|
from mpi4py import MPI |
|
from mpi4py.futures import MPICommExecutor |
|
|
|
import warnings |
|
from Bio.PDB import PDBParser, PPBuilder, CaPPBuilder |
|
from Bio.PDB.NeighborSearch import NeighborSearch |
|
from Bio.PDB.Selection import unfold_entities |
|
|
|
import numpy as np |
|
import dask.array as da |
|
|
|
from rdkit import Chem |
|
|
|
import os |
|
import re |
|
import sys |
|
|
|
|
|
punctuation_regex = r"""(\(|\)|\.|=|#|-|\+|\\|\/|:|~|@|\?|>>?|\*|\$|\%[0-9]{2}|[0-9])""" |
|
|
|
|
|
molecule_regex = r"""(\[[^\]]+]|Br?|Cl?|N|O|S|P|F|I|b|c|n|o|s|p|\(|\)|\.|=|#|-|\+|\\|\/|:|~|@|\?|>>?|\*|\$|\%[0-9]{2}|[0-9])""" |
|
|
|
cutoff = int(sys.argv[1]) |
|
max_seq = 2046 |
|
max_smiles = 510 |
|
chunk_size = '1G' |
|
|
|
def parse_complex(fn): |
|
try: |
|
name = os.path.basename(fn) |
|
|
|
|
|
parser = PDBParser() |
|
with warnings.catch_warnings(): |
|
warnings.simplefilter("ignore") |
|
structure = parser.get_structure('protein',fn+'/'+name+'_protein.pdb') |
|
|
|
|
|
ppb = CaPPBuilder() |
|
seq = [] |
|
for pp in ppb.build_peptides(structure): |
|
seq.append(str(pp.get_sequence())) |
|
seq = ''.join(seq) |
|
|
|
|
|
suppl = Chem.SDMolSupplier(fn+'/'+name+'_ligand.sdf') |
|
mol = next(suppl) |
|
smi = Chem.MolToSmiles(mol) |
|
|
|
|
|
atom_order = [int(s) for s in list(filter(None,re.sub(r'[\[\]]','',mol.GetProp("_smilesAtomOutputOrder")).split(',')))] |
|
|
|
|
|
tokens = list(filter(None, re.split(molecule_regex, smi))) |
|
|
|
|
|
masked_tokens = [re.sub(punctuation_regex,'',s) for s in tokens] |
|
|
|
k = 0 |
|
token_pos = [] |
|
token_id = [] |
|
for i,token in enumerate(masked_tokens): |
|
if token != '': |
|
token_pos.append(tuple(mol.GetConformer().GetAtomPosition(atom_order[k]))) |
|
token_id.append(i) |
|
k += 1 |
|
|
|
|
|
atoms = unfold_entities(structure, 'A') |
|
neighbor_search = NeighborSearch(atoms) |
|
|
|
close_residues = [neighbor_search.search(center=t, level='R', radius=cutoff) for t in token_pos] |
|
first_residue = next(structure.get_residues()).get_id()[1] |
|
residue_id = [[c.get_id()[1]-first_residue for c in query] for query in close_residues] |
|
|
|
|
|
contact_map = np.zeros((max_seq, max_smiles),dtype=np.float32) |
|
|
|
for query,t in zip(residue_id,token_id): |
|
for r in query: |
|
contact_map[r,t] = 1 |
|
|
|
return name, seq, smi, contact_map |
|
except Exception as e: |
|
print(e) |
|
return None |
|
|
|
|
|
if __name__ == '__main__': |
|
import glob |
|
|
|
filenames = glob.glob('data/pdbbind/v2020-other-PL/*') |
|
filenames.extend(glob.glob('data/pdbbind/refined-set/*')) |
|
filenames = sorted(filenames) |
|
comm = MPI.COMM_WORLD |
|
with MPICommExecutor(comm, root=0) as executor: |
|
if executor is not None: |
|
result = executor.map(parse_complex, filenames) |
|
result = list(result) |
|
names = [r[0] for r in result if r is not None] |
|
seqs = [r[1] for r in result if r is not None] |
|
all_smiles = [r[2] for r in result if r is not None] |
|
all_contacts = [r[3] for r in result if r is not None] |
|
|
|
import pandas as pd |
|
df = pd.DataFrame({'name': names, 'seq': seqs, 'smiles': all_smiles}) |
|
all_contacts = da.from_array(all_contacts, chunks=chunk_size) |
|
da.to_npy_stack('data/pdbbind_contacts_{}/'.format(cutoff), all_contacts) |
|
df.to_parquet('data/pdbbind_complex_{}.parquet'.format(cutoff)) |
|
|