Datasets:
Tasks:
Token Classification
Sub-tasks:
named-entity-recognition
Languages:
Igbo
Size:
10K<n<100K
ArXiv:
License:
# coding=utf-8 | |
# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
"""Igbo Named Entity Recognition Dataset""" | |
import datasets | |
_CITATION = """\ | |
@misc{ezeani2020igboenglish, | |
title={Igbo-English Machine Translation: An Evaluation Benchmark}, | |
author={Ignatius Ezeani and Paul Rayson and Ikechukwu Onyenwe and Chinedu Uchechukwu and Mark Hepple}, | |
year={2020}, | |
eprint={2004.00648}, | |
archivePrefix={arXiv}, | |
primaryClass={cs.CL} | |
} | |
""" | |
_DESCRIPTION = """\ | |
Igbo Named Entity Recognition Dataset | |
""" | |
_HOMEPAGE = "https://github.com/IgnatiusEzeani/IGBONLP/tree/master/ig_ner" | |
_URLs = { | |
"ner_data": "https://raw.githubusercontent.com/IgnatiusEzeani/IGBONLP/master/ig_ner/igbo_data.txt", | |
"free_text": "https://raw.githubusercontent.com/IgnatiusEzeani/IGBONLP/master/ig_ner/igbo_data10000.txt", | |
} | |
class IgboNer(datasets.GeneratorBasedBuilder): | |
"""Dataset from the Igbo NER Project""" | |
VERSION = datasets.Version("1.1.0") | |
BUILDER_CONFIGS = [ | |
datasets.BuilderConfig( | |
name="ner_data", | |
version=VERSION, | |
description="This dataset contains the named entity and all the sentences containing that entity.", | |
), | |
datasets.BuilderConfig( | |
name="free_text", version=VERSION, description="This dataset contains all sentences used for NER." | |
), | |
] | |
DEFAULT_CONFIG_NAME = "ner_data" | |
def _info(self): | |
if self.config.name == "ner_data": | |
features = datasets.Features( | |
{ | |
"content_n": datasets.Value("string"), | |
"named_entity": datasets.Value("string"), | |
"sentences": datasets.Sequence(datasets.Value("string")), | |
} | |
) | |
else: | |
features = datasets.Features( | |
{ | |
"sentences": datasets.Value("string"), | |
} | |
) | |
return datasets.DatasetInfo( | |
description=_DESCRIPTION, | |
features=features, | |
supervised_keys=None, | |
homepage=_HOMEPAGE, | |
citation=_CITATION, | |
) | |
def _split_generators(self, dl_manager): | |
"""Returns SplitGenerators.""" | |
my_urls = _URLs[self.config.name] | |
data_dir = dl_manager.download_and_extract(my_urls) | |
return [ | |
datasets.SplitGenerator( | |
name=datasets.Split.TRAIN, | |
gen_kwargs={ | |
"filepath": data_dir, | |
"split": "train", | |
}, | |
), | |
] | |
def _generate_examples(self, filepath, split): | |
""" Yields examples. """ | |
dictionary = {} | |
with open(filepath, "r", encoding="utf-8-sig") as f: | |
if self.config.name == "ner_data": | |
for id_, row in enumerate(f): | |
row = row.strip().split("\t") | |
content_n = row[0] | |
if content_n in dictionary.keys(): | |
(dictionary[content_n]["sentences"]).append(row[1]) | |
else: | |
dictionary[content_n] = {} | |
dictionary[content_n]["named_entity"] = row[1] | |
dictionary[content_n]["sentences"] = [row[1]] | |
yield id_, { | |
"content_n": content_n, | |
"named_entity": dictionary[content_n]["named_entity"], | |
"sentences": dictionary[content_n]["sentences"], | |
} | |
else: | |
for id_, row in enumerate(f): | |
yield id_, { | |
"sentences": row.strip(), | |
} | |