import csv import datasets _CITATION = """\ @inproceedings{koto-etal-2023-indommlu, title = "Large Language Models Only Pass Primary School Exams in {I}ndonesia: A Comprehensive Test on {I}ndo{MMLU}", author = "Fajri Koto and Nurul Aisyah and Haonan Li and Timothy Baldwin", booktitle = "Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing (EMNLP)", month = December, year = "2023", address = "Singapore", publisher = "Association for Computational Linguistics", }""" subject2english = { 'Sejarah': 'History', 'Geografi': 'Geography', 'Bahasa Lampung': 'Lampungic', 'IPS': 'Social science', 'Bahasa Bali': 'Balinese', 'Bahasa Makassar': 'Makassarese', 'Bahasa Banjar': 'Banjarese', 'Kimia': 'Chemistry', 'Biologi': 'Biology', 'IPA': 'Science', 'Agama Kristen': 'Christian religion', 'Kesenian': 'Art', 'Agama Islam': 'Islam religion', 'Agama Hindu': 'Hindu religion', 'Bahasa Madura': 'Madurese', 'Penjaskes': 'Sport', 'Bahasa Indonesia': 'Indonesian language', 'Fisika': 'Physics', 'Budaya Alam Minangkabau': 'Minangkabau culture', 'Bahasa Dayak Ngaju': 'Dayak language', 'Sosiologi': 'Sociology', 'Ekonomi': 'Economy', 'Bahasa Sunda': 'Sundanese', 'Bahasa Jawa': 'Javanese', 'PPKN': 'Civic education', } subject2group = { 'Sejarah': 'Humanities', 'Geografi': 'Social science', 'Bahasa Lampung': 'Local languages and cultures', 'IPS': 'Social science', 'Bahasa Bali': 'Local languages and cultures', 'Bahasa Makassar': 'Local languages and cultures', 'Bahasa Banjar': 'Local languages and cultures', 'Kimia': 'STEM', 'Biologi': 'STEM', 'IPA': 'STEM', 'Agama Kristen': 'Humanities', 'Kesenian': 'Humanities', 'Agama Islam': 'Humanities', 'Agama Hindu': 'Humanities', 'Bahasa Madura': 'Local languages and cultures', 'Penjaskes': 'Humanities', 'Bahasa Indonesia': 'Indonesian language', 'Fisika': 'STEM', 'Budaya Alam Minangkabau': 'Local languages and cultures', 'Bahasa Dayak Ngaju': 'Local languages and cultures', 'Sosiologi': 'Social science', 'Ekonomi': 'Social science', 'Bahasa Sunda': 'Local languages and cultures', 'Bahasa Jawa': 'Local languages and cultures', 'PPKN': 'Social science', } special_case = ['SD-SMP-SMA', 'SD-SMP'] level_mapper = { 'SMA': 'SMA', 'Seleksi PTN': 'University entrance test', 'SD': 'SD', 'SMP': 'SMP', 'Kelas I SD': 'SD', 'Kelas X SMA': 'SMA', 'Kelas XI SMA': 'SMA', 'Kelas XII SMA': 'SMA', 'V SD': 'SD', 'VI SD': 'SD', 'VII SMP': 'SMP', 'VIII SMP ': 'SMP', 'IX SMP': 'SMP', 'Kelas III SD':'SD', 'Kelas IV SD': 'SD', 'Kelas II SD': 'SD' } def fix_level(level, kelas): #Fixing Level if level in special_case: kelas = float(kelas) if kelas >=1 and kelas <= 6: level = 'SD' elif kelas >=7 and kelas <= 9: level = 'SMP' elif kelas >=10: level = 'SMA' else: print(level) fixed_level = level_mapper[level] #Fixing class fixed_kelas = -1 if kelas.strip() in ['PTN', '2023-10-12 00:00:00']: fixed_kelas = 13 elif kelas == '4,5,6': fixed_kelas = 6 else: fixed_kelas = int(kelas.strip()) # sanity check over the level and kelas return fixed_level, fixed_kelas _URL = { 'test': "https://huggingface.co/datasets/indolem/IndoMMLU/resolve/main/test.csv", } class IndoMMLUConfig(datasets.BuilderConfig): """IndoMMLUConfig for IndoMMLU""" def __init__(self, **kwargs): """BuilderConfig for IndoStoryCloze. **kwargs: keyword arguments forwarded to super. """ # Version history: # 1.0.0: Release version super().__init__(version=datasets.Version("1.0.0"), **kwargs) self.features = ['subject', 'group', 'level', 'class', 'question', 'options', 'answer', 'is_for_fewshot'] class IndoMMLU(datasets.GeneratorBasedBuilder): """The IndoMMLU Datasets.""" BUILDER_CONFIGS = [IndoMMLUConfig()] def _info(self): features = {feature: datasets.Value("string") for feature in self.config.features} return datasets.DatasetInfo( description='IndoMMLU', features=datasets.Features(features), homepage='https://github.com/fajri91/IndoMMLU', citation=_CITATION ) def _split_generators(self, dl_manager): downloaded_file = dl_manager.download_and_extract(_URLs) return [ datasets.SplitGenerator(name=datasets.Split.TEST, gen_kwargs={"data_file": downloaded_file['test']}), ] def _generate_examples(self, data_file): data = csv.DictReader(open(data_file, newline='')) for i, row in enumerate(data): fixed_level, fixed_kelas = fix_level(row['level'], row['kelas']) yield i, { "subject": subject2english[row['subject']], "group": subject2group[row['subject']], "level": fixed_level, "class": fixed_class, "question": row['soal'], "options": row['jawaban'].split('\n'), "answer": row['kunci'], "is_for_fewshot": row['is_for_fewshot'] }