jerpint commited on
Commit
3c13b6c
·
1 Parent(s): b4f3fce

WIP: create splits for dataset and dataset itself

Browse files
Files changed (1) hide show
  1. create_splits.py +218 -0
create_splits.py ADDED
@@ -0,0 +1,218 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+ import pandas as pd
3
+ import torch
4
+ from torch.utils.data import Dataset, DataLoader
5
+ from pathlib import Path
6
+ import json
7
+ from typing import List, Dict, Optional
8
+ import numpy as np
9
+
10
+ def create_dataset_splits(
11
+ data_path: str,
12
+ metadata_path: str,
13
+ output_dir: str,
14
+ train_ratio: float = 0.8,
15
+ val_ratio: float = 0.1,
16
+ seed: int = 42
17
+ ):
18
+ """
19
+ Create and save train/val/test splits to disk.
20
+
21
+ Args:
22
+ data_path: Path to the JSON file containing voice mappings
23
+ metadata_path: Path to the metadata CSV file
24
+ output_dir: Directory to save the split CSV files
25
+ train_ratio: Ratio of data to use for training
26
+ val_ratio: Ratio of data to use for validation
27
+ seed: Random seed for reproducibility
28
+ """
29
+ # Load raw data
30
+ with open(data_path, 'r') as f:
31
+ raw_data = json.load(f)
32
+
33
+ df_metadata = pd.read_csv(metadata_path)
34
+
35
+ # Convert to DataFrame
36
+ records = []
37
+ for path, available_models in raw_data.items():
38
+ df_metadata_row = df_metadata[df_metadata['path'] == path]
39
+ for model in available_models:
40
+ records.append({
41
+ 'path': path,
42
+ 'model': model,
43
+ 'is_cloned_voice': model != 'commonvoice',
44
+ 'age': df_metadata_row['age'].values[0],
45
+ 'gender': df_metadata_row['gender'].values[0],
46
+ 'accents': df_metadata_row['accents'].values[0],
47
+ 'sentence': df_metadata_row['sentence'].values[0],
48
+ })
49
+
50
+ df = pd.DataFrame.from_records(records)
51
+
52
+ # Create deterministic split based on path
53
+ np.random.seed(seed)
54
+ unique_paths = df['path'].unique()
55
+ np.random.shuffle(unique_paths)
56
+
57
+ n_samples = len(unique_paths)
58
+ train_idx = int(n_samples * train_ratio)
59
+ val_idx = int(n_samples * (train_ratio + val_ratio))
60
+
61
+ # Create split DataFrames
62
+ splits = {
63
+ 'train': df[df['path'].isin(unique_paths[:train_idx])],
64
+ 'val': df[df['path'].isin(unique_paths[train_idx:val_idx])],
65
+ 'test': df[df['path'].isin(unique_paths[val_idx:])]
66
+ }
67
+
68
+ # Save splits
69
+ output_dir = Path(output_dir)
70
+ output_dir.mkdir(exist_ok=True, parents=True)
71
+
72
+ # Save individual splits
73
+ for split_name, split_df in splits.items():
74
+ split_df.to_csv(output_dir / f'{split_name}.csv', index=False)
75
+
76
+ # Save split info
77
+ split_info = {
78
+ 'num_samples': {
79
+ split_name: len(paths)
80
+ for split_name, paths in {
81
+ 'train': unique_paths[:train_idx],
82
+ 'val': unique_paths[train_idx:val_idx],
83
+ 'test': unique_paths[val_idx:]
84
+ }.items()
85
+ },
86
+ 'train_ratio': train_ratio,
87
+ 'val_ratio': val_ratio,
88
+ 'seed': seed
89
+ }
90
+
91
+ with open(output_dir / 'split_info.json', 'w') as f:
92
+ json.dump(split_info, f, indent=2)
93
+
94
+ class VoiceDataset(Dataset):
95
+ def __init__(
96
+ self,
97
+ split_path: str,
98
+ clips_dir: str,
99
+ models: Optional[List[str]] = None
100
+ ):
101
+ """
102
+ Args:
103
+ split_path: Path to the CSV file containing the split data
104
+ models: List of model names to include. If None, includes all models
105
+ """
106
+ self.data = pd.read_csv(split_path)
107
+ self.clips_dir = clips_dir
108
+
109
+ # Filter models if specified
110
+ if models is not None:
111
+ self.data = self.data[self.data['model'].isin(models)]
112
+
113
+ # Create path to index mapping
114
+ self.path_to_idx = {path: idx for idx, path in enumerate(self.data['path'].unique())}
115
+ self.split_name = Path(split_path).stem # Get split name from file path
116
+ self.original_models = [model for model in self.data['model'].unique() if model != 'commonvoice']
117
+
118
+
119
+
120
+ def __len__(self):
121
+ return len(self.data)
122
+
123
+ def __getitem__(self, idx):
124
+ row = self.data.iloc[idx]
125
+ path = row['path']
126
+ model = row['model']
127
+ rel_path = os.path.join(model, path)
128
+ abs_path = os.path.join(self.clips_dir, rel_path)
129
+ return {
130
+ 'path': abs_path,
131
+ 'model': model,
132
+ 'is_cloned_voice': row['is_cloned_voice'],
133
+ }
134
+
135
+ def summary(self) -> Dict:
136
+ """
137
+ Generate a comprehensive summary of the dataset.
138
+
139
+ Returns:
140
+ Dictionary containing summary statistics
141
+ """
142
+ summary = {
143
+ 'split': self.split_name,
144
+ 'total_samples': len(self.data),
145
+ 'cloned_samples': len(self.data[self.data['is_cloned_voice']]),
146
+ 'original_samples': len(self.data[~self.data['is_cloned_voice']]),
147
+ 'unique_voices': len(self.path_to_idx),
148
+ 'models': {
149
+ 'available': list(self.original_models),
150
+ 'selected': list(self.data['model'].unique()),
151
+ },
152
+ 'samples_per_model': self.data['model'].value_counts().to_dict(),
153
+ 'voices_per_model': self.data.groupby('model')['path'].nunique().to_dict(),
154
+ }
155
+
156
+ return summary
157
+
158
+
159
+ def print_summary(self):
160
+ """
161
+ Print a formatted summary of the dataset.
162
+
163
+ Args:
164
+ include_metadata: Whether to include metadata statistics in the summary
165
+ """
166
+ summary = self.summary()
167
+
168
+ print(f"\n=== Dataset Summary ({summary['split'].upper()} split) ===")
169
+ print(f"Total samples: {summary['total_samples']}")
170
+ print(f"Cloned samples: {summary['cloned_samples']}")
171
+ print(f"Original samples: {summary['original_samples']}")
172
+
173
+ print("\nModels:")
174
+ print(f"Available: {', '.join(summary['models']['available'])}")
175
+ print(f"Selected: {', '.join(summary['models']['selected'])}")
176
+
177
+ print("\nSamples per model:")
178
+ for model, count in summary['samples_per_model'].items():
179
+ print(f" {model}: {count}")
180
+
181
+ print("\nUnique voices per model:")
182
+ for model, count in summary['voices_per_model'].items():
183
+ print(f" {model}: {count}")
184
+
185
+
186
+
187
+ # Example usage:
188
+ if __name__ == "__main__":
189
+ json_file = 'files.json'
190
+ metadata_file = 'metadata-balanced.csv'
191
+ clips_dir = '.'
192
+ output_dir = 'splits'
193
+
194
+ # Create splits
195
+ create_dataset_splits(json_file, metadata_file, output_dir=output_dir)
196
+
197
+
198
+ # Create datasets for each split
199
+ train_dataset = VoiceDataset(
200
+ 'splits/train.csv',
201
+ clips_dir=clips_dir,
202
+ models=['commonvoice', 'metavoice', 'xttsv2']
203
+ )
204
+
205
+ val_dataset = VoiceDataset(
206
+ 'splits/val.csv',
207
+ clips_dir=clips_dir,
208
+ models=['commonvoice', 'metavoice', 'xttsv2']
209
+ )
210
+
211
+ test_dataset = VoiceDataset(
212
+ 'splits/test.csv',
213
+ clips_dir=clips_dir,
214
+ models=['commonvoice', 'metavoice', 'xttsv2']
215
+ )
216
+
217
+ # Create DataLoader
218
+ train_loader = DataLoader(train_dataset, batch_size=32, shuffle=True)