Upload folder using huggingface_hub
Browse files- README.md +1 -0
- data-00000-of-00004.arrow +3 -0
- data-00001-of-00004.arrow +3 -0
- data-00002-of-00004.arrow +3 -0
- data-00003-of-00004.arrow +3 -0
- dataset_info.json +106 -0
- state.json +22 -0
README.md
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
# reddit first 450000 dataset
|
data-00000-of-00004.arrow
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:e4b09e1d90ce0a74101711233ccdb5a944d43ae35561a485e41855e0d7b3af68
|
3 |
+
size 426016032
|
data-00001-of-00004.arrow
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:a5eaf73f50f43ddca57d3db898a6e3b8f3f5700b8e83b8cf26d7ac26754fced7
|
3 |
+
size 421498224
|
data-00002-of-00004.arrow
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:42c6fed161f94249c6d197cb5fa4e9e12dc4543d856e12b32284a14b265128a1
|
3 |
+
size 421795704
|
data-00003-of-00004.arrow
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:e84e17399f60222e88a4db9b6f46e311f81781f4b34680f18b410c6e2929c5df
|
3 |
+
size 423563400
|
dataset_info.json
ADDED
@@ -0,0 +1,106 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"builder_name": "tldr-17",
|
3 |
+
"citation": "\n@inproceedings{volske-etal-2017-tl,\n title = {TL;DR: Mining {R}eddit to Learn Automatic Summarization},\n author = {V{\"o}lske, Michael and Potthast, Martin and Syed, Shahbaz and Stein, Benno},\n booktitle = {Proceedings of the Workshop on New Frontiers in Summarization},\n month = {sep},\n year = {2017},\n address = {Copenhagen, Denmark},\n publisher = {Association for Computational Linguistics},\n url = {https://www.aclweb.org/anthology/W17-4508},\n doi = {10.18653/v1/W17-4508},\n pages = {59--63},\n abstract = {Recent advances in automatic text summarization have used deep neural networks to generate high-quality abstractive summaries, but the performance of these models strongly depends on large amounts of suitable training data. We propose a new method for mining social media for author-provided summaries, taking advantage of the common practice of appending a {``}TL;DR{''} to long posts. A case study using a large Reddit crawl yields the Webis-TLDR-17 dataset, complementing existing corpora primarily from the news genre. Our technique is likely applicable to other social media sites and general web crawls.},\n}\n",
|
4 |
+
"config_name": "default",
|
5 |
+
"dataset_name": "tldr-17",
|
6 |
+
"dataset_size": 18936201253,
|
7 |
+
"description": "\nThis corpus contains preprocessed posts from the Reddit dataset.\nThe dataset consists of 3,848,330 posts with an average length of 270 words for content,\nand 28 words for the summary.\n\nFeatures includes strings: author, body, normalizedBody, content, summary, subreddit, subreddit_id.\nContent is used as document and summary is used as summary.\n",
|
8 |
+
"download_checksums": {
|
9 |
+
"data/corpus-webis-tldr-17.zip": {
|
10 |
+
"num_bytes": 3141854161,
|
11 |
+
"checksum": null
|
12 |
+
}
|
13 |
+
},
|
14 |
+
"download_size": 3141854161,
|
15 |
+
"features": {
|
16 |
+
"author": {
|
17 |
+
"dtype": "string",
|
18 |
+
"_type": "Value"
|
19 |
+
},
|
20 |
+
"body": {
|
21 |
+
"dtype": "string",
|
22 |
+
"_type": "Value"
|
23 |
+
},
|
24 |
+
"normalizedBody": {
|
25 |
+
"dtype": "string",
|
26 |
+
"_type": "Value"
|
27 |
+
},
|
28 |
+
"subreddit": {
|
29 |
+
"dtype": "string",
|
30 |
+
"_type": "Value"
|
31 |
+
},
|
32 |
+
"subreddit_id": {
|
33 |
+
"dtype": "string",
|
34 |
+
"_type": "Value"
|
35 |
+
},
|
36 |
+
"id": {
|
37 |
+
"dtype": "string",
|
38 |
+
"_type": "Value"
|
39 |
+
},
|
40 |
+
"content": {
|
41 |
+
"dtype": "string",
|
42 |
+
"_type": "Value"
|
43 |
+
},
|
44 |
+
"summary": {
|
45 |
+
"dtype": "string",
|
46 |
+
"_type": "Value"
|
47 |
+
}
|
48 |
+
},
|
49 |
+
"homepage": "https://github.com/webis-de/webis-tldr-17-corpus",
|
50 |
+
"license": "",
|
51 |
+
"size_in_bytes": 22078055414,
|
52 |
+
"splits": {
|
53 |
+
"train": {
|
54 |
+
"name": "train",
|
55 |
+
"num_bytes": 18936201253,
|
56 |
+
"num_examples": 3848330,
|
57 |
+
"shard_lengths": [
|
58 |
+
133000,
|
59 |
+
134000,
|
60 |
+
133000,
|
61 |
+
133000,
|
62 |
+
133000,
|
63 |
+
133000,
|
64 |
+
133000,
|
65 |
+
133000,
|
66 |
+
133000,
|
67 |
+
133000,
|
68 |
+
134000,
|
69 |
+
132000,
|
70 |
+
133000,
|
71 |
+
134000,
|
72 |
+
133000,
|
73 |
+
133000,
|
74 |
+
107000,
|
75 |
+
84000,
|
76 |
+
82000,
|
77 |
+
79000,
|
78 |
+
85000,
|
79 |
+
82000,
|
80 |
+
81000,
|
81 |
+
81000,
|
82 |
+
76000,
|
83 |
+
76000,
|
84 |
+
78000,
|
85 |
+
76000,
|
86 |
+
76000,
|
87 |
+
77000,
|
88 |
+
78000,
|
89 |
+
77000,
|
90 |
+
75000,
|
91 |
+
72000,
|
92 |
+
73000,
|
93 |
+
74000,
|
94 |
+
72000,
|
95 |
+
57330
|
96 |
+
],
|
97 |
+
"dataset_name": "tldr-17"
|
98 |
+
}
|
99 |
+
},
|
100 |
+
"version": {
|
101 |
+
"version_str": "1.0.0",
|
102 |
+
"major": 1,
|
103 |
+
"minor": 0,
|
104 |
+
"patch": 0
|
105 |
+
}
|
106 |
+
}
|
state.json
ADDED
@@ -0,0 +1,22 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_data_files": [
|
3 |
+
{
|
4 |
+
"filename": "data-00000-of-00004.arrow"
|
5 |
+
},
|
6 |
+
{
|
7 |
+
"filename": "data-00001-of-00004.arrow"
|
8 |
+
},
|
9 |
+
{
|
10 |
+
"filename": "data-00002-of-00004.arrow"
|
11 |
+
},
|
12 |
+
{
|
13 |
+
"filename": "data-00003-of-00004.arrow"
|
14 |
+
}
|
15 |
+
],
|
16 |
+
"_fingerprint": "d80a3a13d3bc18f0",
|
17 |
+
"_format_columns": null,
|
18 |
+
"_format_kwargs": {},
|
19 |
+
"_format_type": null,
|
20 |
+
"_output_all_columns": false,
|
21 |
+
"_split": "train[:450000]"
|
22 |
+
}
|