import os import pprint import pandas as pd import torch from torch.utils.data import Dataset, DataLoader from pathlib import Path import json from typing import List, Dict, Optional import numpy as np def create_dataset_splits( metadata_path: str, output_dir: str, train_ratio: float = 0.8, val_ratio: float = 0.1, seed: int = 42 ): """ Create and save train/val/test splits to disk. Args: metadata_path: Path to the metadata CSV file output_dir: Directory to save the split CSV files train_ratio: Ratio of data to use for training val_ratio: Ratio of data to use for validation seed: Random seed for reproducibility """ df = pd.read_csv(metadata_path) np.random.seed(seed) # We will be splitting on the filename. This ensures that a cloned voice is always with the same original voice in a given split, and not split between train/val/test. unique_filenames = df['filename'].unique() np.random.shuffle(unique_filenames) n_samples = len(unique_filenames) train_idx = int(n_samples * train_ratio) val_idx = int(n_samples * (train_ratio + val_ratio)) # Create split DataFrames splits = { 'train': df[df['filename'].isin(unique_filenames[:train_idx])], 'val': df[df['filename'].isin(unique_filenames[train_idx:val_idx])], 'test': df[df['filename'].isin(unique_filenames[val_idx:])] } # Save splits output_dir = Path(output_dir) output_dir.mkdir(exist_ok=True, parents=True) # Save individual splits for split_name, split_df in splits.items(): split_df.to_csv(output_dir / f'{split_name}.csv', index=False) # Save split info split_info = {} split_info['metadata_path'] = metadata_path split_info['seed'] = seed split_info['ratios'] = { 'train': train_ratio, 'val': val_ratio, 'test': round(1 - train_ratio - val_ratio, 2), } for split_name, split_df in splits.items(): split_info[split_name] = { 'total_num_samples': len(split_df), 'human_samples': len(split_df[split_df['cloned_or_human'] == "human"]), 'cloned_samples': len(split_df[split_df['cloned_or_human'] == "cloned"]), 'sources': split_df['source'].value_counts().to_dict(), 'voices_per_source': split_df.groupby('source')['path'].nunique().to_dict(), } pprint.pprint(split_info) with open(output_dir / 'split_info.json', 'w') as f: json.dump(split_info, f, indent=2) # Example usage: if __name__ == "__main__": # json_file = 'files.json' metadata_file = 'metadata-valid.csv' clips_dir = '.' output_dir = 'splits' # Create splits create_dataset_splits(metadata_file, output_dir=output_dir)