Datasets:
Tasks:
Image Feature Extraction
Modalities:
Image
Formats:
imagefolder
Languages:
English
Size:
1K - 10K
License:
File size: 2,919 Bytes
6d7718c de6e26b 6d7718c de6e26b 6d7718c de6e26b 6d7718c de6e26b 6d7718c de6e26b 6d7718c 846b0d5 6d7718c 846b0d5 6d7718c 846b0d5 6d7718c 846b0d5 6d7718c 846b0d5 6d7718c 846b0d5 6d7718c 846b0d5 6d7718c 846b0d5 6d7718c 846b0d5 6d7718c de6e26b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 |
---
annotations_creators: []
language: en
license: cc-by-4.0
size_categories:
- 1K<n<10K
task_categories:
- image-feature-extraction
task_ids: []
pretty_name: Emojis
tags:
- fiftyone
- image
dataset_summary: >
![image/png](dataset_preview.gif)
This is a [FiftyOne](https://github.com/voxel51/fiftyone) dataset with 1816
samples.
## Installation
If you haven't already, install FiftyOne:
```bash
pip install -U fiftyone
```
## Usage
```python
import fiftyone as fo
import fiftyone.utils.huggingface as fouh
# Load the dataset
# Note: other available arguments include 'max_samples', etc
dataset = fouh.load_from_hub("jamarks/emojis")
# Launch the App
session = fo.launch_app(dataset)
```
---
# Dataset Card for Emojis
<!-- Provide a quick summary of the dataset. -->
![image/png](dataset_preview.gif)
This is a [FiftyOne](https://github.com/voxel51/fiftyone) dataset with 1816 samples.
## Installation
If you haven't already, install FiftyOne:
```bash
pip install -U fiftyone
```
## Usage
```python
import fiftyone as fo
import fiftyone.utils.huggingface as fouh
# Load the dataset
# Note: other available arguments include 'max_samples', etc
dataset = fouh.load_from_hub("jamarks/emojis")
# Launch the App
session = fo.launch_app(dataset)
```
## Dataset Details
### Dataset Description
<!-- Provide a longer summary of what this dataset is. -->
- **Curated by:** Jacob Marks
- **Language(s) (NLP):** en
- **License:** cc-by-4.0
### Dataset Sources
<!-- Provide the basic links for the dataset. -->
- **Demo:** https://try.fiftyone.ai/datasets/emojis/samples
## Dataset Creation
### Curation Rationale
Emojis sit at the intersection between textual and visual, providing a fascinating test-bed for exploring multimodal search and reranking techniques. This dataset was constructed to facilitate these experiments. For connected projects, check out:
- [Emoji Search CLI Library](https://github.com/jacobmarks/emoji_search)
- [Semantic Emoji Search Plugin for FiftyOne](https://github.com/jacobmarks/emoji-search-plugin)
### Source Data
Samples in this dataset were constructed from rows in the Kaggle [Full Emoji Image Dataset](https://www.kaggle.com/datasets/subinium/emojiimage-dataset)
#### Data Collection and Processing
The base64-encoded images in the original csv were upscaled by 10x using [Real-ESRGAN](https://replicate.com/nightmareai/real-esrgan).
OpenAI's CLIP-VIT-B/32 model was used to embed these images (vision encoder), the emoji names (text encoder), and the unicode sequences (text encoder). These embeddings were used to construct [Brain Runs](https://docs.voxel51.com/user_guide/brain.html) for performing similarity and semantic searches, as well as visualizing the structure of the dataset using UMAP dimensionality reduction.
## Dataset Card Authors
[Jacob Marks](https://huggingface.co/jamarks) |