximity to the sun. The function should return an empty tuple if planet1 or planet2 are not correct planet names. Examples bf(""Jupiter"", ""Neptune"") ==> (""Saturn"", ""Uranus"") bf(""Earth"", ""Mercury"") ==> (""Venus"") bf(""Mercury"", ""Uranus"") ==> (""Venus"", ""Earth"", ""Mars"", ""Jupiter"", ""Saturn"") ''' "," def bf(planet1, planet2): ''' There are eight planets in our solar system: the closerst to the Sun is Mercury, the next one is Venus, then Earth, Mars, Jupiter, Saturn, Uranus, Neptune. Write a function that takes two planet names as strings planet1 and planet2. The function should return a tuple containing all planets whose orbits are located between the orbit of planet1 and the orbit of planet2, sorted by the proximity to the sun. The function should return an empty tuple if planet1 or planet2 are not correct planet names. Examples bf(""Jupiter"", ""Neptune"") ==> (""abcSaturn"", ""abcUranus"") bf(""Earth"", ""Mercury"") ==> (""abcVenus"") bf(""Mercury"", ""Uranus"") ==> (""abcVenus"", ""abcEarth"", ""abcMars"", ""abcJupiter"", ""abcSaturn"") ''' "," def bf(planet1, planet2): ''' There are eight planets in our solar system: the closerst to the Sun is Mercury, the next one is Venus, then Earth, Mars, Jupiter, Saturn, Uranus, Neptune. Write a function that takes two planet names as strings planet1 and planet2. ''' "," def bf(planet1, planet2): ''' There are eight planets in our solar system: the closerst to the Sun is Mercury, the next one is Venus, then Earth, Mars, Jupiter, Saturn, Uranus, Neptune. Write a function that takes two planet names as strings planet1 and planet2. The function should return a tuple containing only one or all planets whose orbits are located between the orbit of planet1 and the orbit of planet2, sorted by the proximity to the sun. The function should return an empty tuple if planet1 or planet2 are not correct planet names. Examples bf(""Jupiter"", ""Neptune"") ==> (""abcSaturn"", ""abcUranus"") bf(""Earth"", ""Mercury"") ==> (""abcVenus"") bf(""Mercury"", ""Uranus"") ==> (""abcVenus"", ""abcEarth"", ""abcMars"", ""abcJupiter"", ""abcSaturn"") ''' ",,,," def bf(planet1, planet2): ''' There are eight planets in our solar system: the closerst to the Sun is Mercury, the next one is Venus, then Earth, Mars, Jupiter, Saturn, Uranus, Neptune. Write a function that takes two planet names as strings planet1 and planet2. The function should return a tuple containing all planets whose orbits are located between the orbit of planet1 and the orbit of planet2, sorted by the proximity to the sun. The function should return an empty tuple if planet1 or planet2 are not correct planet names. Examples bf(""Jupiter"", ""Neptune"") ==> (""Saturn"", ""Uranus"") bf(""Earth"", ""Mercury"") ==> (""Venus"") bf(""Mercury"", ""Uranus"") ==> (""Venus"", ""Earth"", ""Mars"", ""Jupiter"", ""Saturn"") ''' planet_names = (""Mercury"", ""Venus"", ""Earth"", ""Mars"", ""Jupiter"", ""Saturn"", ""Uranus"", ""Neptune"") if planet1 not in planet_names or planet2 not in planet_names or planet1 == planet2: return () planet1_index = planet_names.index(planet1) planet2_index = planet_names.index(planet2) if planet1_index < planet2_index: return (planet_names[planet1_index + 1: planet2_index]) else: return (planet_names[planet2_index + 1 : planet1_index]) ","[{'input': '""Jupiter"", ""Neptune""', 'output': ""('Saturn', 'Uranus')"", 'relation': '=='}, {'input': '""Earth"", ""Mercury""', 'output': ""('Venus',)"", 'relation': '=='}, {'input': '""Mercury"", ""Uranus""', 'output': ""('Venus', 'Earth', 'Mars', 'Jupiter', 'Saturn')"", 'relation': '=='}, {'input': '""Neptune"", ""Venus""', 'output': ""('Earth', 'Mars', 'Jupiter', 'Saturn', 'Uranus')"", 'relation': '=='}, {'input': '""Earth"", ""Earth""', 'output': '()', 'relation': '=='}, {'input': '""Mars"", ""Earth""', 'output': '()', 'relation': '=='}, {'input': '""Jupiter"", ""Makemake""', 'output': '()', 'relation': '=='}]" sorted_list_sum,HumanEval/149," def sorted_list_sum(lst): """"""Write a function that accepts a list of strings as a parameter, deletes the strings that have odd lengths from it, and returns the resulted list with a sorted order, The list is always a list of strings and never an array of numbers, and it may contain duplicates. The order of the list should be ascending by length of each word, and you should return the list sorted by that rule. If two words have the same length, sort the list alphabetically. The function should return a list of strings in sorted order. You may assume that all words will have the same length. For example: assert list_sort([""aa"", ""a"", ""aaa""]) => [""aa""] assert list_sort([""ab"", ""a"", ""aaa"", ""cd""]) => [""ab"", ""cd""] """""" "," def sorted_list_sum(lst): """"""Write a function that accepts a list of strings as a parameter, deletes the strings that have odd lengths from it, and returns the resulted list with a sorted order, The list is always a list of strings and never an array of numbers, and it may contain duplicates. The order of the list should be descending or ascending by length of each word, and you should return the list sorted by that rule. If two words have the same length, sort the list descendingly or ascendingly or alphabetically. The function should return a list of strings in sorted order. You may assume that all words will have the same length. For example: assert list_sort([""aa"", ""a"", ""aaa""]) => [""aa""] assert list_sort([""ab"", ""a"", ""aaa"", ""cd""]) => [""ab"", ""cd""] """""" "," def sorted_list_sum(lst): """"""Write a function that accepts a list of strings as a parameter, deletes the strings that have odd lengths from it, and returns the resulted list with a sorted order, The list is always a list of strings and never an array of numbers, and it may contain duplicates. The order of the list should be ascending by length of each word, and you should return the list sorted by that rule. If two words have the same length, sort the list alphabetically. The function should return a list of strings in sorted order. You may assume that all words will have the same length. For example: assert list_sort([""aa"", ""a"", ""aaa""]) => [""a""] assert list_sort([""ab"", ""a"", ""aaa"", ""cd""]) => [""a"", ""aaa""] """""" "," def candidate(lst): """"""Write a function that accepts a list of strings as a parameter, deletes the strings that have odd lengths from it, """""" "," def sorted_list_sum(lst): """"""Write a function that accepts a list of strings as a parameter, deletes the strings that have odd lengths from it, and returns the resulted list with a sorted order, The list is always a list of strings and never an array of numbers, and it may contain duplicates. The order of the list should be descending or ascending by length of each word, and you should return the list sorted by that rule. If two words have the same length, sort the list descendingly or ascendingly or alphabetically. The function should return a list of strings in sorted order. You may assume that all words will have the same length. For example: assert list_sort([""aa"", ""a"", ""aaa""]) => [""a""] assert list_sort([""ab"", ""a"", ""aaa"", ""cd""]) => [""a"", ""aaa""] """""" ",,,," def sorted_list_sum(lst): """"""Write a function that accepts a list of strings as a parameter, deletes the strings that have odd lengths from it, and returns the resulted list with a sorted order, The list is always a list of strings and never an array of numbers, and it may contain duplicates. The order of the list should be ascending by length of each word, and you should return the list sorted by that rule. If two words have the same length, sort the list alphabetically. The function should return a list of strings in sorted order. You may assume that all words will have the same length. For example: assert list_sort([""aa"", ""a"", ""aaa""]) => [""aa""] assert list_sort([""ab"", ""a"", ""aaa"", ""cd""]) => [""ab"", ""cd""] """""" lst.sort() new_lst = [] for i in lst: if len(i)%2 == 0: new_lst.append(i) return sorted(new_lst, key=len) ","[{'input': '[""aa"", ""a"", ""aaa""]', 'output': ""['aa']"", 'relation': '=='}, {'input': '[""school"", ""AI"", ""asdf"", ""b""]', 'output': ""['AI', 'asdf', 'school']"", 'relation': '=='}, {'input': '[""d"", ""b"", ""c"", ""a""]', 'output': '[]', 'relation': '=='}, {'input': '[""d"", ""dcba"", ""abcd"", ""a""]', 'output': ""['abcd', 'dcba']"", 'relation': '=='}, {'input': '[""AI"", ""ai"", ""au""]', 'output': ""['AI', 'ai', 'au']"", 'relation': '=='}, {'input': '[""a"", ""b"", ""b"", ""c"", ""c"", ""a""]', 'output': '[]', 'relation': '=='}, {'input': ""['aaaa', 'bbbb', 'dd', 'cc']"", 'output': ""['cc', 'dd', 'aaaa', 'bbbb']"", 'relation': '=='}]" x_or_y,HumanEval/150," def x_or_y(n, x, y): """"""A simple program which should return the value of x if n is a prime number and should return the value of y otherwise. Examples: for x_or_y(7, 34, 12) == 34 for x_or_y(15, 8, 5) == 5 """""" "," def x_or_y(a, b, c): """"""A simple program which should return the value of x if n is a certain type of number and should return the value of y otherwise. Examples: for x_or_y(7, 34, 12) == 34 for x_or_y(15, 8, 5) == 5 """""" "," def x_or_y(n, x, y): """"""A simple program which should return the value of x if n is a prime number and should return the value of y otherwise. Examples: for x_or_y(7, 34, 12) == 12 for x_or_y(15, 8, 5) == 8 """""" "," def x_or_y(n, x, y): """""" Examples: for x_or_y(7, 34, 12) == 34 for x_or_y(15, 8, 5) == 5 """""" "," def x_or_y(a, b, c): """"""A simple program which should return the value of x if n is a certain type of number and should return the value of y otherwise. Examples: for x_or_y(7, 34, 12) == 12 for x_or_y(15, 8, 5) == 8 """""" ",," def x_or_y(n, x, y): """""" Examples: for x_or_y(7, 34, 12) == 12 for x_or_y(15, 8, 5) == 8 """""" ",," def x_or_y(n, x, y): """"""A simple program which should return the value of x if n is a prime number and should return the value of y otherwise. Examples: for x_or_y(7, 34, 12) == 34 for x_or_y(15, 8, 5) == 5 """""" if n == 1: return y for i in range(2, n): if n % i == 0: return y break else: return x ","[{'input': '7, 34, 12', 'output': '34', 'relation': '=='}, {'input': '15, 8, 5', 'output': '5', 'relation': '=='}, {'input': '3, 33, 5212', 'output': '33', 'relation': '=='}, {'input': '1259, 3, 52', 'output': '3', 'relation': '=='}, {'input': '7919, -1, 12', 'output': '-1', 'relation': '=='}, {'input': '3609, 1245, 583', 'output': '583', 'relation': '=='}, {'input': '91, 56, 129', 'output': '129', 'relation': '=='}, {'input': '6, 34, 1234', 'output': '1234', 'relation': '=='}, {'input': '1, 2, 0', 'output': '0', 'relation': '=='}, {'input': '2, 2, 0', 'output': '2', 'relation': '=='}]" double_the_difference,HumanEval/151," def double_the_difference(lst): ''' Given a list of numbers, return the sum of squares of the numbers in the list that are odd. Ignore numbers that are negative or not integers. double_the_difference([1, 3, 2, 0]) == 1 + 9 + 0 + 0 = 10 double_the_difference([-1, -2, 0]) == 0 double_the_difference([9, -2]) == 81 double_the_difference([0]) == 0 If the input list is empty, return 0. ''' "," def double_the_difference(lst): ''' Given a list of numbers, return the sum of squares of the numbers in the list that are even or odd. Ignore numbers that are negative or not integers. double_the_difference([1, 3, 2, 0]) == 1 + 9 + 0 + 0 = 10 double_the_difference([-1, -2, 0]) == 0 double_the_difference([9, -2]) == 81 double_the_difference([0]) == 0 If the input list is empty, return 0. ''' "," def double_the_difference(lst): ''' Given a list of numbers, return the sum of squares of the numbers in the list that are odd. Ignore numbers that are negative or not integers. double_the_difference([1, 3, 2, 0]) == 0 + 0 + 4 + 0 = 4 double_the_difference([-1, -2, 0]) == 4 double_the_difference([9, -2]) == 4 double_the_difference([0]) == 0 If the input list is empty, return 0. ''' "," def double_the_difference(lst): ''' Given a list of numbers, return the sum of squares of the numbers in the list that are double_the_difference([1, 3, 2, 0]) == 1 + 9 + 0 + 0 = 10 double_the_difference([-1, -2, 0]) == 0 double_the_difference([9, -2]) == 81 double_the_difference([0]) == 0 If the input list is empty, return 0. ''' "," def double_the_difference(lst): ''' Given a list of numbers, return the sum of squares of the numbers in the list that are odd. Ignore numbers that are negative or not integers. double_the_difference([1, 3, 2, 0]) == 1 + 9 + 0 + 0 = 10 double_the_difference([-1, -2, 0]) == 0 double_the_difference([9, -2]) == 81 double_the_difference([0]) == 0 If the input list is empty, return 0. ''' "," def double_the_difference(lst): ''' Given a list of numbers, return the sum of squares of the numbers in the list that are even or double_the_difference([1, 3, 2, 0]) == 1 + 9 + 0 + 0 = 10 double_the_difference([-1, -2, 0]) == 0 double_the_difference([9, -2]) == 81 double_the_difference([0]) == 0 If the input list is empty, return 0. ''' "," def double_the_difference(lst): ''' Given a list of numbers, return the sum of squares of the numbers in the list that are double_the_difference([1, 3, 2, 0]) == 0 + 0 + 4 + 0 = 4 double_the_difference([-1, -2, 0]) == 4 double_the_difference([9, -2]) == 4 double_the_difference([0]) == 0 If the input list is empty, return 0. ''' "," def double_the_difference(lst): ''' Given a list of numbers, return the sum of squares of the numbers in the list that are even or double_the_difference([1, 3, 2, 0]) == 0 + 0 + 4 + 0 = 4 double_the_difference([-1, -2, 0]) == 4 double_the_difference([9, -2]) == 4 double_the_difference([0]) == 0 If the input list is empty, return 0. ''' "," def double_the_difference(lst): ''' Given a list of numbers, return the sum of squares of the numbers in the list that are odd. Ignore numbers that are negative or not integers. double_the_difference([1, 3, 2, 0]) == 1 + 9 + 0 + 0 = 10 double_the_difference([-1, -2, 0]) == 0 double_the_difference([9, -2]) == 81 double_the_difference([0]) == 0 If the input list is empty, return 0. ''' return sum([i**2 for i in lst if i > 0 and i%2!=0 and ""."" not in str(i)]) ","[{'input': '[]', 'output': '0 ', 'relation': '=='}, {'input': '[5, 4]', 'output': '25 ', 'relation': '=='}, {'input': '[0.1, 0.2, 0.3]', 'output': '0 ', 'relation': '=='}, {'input': '[-10, -20, -30]', 'output': '0 ', 'relation': '=='}, {'input': '[-1, -2, 8]', 'output': '0', 'relation': '=='}, {'input': '[0.2, 3, 5]', 'output': '34', 'relation': '=='}, {'input': '[-99, -97, -95, -93, -91, -89, -87, -85, -83, -81, -79, -77, -75, -73, -71, -69, -67, -65, -63, -61, -59, -57, -55, -53, -51, -49, -47, -45, -43, -41, -39, -37, -35, -33, -31, -29, -27, -25, -23, -21, -19, -17, -15, -13, -11, -9, -7, -5, -3, -1, 1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29, 31, 33, 35, 37, 39, 41, 43, 45, 47, 49, 51, 53, 55, 57, 59, 61, 63, 65, 67, 69, 71, 73, 75, 77, 79, 81, 83, 85, 87, 89, 91, 93, 95, 97, 99]', 'output': '166650', 'relation': '=='}]" compare,HumanEval/152," def compare(game,guess): """"""I think we all remember that feeling when the result of some long-awaited event is finally known. The feelings and thoughts you have at that moment are definitely worth noting down and comparing. Your task is to determine if a person correctly guessed the results of a number of matches. You are given two arrays of scores and guesses of equal length, where each index shows a match. Return an array of the same length denoting how far off each guess was. If they have guessed correctly, the value is 0, and if not, the value is the absolute difference between the guess and the score. example: compare([1,2,3,4,5,1],[1,2,3,4,2,-2]) -> [0,0,0,0,3,3] compare([0,5,0,0,0,4],[4,1,1,0,0,-2]) -> [4,4,1,0,0,6] """""" "," def compare(game,guess): """"""I think we all remember that feeling when the result of some long-awaited event is finally known. The feelings and thoughts you have at that moment are definitely worth noting down and comparing. Your task is to determine if a person correctly guessed the results of a number of matches. You are given two arrays of scores and guesses of equal length, where each index shows a match. Return an array of the same length denoting how far off each guess was. If they have guessed correctly, the value is 1 or 2 or 0, and if not, the value is the relative or absolute difference between the guess and the score. example: compare([1,2,3,4,5,1],[1,2,3,4,2,-2]) -> [0,0,0,0,3,3] compare([0,5,0,0,0,4],[4,1,1,0,0,-2]) -> [4,4,1,0,0,6] """""" "," def compare(game,guess): """"""I think we all remember that feeling when the result of some long-awaited event is finally known. The feelings and thoughts you have at that moment are definitely worth noting down and comparing. Your task is to determine if a person correctly guessed the results of a number of matches. You are given two arrays of scores and guesses of equal length, where each index shows a match. Return an array of the same length denoting how far off each guess was. If they have guessed correctly, the value is 0, and if not, the value is the absolute difference between the guess and the score. example: compare([1,2,3,4,5,1],[1,2,3,4,2,-2]) -> [1,2,3,4,7,-1] compare([0,5,0,0,0,4],[4,1,1,0,0,-2]) -> [4,6,1,0,0,2] """""" "," def compare(game,guess): """"""I think we all remember that feeling when the result of some long-awaited event is finally known. The feelings and thoughts you have at that moment are definitely worth noting down and comparing. """""" "," def compare(game,guess): """"""I think we all remember that feeling when the result of some long-awaited event is finally known. The feelings and thoughts you have at that moment are definitely worth noting down and comparing. Your task is to determine if a person correctly guessed the results of a number of matches. You are given two arrays of scores and guesses of equal length, where each index shows a match. Return an array of the same length denoting how far off each guess was. If they have guessed correctly, the value is 1 or 2 or 0, and if not, the value is the relative or absolute difference between the guess and the score. example: compare([1,2,3,4,5,1],[1,2,3,4,2,-2]) -> [1,2,3,4,7,-1] compare([0,5,0,0,0,4],[4,1,1,0,0,-2]) -> [4,6,1,0,0,2] """""" ",,,," def compare(game,guess): """"""I think we all remember that feeling when the result of some long-awaited event is finally known. The feelings and thoughts you have at that moment are definitely worth noting down and comparing. Your task is to determine if a person correctly guessed the results of a number of matches. You are given two arrays of scores and guesses of equal length, where each index shows a match. Return an array of the same length denoting how far off each guess was. If they have guessed correctly, the value is 0, and if not, the value is the absolute difference between the guess and the score. example: compare([1,2,3,4,5,1],[1,2,3,4,2,-2]) -> [0,0,0,0,3,3] compare([0,5,0,0,0,4],[4,1,1,0,0,-2]) -> [4,4,1,0,0,6] """""" return [abs(x-y) for x,y in zip(game,guess)] ","[{'input': '[1,2,3,4,5,1],[1,2,3,4,2,-2]', 'output': '[0, 0, 0, 0, 3, 3]', 'relation': '=='}, {'input': '[0,0,0,0,0,0],[0,0,0,0,0,0]', 'output': '[0, 0, 0, 0, 0, 0]', 'relation': '=='}, {'input': '[1,2,3],[-1,-2,-3]', 'output': '[2, 4, 6]', 'relation': '=='}, {'input': '[1,2,3,5],[-1,2,3,4]', 'output': '[2, 0, 0, 1]', 'relation': '=='}]" Strongest_Extension,HumanEval/153," def Strongest_Extension(class_name, extensions): """"""You will be given the name of a class (a string) and a list of extensions. The extensions are to be used to load additional classes to the class. The strength of the extension is as follows: Let CAP be the number of the uppercase letters in the extension's name, and let SM be the number of lowercase letters in the extension's name, the strength is given by the fraction CAP - SM. You should find the strongest extension and return a string in this format: ClassName.StrongestExtensionName. If there are two or more extensions with the same strength, you should choose the one that comes first in the list. For example, if you are given ""Slices"" as the class and a list of the extensions: ['SErviNGSliCes', 'Cheese', 'StuFfed'] then you should return 'Slices.SErviNGSliCes' since 'SErviNGSliCes' is the strongest extension (its strength is -1). Example: for Strongest_Extension('my_class', ['AA', 'Be', 'CC']) == 'my_class.AA' """""" "," def Extension(class_name, extensions): """"""You will be given the name of a class (a string) and a list of extensions. The extensions are to be used to load additional classes to the class. The strength of the extension is as follows: Let CAP be the number of the uppercase letters in the extension's name, and let SM be the number of lowercase letters in the extension's name, the strength is given by the fraction CAP - SM. You should find the weakest or strongest extension and return a string in this format: ClassName.ExtensionName. If there are two or more extensions with the same strength, you should choose the one that comes first in the list. For example, if you are given ""Slices"" as the class and a list of the extensions: ['SErviNGSliCes', 'Cheese', 'StuFfed'] then you should return 'Slices.SErviNGSliCes' since 'SErviNGSliCes' is the weakest or strongest extension (its strength is -1). Example: for Extension('my_class', ['AA', 'Be', 'CC']) == 'my_class.AA' """""" "," def Strongest_Extension(class_name, extensions): """"""You will be given the name of a class (a string) and a list of extensions. The extensions are to be used to load additional classes to the class. The strength of the extension is as follows: Let CAP be the number of the uppercase letters in the extension's name, and let SM be the number of lowercase letters in the extension's name, the strength is given by the fraction CAP - SM. You should find the strongest extension and return a string in this format: ClassName.StrongestExtensionName. If there are two or more extensions with the same strength, you should choose the one that comes first in the list. For example, if you are given ""Slices"" as the class and a list of the extensions: ['SErviNGSliCes', 'Cheese', 'StuFfed'] then you should return 'Slices.Cheese' since 'Cheese' is the strongest extension (its strength is -1). Example: for Strongest_Extension('my_class', ['AA', 'Be', 'CC']) == 'my_class.Be' """""" "," def Strongest_Extension(class_name, extensions): """"""You will be given the name of a class (a string) and a list of extensions. The extensions are to be used to load additional classes to the class. The strength of the extension is as follows: Let CAP be the number of the uppercase letters in the extension's name, and let SM be the number of lowercase letters in the extension's name, the strength is given by the fraction CAP - SM. """""" "," def Extension(class_name, extensions): """"""You will be given the name of a class (a string) and a list of extensions. The extensions are to be used to load additional classes to the class. The strength of the extension is as follows: Let CAP be the number of the uppercase letters in the extension's name, and let SM be the number of lowercase letters in the extension's name, the strength is given by the fraction CAP - SM. You should find the weakest or strongest extension and return a string in this format: ClassName.ExtensionName. If there are two or more extensions with the same strength, you should choose the one that comes first in the list. For example, if you are given ""Slices"" as the class and a list of the extensions: ['SErviNGSliCes', 'Cheese', 'StuFfed'] then you should return 'Slices.Cheese' since 'Cheese' is the weakest or strongest extension (its strength is -1). Example: for Strongest_Extension('my_class', ['AA', 'Be', 'CC']) == 'my_class.Be' """""" ",,,," def Strongest_Extension(class_name, extensions): """"""You will be given the name of a class (a string) and a list of extensions. The extensions are to be used to load additional classes to the class. The strength of the extension is as follows: Let CAP be the number of the uppercase letters in the extension's name, and let SM be the number of lowercase letters in the extension's name, the strength is given by the fraction CAP - SM. You should find the strongest extension and return a string in this format: ClassName.StrongestExtensionName. If there are two or more extensions with the same strength, you should choose the one that comes first in the list. For example, if you are given ""Slices"" as the class and a list of the extensions: ['SErviNGSliCes', 'Cheese', 'StuFfed'] then you should return 'Slices.SErviNGSliCes' since 'SErviNGSliCes' is the strongest extension (its strength is -1). Example: for Strongest_Extension('my_class', ['AA', 'Be', 'CC']) == 'my_class.AA' """""" strong = extensions[0] my_val = len([x for x in extensions[0] if x.isalpha() and x.isupper()]) - len([x for x in extensions[0] if x.isalpha() and x.islower()]) for s in extensions: val = len([x for x in s if x.isalpha() and x.isupper()]) - len([x for x in s if x.isalpha() and x.islower()]) if val > my_val: strong = s my_val = val ans = class_name + ""."" + strong return ans ","[{'input': ""'Watashi', ['tEN', 'niNE', 'eIGHt8OKe']"", 'output': 'Watashi.eIGHt8OKe', 'relation': '=='}, {'input': ""'Boku123', ['nani', 'NazeDa', 'YEs.WeCaNe', '32145tggg']"", 'output': 'Boku123.YEs.WeCaNe', 'relation': '=='}, {'input': ""'__YESIMHERE', ['t', 'eMptY', 'nothing', 'zeR00', 'NuLl__', '123NoooneB321']"", 'output': '__YESIMHERE.NuLl__', 'relation': '=='}, {'input': ""'K', ['Ta', 'TAR', 't234An', 'cosSo']"", 'output': 'K.TAR', 'relation': '=='}, {'input': ""'__HAHA', ['Tab', '123', '781345', '-_-']"", 'output': '__HAHA.123', 'relation': '=='}, {'input': ""'YameRore', ['HhAas', 'okIWILL123', 'WorkOut', 'Fails', '-_-']"", 'output': 'YameRore.okIWILL123', 'relation': '=='}, {'input': ""'finNNalLLly', ['Die', 'NowW', 'Wow', 'WoW']"", 'output': 'finNNalLLly.WoW', 'relation': '=='}, {'input': ""'_', ['Bb', '91245']"", 'output': '_.Bb', 'relation': '=='}, {'input': ""'Sp', ['671235', 'Bb']"", 'output': 'Sp.671235', 'relation': '=='}]" cycpattern_check,HumanEval/154," def cycpattern_check(a , b): """"""You are given 2 words. You need to return True if the second word or any of its rotations is a substring in the first word cycpattern_check(""abcd"",""abd"") => False cycpattern_check(""hello"",""ell"") => True cycpattern_check(""whassup"",""psus"") => False cycpattern_check(""abab"",""baa"") => True cycpattern_check(""efef"",""eeff"") => False cycpattern_check(""himenss"",""simen"") => True """""" "," def cycpattern_check(a , b): """"""You are given 2 words. You need to return True if the second word or any of its rotations is related to the first word cycpattern_check(""abcd"",""abd"") => False cycpattern_check(""hello"",""ell"") => True cycpattern_check(""whassup"",""psus"") => False cycpattern_check(""abab"",""baa"") => True cycpattern_check(""efef"",""eeff"") => False cycpattern_check(""himenss"",""simen"") => True """""" "," def cycpattern_check(a , b): """"""You are given 2 words. You need to return True if the second word or any of its rotations is a substring in the first word cycpattern_check(""abcd"",""abd"") => True cycpattern_check(""hello"",""ell"") => False cycpattern_check(""whassup"",""psus"") => True cycpattern_check(""abab"",""baa"") => False cycpattern_check(""efef"",""eeff"") => True cycpattern_check(""himenss"",""simen"") => False """""" "," def candidate(a , b): """""" candidate(""abcd"",""abd"") => False candidate(""hello"",""ell"") => True candidate(""whassup"",""psus"") => False candidate(""abab"",""baa"") => True candidate(""efef"",""eeff"") => False candidate(""himenss"",""simen"") => True """""" "," def cycpattern_check(a , b): """"""You are given 2 words. You need to return True if the second word or any of its rotations is related to the first word cycpattern_check(""abcd"",""abd"") => True cycpattern_check(""hello"",""ell"") => False cycpattern_check(""whassup"",""psus"") => True cycpattern_check(""abab"",""baa"") => False cycpattern_check(""efef"",""eeff"") => True cycpattern_check(""himenss"",""simen"") => False """""" ",," def candidate(a , b): """""" candidate(""abcd"",""abd"") => True candidate(""hello"",""ell"") => False candidate(""whassup"",""psus"") => True candidate(""abab"",""baa"") => False candidate(""efef"",""eeff"") => True candidate(""himenss"",""simen"") => False """""" ",," def cycpattern_check(a , b): """"""You are given 2 words. You need to return True if the second word or any of its rotations is a substring in the first word cycpattern_check(""abcd"",""abd"") => False cycpattern_check(""hello"",""ell"") => True cycpattern_check(""whassup"",""psus"") => False cycpattern_check(""abab"",""baa"") => True cycpattern_check(""efef"",""eeff"") => False cycpattern_check(""himenss"",""simen"") => True """""" l = len(b) pat = b + b for i in range(len(a) - l + 1): for j in range(l + 1): if a[i:i+l] == pat[j:j+l]: return True return False ","[{'input': '""xyzw"",""xyw""', 'output': 'False ', 'relation': '=='}, {'input': '""yello"",""ell""', 'output': 'True ', 'relation': '=='}, {'input': '""whattup"",""ptut""', 'output': 'False ', 'relation': '=='}, {'input': '""efef"",""fee""', 'output': 'True ', 'relation': '=='}, {'input': '""abab"",""aabb""', 'output': 'False ', 'relation': '=='}, {'input': '""winemtt"",""tinem""', 'output': 'True ', 'relation': '=='}]" even_odd_count,HumanEval/155," def even_odd_count(num): """"""Given an integer. return a tuple that has the number of even and odd digits respectively. Example: even_odd_count(-12) ==> (1, 1) even_odd_count(123) ==> (1, 2) """""" "," def candidate(num): """"""Given an integer. return a tuple that has the number of odd or even digits, and odd or even digits, respectively. Example: candidate(-12) ==> (1, 1) candidate(123) ==> (1, 2) """""" "," def even_odd_count(num): """"""Given an integer. return a tuple that has the number of even and odd digits respectively. Example: even_odd_count(-12) ==> (1, 1) even_odd_count(123) ==> (2, 1) """""" "," def candidate(num): """"""Example: candidate(-12) ==> (1, 1) candidate(123) ==> (1, 2) """""" ",,," def candidate(num): """"""Example: candidate(-12) ==> (1, 1) candidate(123) ==> (2, 1) """""" ",," def even_odd_count(num): """"""Given an integer. return a tuple that has the number of even and odd digits respectively. Example: even_odd_count(-12) ==> (1, 1) even_odd_count(123) ==> (1, 2) """""" even_count = 0 odd_count = 0 for i in str(abs(num)): if int(i)%2==0: even_count +=1 else: odd_count +=1 return (even_count, odd_count) ","[{'input': '7', 'output': '(0, 1)', 'relation': '=='}, {'input': '-78', 'output': '(1, 1)', 'relation': '=='}, {'input': '3452', 'output': '(2, 2)', 'relation': '=='}, {'input': '346211', 'output': '(3, 3)', 'relation': '=='}, {'input': '-345821', 'output': '(3, 3)', 'relation': '=='}, {'input': '-2', 'output': '(1, 0)', 'relation': '=='}, {'input': '-45347', 'output': '(2, 3)', 'relation': '=='}, {'input': '0', 'output': '(1, 0)', 'relation': '=='}]" int_to_mini_roman,HumanEval/156," def int_to_mini_roman(number): """""" Given a positive integer, obtain its roman numeral equivalent as a string, and return it in lowercase. Restrictions: 1 <= num <= 1000 Examples: >>> int_to_mini_roman(19) == 'xix' >>> int_to_mini_roman(152) == 'clii' >>> int_to_mini_roman(426) == 'cdxxvi' """""" "," def candidate(number): """""" Given a positive integer, obtain its binary or hexadecimal or roman numeral equivalent as a string, and return it in lowercase. Restrictions: 1 <= num <= 1000 Examples: >>> candidate(19) == '1100' >>> candidate(152) == '111000' >>> candidate(426) == '11111' """""" "," def int_to_mini_roman(number): """""" Given a positive integer, obtain its roman numeral equivalent as a string, and return it in lowercase. Restrictions: 1 <= num <= 1000 Examples: >>> int_to_mini_roman(19) == 'xix' >>> int_to_mini_roman(152) == 'iilc' >>> int_to_mini_roman(426) == 'ivxxdc' """""" "," def candidate(number): """""" Restrictions: 1 <= num <= 1000 Examples: >>> candidate(19) == 'xix' >>> candidate(152) == 'clii' >>> candidate(426) == 'cdxxvi' """""" "," def candidate(number): """""" Given a positive integer, obtain its binary or hexadecimal or roman numeral equivalent as a string, and return it in lowercase. Restrictions: 1 <= num <= 1000 Examples: >>> candidate(19) == 'xix' >>> candidate(152) == 'iilc' >>> candidate(426) == 'ivxxdc' """""" ",," def candidate(number): """""" Restrictions: 1 <= num <= 1000 Examples: >>> candidate(19) == 'xix' >>> candidate(152) == 'iilc' >>> candidate(426) == 'ivxxdc' """""" ",," def int_to_mini_roman(number): """""" Given a positive integer, obtain its roman numeral equivalent as a string, and return it in lowercase. Restrictions: 1 <= num <= 1000 Examples: >>> int_to_mini_roman(19) == 'xix' >>> int_to_mini_roman(152) == 'clii' >>> int_to_mini_roman(426) == 'cdxxvi' """""" num = [1, 4, 5, 9, 10, 40, 50, 90, 100, 400, 500, 900, 1000] sym = [""I"", ""IV"", ""V"", ""IX"", ""X"", ""XL"", ""L"", ""XC"", ""C"", ""CD"", ""D"", ""CM"", ""M""] i = 12 res = '' while number: div = number // num[i] number %= num[i] while div: res += sym[i] div -= 1 i -= 1 return res.lower() ","[{'input': '19', 'output': 'xix', 'relation': '=='}, {'input': '152', 'output': 'clii', 'relation': '=='}, {'input': '251', 'output': 'ccli', 'relation': '=='}, {'input': '426', 'output': 'cdxxvi', 'relation': '=='}, {'input': '500', 'output': 'd', 'relation': '=='}, {'input': '1', 'output': 'i', 'relation': '=='}, {'input': '4', 'output': 'iv', 'relation': '=='}, {'input': '43', 'output': 'xliii', 'relation': '=='}, {'input': '90', 'output': 'xc', 'relation': '=='}, {'input': '94', 'output': 'xciv', 'relation': '=='}, {'input': '532', 'output': 'dxxxii', 'relation': '=='}, {'input': '900', 'output': 'cm', 'relation': '=='}, {'input': '994', 'output': 'cmxciv', 'relation': '=='}, {'input': '1000', 'output': 'm', 'relation': '=='}]" right_angle_triangle,HumanEval/157," def right_angle_triangle(a, b, c): ''' Given the lengths of the three sides of a triangle. Return True if the three sides form a right-angled triangle, False otherwise. A right-angled triangle is a triangle in which one angle is right angle or 90 degree. Example: right_angle_triangle(3, 4, 5) == True right_angle_triangle(1, 2, 3) == False ''' "," def candidate(a, b, c): ''' Given the lengths of the three sides of a triangle. Return True if the three sides form a specific triangle, False otherwise. A right-angled triangle is a triangle in which one angle is right angle or 90 degree. Example: candidate(3, 4, 5) == True candidate(1, 2, 3) == False ''' "," def right_angle_triangle(a, b, c): ''' Given the lengths of the three sides of a triangle. Return True if the three sides form a right-angled triangle, False otherwise. A right-angled triangle is a triangle in which one angle is right angle or 90 degree. Example: right_angle_triangle(3, 4, 5) == False right_angle_triangle(1, 2, 3) == True ''' "," def candidate(a, b, c): ''' Given the lengths of the three sides of a triangle. A right-angled triangle is a triangle in which one angle is right angle or 90 degree. ''' "," def candidate(a, b, c): ''' Given the lengths of the three sides of a triangle. Return True if the three sides form a specific triangle, False otherwise. A right-angled triangle is a triangle in which one angle is right angle or 90 degree. Example: candidate(3, 4, 5) == False candidate(1, 2, 3) == True ''' ",,,," def right_angle_triangle(a, b, c): ''' Given the lengths of the three sides of a triangle. Return True if the three sides form a right-angled triangle, False otherwise. A right-angled triangle is a triangle in which one angle is right angle or 90 degree. Example: right_angle_triangle(3, 4, 5) == True right_angle_triangle(1, 2, 3) == False ''' return a*a == b*b + c*c or b*b == a*a + c*c or c*c == a*a + b*b ","[{'input': '3, 4, 5', 'output': 'True', 'relation': '=='}, {'input': '1, 2, 3', 'output': 'False', 'relation': '=='}, {'input': '10, 6, 8', 'output': 'True', 'relation': '=='}, {'input': '2, 2, 2', 'output': 'False', 'relation': '=='}, {'input': '7, 24, 25', 'output': 'True', 'relation': '=='}, {'input': '10, 5, 7', 'output': 'False', 'relation': '=='}, {'input': '5, 12, 13', 'output': 'True', 'relation': '=='}, {'input': '15, 8, 17', 'output': 'True', 'relation': '=='}, {'input': '48, 55, 73', 'output': 'True', 'relation': '=='}, {'input': '1, 1, 1', 'output': 'False', 'relation': '=='}, {'input': '2, 2, 10', 'output': 'False', 'relation': '=='}]" find_max,HumanEval/158," def find_max(words): """"""Write a function that accepts a list of strings. The list contains different words. Return the word with maximum number of unique characters. If multiple strings have maximum number of unique characters, return the one which comes first in lexicographical order. find_max([""name"", ""of"", ""string""]) == ""string"" find_max([""name"", ""enam"", ""game""]) == ""enam"" find_max([""aaaaaaa"", ""bb"" ,""cc""]) == """"aaaaaaa"" """""" "," def candidate(words): """"""Write a function that accepts a list of strings. The list contains different words. Return the word with minimum or maximum number of unique characters. If multiple strings have minimum or maximum number of unique characters, return the one which comes first in lexicographical order. candidate([""name"", ""of"", ""string""]) == ""string"" candidate([""name"", ""enam"", ""game""]) == ""enam"" candidate([""aaaaaaa"", ""bb"" ,""cc""]) == """"aaaaaaa"" """""" "," def find_max(words): """"""Write a function that accepts a list of strings. The list contains different words. Return the word with maximum number of unique characters. If multiple strings have maximum number of unique characters, return the one which comes first in lexicographical order. find_max([""name"", ""of"", ""string""]) == ""of"" find_max([""name"", ""enam"", ""game""]) == ""name"" find_max([""aaaaaaa"", ""bb"" ,""cc""]) == """"bb"" """""" "," def find_max(words): """"""Write a function that accepts a list of strings. The list contains different words. Return the word """""" "," def candidate(words): """"""Write a function that accepts a list of strings. The list contains different words. Return the word with minimum or maximum number of unique characters. If multiple strings have minimum or maximum number of unique characters, return the one which comes first in lexicographical order. candidate([""name"", ""of"", ""string""]) == ""of"" candidate([""name"", ""enam"", ""game""]) == ""name"" candidate([""aaaaaaa"", ""bb"" ,""cc""]) == """"bb"" """""" ",,,," def find_max(words): """"""Write a function that accepts a list of strings. The list contains different words. Return the word with maximum number of unique characters. If multiple strings have maximum number of unique characters, return the one which comes first in lexicographical order. find_max([""name"", ""of"", ""string""]) == ""string"" find_max([""name"", ""enam"", ""game""]) == ""enam"" find_max([""aaaaaaa"", ""bb"" ,""cc""]) == """"aaaaaaa"" """""" return sorted(words, key = lambda x: (-len(set(x)), x))[0] ","[{'input': '[""name"", ""of"", ""string""]', 'output': 'string', 'relation': '=='}, {'input': '[""name"", ""enam"", ""game""]', 'output': 'enam', 'relation': '=='}, {'input': '[""aaaaaaa"", ""bb"", ""cc""]', 'output': 'aaaaaaa', 'relation': '=='}, {'input': '[""abc"", ""cba""]', 'output': 'abc', 'relation': '=='}, {'input': '[""play"", ""this"", ""game"", ""of"",""footbott""]', 'output': 'footbott', 'relation': '=='}, {'input': '[""we"", ""are"", ""gonna"", ""rock""]', 'output': 'gonna', 'relation': '=='}, {'input': '[""we"", ""are"", ""a"", ""mad"", ""nation""]', 'output': 'nation', 'relation': '=='}, {'input': '[""this"", ""is"", ""a"", ""prrk""]', 'output': 'this', 'relation': '=='}, {'input': '[""b""]', 'output': 'b', 'relation': '=='}, {'input': '[""play"", ""play"", ""play""]', 'output': 'play', 'relation': '=='}]" eat,HumanEval/159," def eat(number, need, remaining): """""" You're a hungry rabbit, and you already have eaten a certain number of carrots, but now you need to eat more carrots to complete the day's meals. you should return an array of [ total number of eaten carrots after your meals, the number of carrots left after your meals ] if there are not enough remaining carrots, you will eat all remaining carrots, but will still be hungry. Example: * eat(5, 6, 10) -> [11, 4] * eat(4, 8, 9) -> [12, 1] * eat(1, 10, 10) -> [11, 0] * eat(2, 11, 5) -> [7, 0] Variables: @number : integer the number of carrots that you have eaten. @need : integer the number of carrots that you need to eat. @remaining : integer the number of remaining carrots thet exist in stock Constrain: * 0 <= number <= 1000 * 0 <= need <= 1000 * 0 <= remaining <= 1000 Have fun :) """""" "," def eat(x, y, z): """""" You're a hungry rabbit, and you already have eaten a certain number of carrots, but now you need to eat no or more carrots to complete the day's meals. you should return an array of [ total number of needed or eaten carrots before or after your meals, the number of carrots needed or eaten left after your meals ] if there are not enough remaining carrots, you will eat all remaining carrots, but will still be hungry. Example: * eat(5, 6, 10) -> [11, 4] * eat(4, 8, 9) -> [12, 1] * eat(1, 10, 10) -> [11, 0] * eat(2, 11, 5) -> [7, 0] Variables: @number : integer the number of carrots that you have eaten. @need : integer the number of carrots that you need to eat. @remaining : integer the number of remaining carrots thet exist in stock Constrain: * 0 <= number <= 1000 * 0 <= need <= 1000 * 0 <= remaining <= 1000 Have fun :) """""" "," def eat(number, need, remaining): """""" You're a hungry rabbit, and you already have eaten a certain number of carrots, but now you need to eat more carrots to complete the day's meals. you should return an array of [ total number of eaten carrots after your meals, the number of carrots left after your meals ] if there are not enough remaining carrots, you will eat all remaining carrots, but will still be hungry. Example: * eat(5, 6, 10) -> [11, 10] * eat(4, 8, 9) -> [12, 9] * eat(1, 10, 10) -> [11, 10] * eat(2, 11, 5) -> [7, 5] Variables: @number : integer the number of carrots that you have eaten. @need : integer the number of carrots that you need to eat. @remaining : integer the number of remaining carrots thet exist in stock Constrain: * 0 <= number <= 1000 * 0 <= need <= 1000 * 0 <= remaining <= 1000 Have fun :) """""" "," def eat(number, need, remaining): """""" You're a hungry rabbit, and you already have eaten a certain number of carrots, but now you need to eat more carrots to complete the day's meals. """""" "," def eat(x, y, z): """""" You're a hungry rabbit, and you already have eaten a certain number of carrots, but now you need to eat no or more carrots to complete the day's meals. you should return an array of [ total number of needed or eaten carrots before or after your meals, the number of carrots needed or eaten left after your meals ] if there are not enough remaining carrots, you will eat all remaining carrots, but will still be hungry. Example: * eat(5, 6, 10) -> [11, 10] * eat(4, 8, 9) -> [12, 9] * eat(1, 10, 10) -> [11, 10] * eat(2, 11, 5) -> [7, 5] Variables: @number : integer the number of carrots that you have eaten. @need : integer the number of carrots that you need to eat. @remaining : integer the number of remaining carrots thet exist in stock Constrain: * 0 <= number <= 1000 * 0 <= need <= 1000 * 0 <= remaining <= 1000 Have fun :) """""" ",,,," def eat(number, need, remaining): """""" You're a hungry rabbit, and you already have eaten a certain number of carrots, but now you need to eat more carrots to complete the day's meals. you should return an array of [ total number of eaten carrots after your meals, the number of carrots left after your meals ] if there are not enough remaining carrots, you will eat all remaining carrots, but will still be hungry. Example: * eat(5, 6, 10) -> [11, 4] * eat(4, 8, 9) -> [12, 1] * eat(1, 10, 10) -> [11, 0] * eat(2, 11, 5) -> [7, 0] Variables: @number : integer the number of carrots that you have eaten. @need : integer the number of carrots that you need to eat. @remaining : integer the number of remaining carrots thet exist in stock Constrain: * 0 <= number <= 1000 * 0 <= need <= 1000 * 0 <= remaining <= 1000 Have fun :) """""" if(need <= remaining): return [ number + need , remaining-need ] else: return [ number + remaining , 0] ","[{'input': '5, 6, 10', 'output': '[11, 4]', 'relation': '=='}, {'input': '4, 8, 9', 'output': '[12, 1]', 'relation': '=='}, {'input': '1, 10, 10', 'output': '[11, 0]', 'relation': '=='}, {'input': '2, 11, 5', 'output': '[7, 0]', 'relation': '=='}, {'input': '4, 5, 7', 'output': '[9, 2]', 'relation': '=='}, {'input': '4, 5, 1', 'output': '[5, 0]', 'relation': '=='}]" do_algebra,HumanEval/160," def do_algebra(operator, operand): """""" Given two lists operator, and operand. The first list has basic algebra operations, and the second list is a list of integers. Use the two given lists to build the algebric expression and return the evaluation of this expression. The basic algebra operations: Addition ( + ) Subtraction ( - ) Multiplication ( * ) Floor division ( // ) Exponentiation ( ** ) Example: operator['+', '*', '-'] array = [2, 3, 4, 5] result = 2 + 3 * 4 - 5 => result = 9 Note: The length of operator list is equal to the length of operand list minus one. Operand is a list of of non-negative integers. Operator list has at least one operator, and operand list has at least two operands. """""" "," def do_algebra(list1, list2): """""" Given two lists, use the two given lists to build the algebric expression and return a certain form of this expression. The basic algebra operations: Addition ( + ) Subtraction ( - ) Multiplication ( * ) Floor division ( // ) Exponentiation ( ** ) Example: operator['+', '*', '-'] array = [2, 3, 4, 5] result = 2 + 3 * 4 - 5 => result = 9 Note: The length of operator list is equal to the length of operand list minus one. Operand is a list of of non-negative integers. Operator list has at least one operator, and operand list has at least two operands. """""" "," def do_algebra(operator, operand): """""" Given two lists operator, and operand. The first list has basic algebra operations, and the second list is a list of integers. Use the two given lists to build the algebric expression and return the evaluation of this expression. The basic algebra operations: Addition ( + ) Subtraction ( - ) Multiplication ( * ) Floor division ( // ) Exponentiation ( ** ) Example: operator['+', '*', '-'] array = [2, 3, 4, 5] result = 2 + 2 * 4 - 5 => result = 5 Note: The length of operator list is equal to the length of operand list minus one. Operand is a list of of non-negative integers. Operator list has at least one operator, and operand list has at least two operands. """""" "," def do_algebra(operator, operand): """""" Given two lists operator, and operand. The first list has basic algebra operations, and the second list is a list of integers. """""" "," def do_algebra(list1, list2): """""" Given two lists, use the two given lists to build the algebric expression and return a certain form of this expression. The basic algebra operations: Addition ( + ) Subtraction ( - ) Multiplication ( * ) Floor division ( // ) Exponentiation ( ** ) Example: operator['+', '*', '-'] array = [2, 3, 4, 5] result = 2 + 2 * 4 - 5 => result = 5 Note: The length of operator list is equal to the length of operand list minus one. Operand is a list of of non-negative integers. Operator list has at least one operator, and operand list has at least two operands. """""" "," def do_algebra(list1, list2): """""" Given two lists, use the two given lists to build the algebric """""" ",,," def do_algebra(operator, operand): """""" Given two lists operator, and operand. The first list has basic algebra operations, and the second list is a list of integers. Use the two given lists to build the algebric expression and return the evaluation of this expression. The basic algebra operations: Addition ( + ) Subtraction ( - ) Multiplication ( * ) Floor division ( // ) Exponentiation ( ** ) Example: operator['+', '*', '-'] array = [2, 3, 4, 5] result = 2 + 3 * 4 - 5 => result = 9 Note: The length of operator list is equal to the length of operand list minus one. Operand is a list of of non-negative integers. Operator list has at least one operator, and operand list has at least two operands. """""" expression = str(operand[0]) for oprt, oprn in zip(operator, operand[1:]): expression+= oprt + str(oprn) return eval(expression) ","[{'input': ""['**', '*', '+'], [2, 3, 4, 5]"", 'output': '37', 'relation': '=='}, {'input': ""['+', '*', '-'], [2, 3, 4, 5]"", 'output': '9', 'relation': '=='}, {'input': ""['//', '*'], [7, 3, 4]"", 'output': '8', 'relation': '=='}]" solve,HumanEval/161," def solve(s): """"""You are given a string s. if s[i] is a letter, reverse its case from lower to upper or vise versa, otherwise keep it as it is. If the string contains no letters, reverse the string. The function should return the resulted string. Examples solve(""1234"") = ""4321"" solve(""ab"") = ""AB"" solve(""#a@C"") = ""#A@c"" """""" "," def solve(s): """"""You are given a string s. if s[i] is a letter, reverse its case from lower to upper or vise versa, otherwise keep it as it is. If the string contains no letters, perform some transformation. The function should return the resulted string. Examples solve(""1234"") = ""4321"" solve(""ab"") = ""AB"" solve(""#a@C"") = ""#A@c"" """""" "," def solve(s): """"""You are given a string s. if s[i] is a letter, reverse its case from lower to upper or vise versa, otherwise keep it as it is. If the string contains no letters, reverse the string. The function should return the resulted string. Examples solve(""1234"") = ""1234"" solve(""ab"") = ""ab"" solve(""#a@C"") = ""#a@C"" """""" "," def solve(s): """""" The function should return the resulted string. Examples solve(""1234"") = ""4321"" solve(""ab"") = ""AB"" solve(""#a@C"") = ""#A@c"" """""" "," def solve(s): """"""You are given a string s. if s[i] is a letter, reverse its case from lower to upper or vise versa, otherwise keep it as it is. If the string contains no letters, perform some transformation. The function should return the resulted string. Examples solve(""1234"") = ""1234"" solve(""ab"") = ""ab"" solve(""#a@C"") = ""#a@C"" """""" ",," def solve(s): """""" The function should return the resulted string. Examples solve(""1234"") = ""1234"" solve(""ab"") = ""ab"" solve(""#a@C"") = ""#a@C"" """""" ",," def solve(s): """"""You are given a string s. if s[i] is a letter, reverse its case from lower to upper or vise versa, otherwise keep it as it is. If the string contains no letters, reverse the string. The function should return the resulted string. Examples solve(""1234"") = ""4321"" solve(""ab"") = ""AB"" solve(""#a@C"") = ""#A@c"" """""" flg = 0 idx = 0 new_str = list(s) for i in s: if i.isalpha(): new_str[idx] = i.swapcase() flg = 1 idx += 1 s = """" for i in new_str: s += i if flg == 0: return s[len(s)::-1] return s ","[{'input': '""AsDf""', 'output': 'aSdF', 'relation': '=='}, {'input': '""1234""', 'output': '4321', 'relation': '=='}, {'input': '""ab""', 'output': 'AB', 'relation': '=='}, {'input': '""#a@C""', 'output': '#A@c', 'relation': '=='}, {'input': '""#AsdfW^45""', 'output': '#aSDFw^45', 'relation': '=='}, {'input': '""#6@2""', 'output': '2@6#', 'relation': '=='}, {'input': '""#$a^D""', 'output': '#$A^d', 'relation': '=='}, {'input': '""#ccc""', 'output': '#CCC', 'relation': '=='}]" string_to_md5,HumanEval/162," def string_to_md5(text): """""" Given a string 'text', return its md5 hash equivalent string. If 'text' is an empty string, return None. >>> string_to_md5('Hello world') == '3e25960a79dbc69b674cd4ec67a72c62' """""" "," def candidate(text): """""" Given a string 'text', return its ideal hash equivalent string. If 'text' is an empty string, return None. >>> candidate('Hello world') == '3e25960a79dbc69b674cd4ec67a72c62' """""" "," def string_to_md5(text): """""" Given a string 'text', return its md5 hash equivalent string. If 'text' is an empty string, return None. >>> string_to_md5('Hello world') == '12345' """""" "," def candidate(text): """""" >>> candidate('Hello world') == '3e25960a79dbc69b674cd4ec67a72c62' """""" "," def string_to_md5(text): """""" Given a string 'text', return its ideal hash equivalent string. If 'text' is an empty string, return None. >>> string_to_md5('Hello world') == '12345' """""" ",," def candidate(text): """""" >>> candidate('Hello world') == '12345' """""" ",," def string_to_md5(text): """""" Given a string 'text', return its md5 hash equivalent string. If 'text' is an empty string, return None. >>> string_to_md5('Hello world') == '3e25960a79dbc69b674cd4ec67a72c62' """""" import hashlib return hashlib.md5(text.encode('ascii')).hexdigest() if text else None ","[{'input': ""'Hello world'"", 'output': '3e25960a79dbc69b674cd4ec67a72c62', 'relation': '=='}, {'input': ""''"", 'output': 'None', 'relation': '=='}, {'input': ""'A B C'"", 'output': '0ef78513b0cb8cef12743f5aeb35f888', 'relation': '=='}, {'input': ""'password'"", 'output': '5f4dcc3b5aa765d61d8327deb882cf99', 'relation': '=='}]" generate_integers,HumanEval/163," def generate_integers(a, b): """""" Given two positive integers a and b, return the even digits between a and b, in ascending order. For example: generate_integers(2, 8) => [2, 4, 6, 8] generate_integers(8, 2) => [2, 4, 6, 8] generate_integers(10, 14) => [] """""" "," def generate_integers(a, b): """""" Given two positive integers a and b, return the odd or even digits between a and b, in descending or ascending order. For example: generate_integers(2, 8) => [2, 4, 6, 8] generate_integers(8, 2) => [2, 4, 6, 8] generate_integers(10, 14) => [] """""" "," def generate_integers(a, b): """""" Given two positive integers a and b, return the even digits between a and b, in ascending order. For example: generate_integers(2, 8) => [8] generate_integers(8, 2) => [8] generate_integers(10, 14) => [14] """""" "," def generate_integers(a, b): """""" Given two positive integers a and b, return the even digits between """""" "," def generate_integers(a, b): """""" Given two positive integers a and b, return the odd or even digits between a and b, in descending or ascending order. For example: generate_integers(2, 8) => [8] generate_integers(8, 2) => [8] generate_integers(10, 14) => [14] """""" "," def generate_integers(a, b): """""" Given two positive integers a and b, return the odd or even digits between """""" ",,," def generate_integers(a, b): """""" Given two positive integers a and b, return the even digits between a and b, in ascending order. For example: generate_integers(2, 8) => [2, 4, 6, 8] generate_integers(8, 2) => [2, 4, 6, 8] generate_integers(10, 14) => [] """""" lower = max(2, min(a, b)) upper = min(8, max(a, b)) return [i for i in range(lower, upper+1) if i % 2 == 0] ","[{'input': '2, 10', 'output': '[2, 4, 6, 8]', 'relation': '=='}, {'input': '10, 2', 'output': '[2, 4, 6, 8]', 'relation': '=='}, {'input': '132, 2', 'output': '[2, 4, 6, 8]', 'relation': '=='}, {'input': '17, 89', 'output': '[]', 'relation': '=='}]"