iamshnoo commited on
Commit
fe05121
·
verified ·
1 Parent(s): d66c396

Upload README.md with huggingface_hub

Browse files
Files changed (1) hide show
  1. README.md +945 -945
README.md CHANGED
@@ -2,438 +2,438 @@
2
  configs:
3
  - config_name: default
4
  data_files:
5
- - split: fishing_equipment
6
- path: data/fishing_equipment-*
7
- - split: playgrounds
8
- path: data/playgrounds-*
9
- - split: fruit_trees
10
- path: data/fruit_trees-*
11
- - split: cleaning_after_toilet
12
- path: data/cleaning_after_toilet-*
13
- - split: dinner_guests
14
- path: data/dinner_guests-*
15
- - split: idols
16
- path: data/idols-*
17
  - split: freezer
18
  path: data/freezer-*
19
- - split: hand_washing
20
- path: data/hand_washing-*
21
- - split: lock_on_front_door
22
- path: data/lock_on_front_door-*
23
- - split: children_room
24
- path: data/children_room-*
25
- - split: coats_and_jackets
26
- path: data/coats_and_jackets-*
27
- - split: hand_palm
28
- path: data/hand_palm-*
29
- - split: play_area
30
- path: data/play_area-*
31
- - split: bed
32
- path: data/bed-*
33
- - split: car_keys
34
- path: data/car_keys-*
35
- - split: meat_markets
36
- path: data/meat_markets-*
37
- - split: earings
38
- path: data/earings-*
39
- - split: hallway
40
- path: data/hallway-*
41
- - split: salt
42
- path: data/salt-*
43
- - split: cleaning_equipment
44
- path: data/cleaning_equipment-*
45
- - split: water_sources
46
- path: data/water_sources-*
47
- - split: chickens
48
- path: data/chickens-*
49
- - split: toilet_paper
50
- path: data/toilet_paper-*
51
- - split: backyard
52
- path: data/backyard-*
53
- - split: living_room
54
- path: data/living_room-*
55
- - split: refrigerator
56
- path: data/refrigerator-*
57
- - split: bathroom_privacy
58
- path: data/bathroom_privacy-*
59
- - split: next_big_thing_you_are_planning_to_buy
60
- path: data/next_big_thing_you_are_planning_to_buy-*
61
- - split: nature_sceneries
62
- path: data/nature_sceneries-*
63
- - split: bread_bowls
64
- path: data/bread_bowls-*
65
- - split: portraits
66
- path: data/portraits-*
67
- - split: boat
68
- path: data/boat-*
69
- - split: books
70
- path: data/books-*
71
- - split: necklaces
72
- path: data/necklaces-*
73
- - split: plate_of_food
74
- path: data/plate_of_food-*
75
- - split: place_where_serving_guests
76
- path: data/place_where_serving_guests-*
77
- - split: medication
78
- path: data/medication-*
79
- - split: meat_storages
80
- path: data/meat_storages-*
81
- - split: hand_back
82
- path: data/hand_back-*
83
- - split: kitchen
84
- path: data/kitchen-*
85
- - split: stove_hob
86
- path: data/stove_hob-*
87
- - split: jewelry
88
- path: data/jewelry-*
89
- - split: sitting_area
90
- path: data/sitting_area-*
91
- - split: cattle
92
- path: data/cattle-*
93
- - split: source_of_heat
94
- path: data/source_of_heat-*
95
- - split: drinks
96
- path: data/drinks-*
97
- - split: bowls
98
- path: data/bowls-*
99
- - split: tractors
100
- path: data/tractors-*
101
- - split: shampoo
102
- path: data/shampoo-*
103
- - split: toilet
104
- path: data/toilet-*
105
  - split: baking_tables
106
  path: data/baking_tables-*
107
- - split: wardrobe
108
- path: data/wardrobe-*
109
- - split: arm_watches
110
- path: data/arm_watches-*
111
- - split: armchair
112
- path: data/armchair-*
113
- - split: shower
114
- path: data/shower-*
115
- - split: visit
116
- path: data/visit-*
117
- - split: music_equipment
118
- path: data/music_equipment-*
119
- - split: bathroom_toilet
120
- path: data/bathroom_toilet-*
121
- - split: electric_wires
122
- path: data/electric_wires-*
123
- - split: cooking_pots
124
- path: data/cooking_pots-*
125
- - split: other_transport
126
- path: data/other_transport-*
127
- - split: daylight_ostructions
128
- path: data/daylight_ostructions-*
129
- - split: bread_ready
130
- path: data/bread_ready-*
131
  - split: work_area
132
  path: data/work_area-*
133
- - split: pet_foods
134
- path: data/pet_foods-*
135
- - split: air_fresheners_scents
136
- path: data/air_fresheners_scents-*
137
- - split: dishwasher
138
- path: data/dishwasher-*
139
- - split: street_view
140
- path: data/street_view-*
141
  - split: foodstores
142
  path: data/foodstores-*
143
- - split: shoes
144
- path: data/shoes-*
145
- - split: pet
146
- path: data/pet-*
147
- - split: couch
148
- path: data/couch-*
149
- - split: thing_i_dream_about_having
150
- path: data/thing_i_dream_about_having-*
151
- - split: glasses_or_lenses
152
- path: data/glasses_or_lenses-*
153
- - split: instrument
154
- path: data/instrument-*
155
- - split: vegetable_markets
156
- path: data/vegetable_markets-*
157
- - split: washing_clothes_cleaning
158
- path: data/washing_clothes_cleaning-*
159
  - split: most_played_songs_on_the_radio
160
  path: data/most_played_songs_on_the_radio-*
161
- - split: equipment
162
- path: data/equipment-*
 
 
163
  - split: car
164
  path: data/car-*
165
- - split: table_with_food
166
- path: data/table_with_food-*
167
- - split: switch_on_off
168
- path: data/switch_on_off-*
169
- - split: coins
170
- path: data/coins-*
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
171
  - split: smoke_and_steam_exit
172
  path: data/smoke_and_steam_exit-*
173
- - split: washing_detergent
174
- path: data/washing_detergent-*
175
- - split: air_cleaning_equipments
176
- path: data/air_cleaning_equipments-*
177
- - split: tv
178
- path: data/tv-*
179
- - split: lightsources_by_bed
180
- path: data/lightsources_by_bed-*
181
- - split: wall_
182
- path: data/wall_-*
183
- - split: floor
184
- path: data/floor-*
185
- - split: clothes
186
- path: data/clothes-*
187
- - split: tattoos
188
- path: data/tattoos-*
189
- - split: toothbrush
190
- path: data/toothbrush-*
191
- - split: trash_waste
192
- path: data/trash_waste-*
193
- - split: light_source_in_livingroom
194
- path: data/light_source_in_livingroom-*
195
  - split: dish_racks
196
  path: data/dish_racks-*
197
- - split: drinking_water
198
- path: data/drinking_water-*
199
- - split: phone
200
- path: data/phone-*
201
  - split: surroundings
202
  path: data/surroundings-*
203
- - split: tabloids
204
- path: data/tabloids-*
205
- - split: pen_pencils
206
- path: data/pen_pencils-*
207
- - split: tooth_paste
208
- path: data/tooth_paste-*
209
- - split: make_up
210
- path: data/make_up-*
211
- - split: worship_places
212
- path: data/worship_places-*
213
- - split: cigarettes
214
- path: data/cigarettes-*
215
- - split: sheep
216
- path: data/sheep-*
217
- - split: cups_mugs_glasses
218
- path: data/cups_mugs_glasses-*
219
- - split: baking_tools
220
- path: data/baking_tools-*
221
- - split: goats
222
- path: data/goats-*
223
- - split: dish_washing_brush_cloth
224
- path: data/dish_washing_brush_cloth-*
225
- - split: plates
226
- path: data/plates-*
227
  - split: waste_dumps
228
  path: data/waste_dumps-*
229
- - split: icons
230
- path: data/icons-*
231
- - split: meat_or_fish
232
- path: data/meat_or_fish-*
233
- - split: wheel_barrow
234
- path: data/wheel_barrow-*
235
- - split: water_sources_for_doing_dishes
236
- path: data/water_sources_for_doing_dishes-*
237
  - split: soccer_balls
238
  path: data/soccer_balls-*
239
- - split: wall_decoration
240
- path: data/wall_decoration-*
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
241
  - split: horses
242
  path: data/horses-*
243
- - split: bed_kids
244
- path: data/bed_kids-*
245
- - split: contraceptives
246
- path: data/contraceptives-*
247
  - split: nicest_shoes
248
  path: data/nicest_shoes-*
249
- - split: computer
250
- path: data/computer-*
251
- - split: baby_powder
252
- path: data/baby_powder-*
253
- - split: family_snapshots
254
- path: data/family_snapshots-*
255
- - split: moped_motorcycle
256
- path: data/moped_motorcycle-*
257
- - split: most_loved_item
258
- path: data/most_loved_item-*
259
- - split: menstruation_pads_tampax
260
- path: data/menstruation_pads_tampax-*
261
- - split: youth_culture
262
- path: data/youth_culture-*
263
- - split: baking_sheets
264
- path: data/baking_sheets-*
265
- - split: tools
266
- path: data/tools-*
267
- - split: grains
268
- path: data/grains-*
269
- - split: radio
270
- path: data/radio-*
271
- - split: rug
272
- path: data/rug-*
273
  - split: water_outlet
274
  path: data/water_outlet-*
275
- - split: milk_cows_or_bulls
276
- path: data/milk_cows_or_bulls-*
277
- - split: oven
278
- path: data/oven-*
279
- - split: roof
280
- path: data/roof-*
281
- - split: dish_washing_soap
282
- path: data/dish_washing_soap-*
283
- - split: smog_bad_air_breathing_protection
284
- path: data/smog_bad_air_breathing_protection-*
285
- - split: parking_lot
286
- path: data/parking_lot-*
287
- - split: paper
288
- path: data/paper-*
289
- - split: knifes
290
- path: data/knifes-*
291
- - split: wall_inside
292
- path: data/wall_inside-*
293
- - split: snacks
294
- path: data/snacks-*
295
- - split: fishes
296
- path: data/fishes-*
297
- - split: frontdoor_keys
298
- path: data/frontdoor_keys-*
299
- - split: photo_guide_images
300
- path: data/photo_guide_images-*
301
- - split: cutlery
302
- path: data/cutlery-*
303
- - split: water_purifier_solutions
304
- path: data/water_purifier_solutions-*
305
- - split: place_where_eating_dinner
306
- path: data/place_where_eating_dinner-*
307
  - split: front_door
308
  path: data/front_door-*
309
- - split: family
310
- path: data/family-*
311
- - split: home
312
- path: data/home-*
313
- - split: latest_furniture_bought
314
- path: data/latest_furniture_bought-*
315
- - split: cooking
316
- path: data/cooking-*
317
- - split: sources_of_drinking_water
318
- path: data/sources_of_drinking_water-*
319
- - split: vegetables
320
- path: data/vegetables-*
321
- - split: everyday_shoes
322
- path: data/everyday_shoes-*
323
- - split: elevators
324
- path: data/elevators-*
325
- - split: favorite_home_decorations
326
- path: data/favorite_home_decorations-*
327
- - split: wedding_photos
328
- path: data/wedding_photos-*
 
 
 
 
 
 
 
 
 
 
 
 
329
  - split: bedroom
330
  path: data/bedroom-*
331
- - split: carrying_water
332
- path: data/carrying_water-*
 
 
 
 
333
  - split: rehabilitation_technology
334
  path: data/rehabilitation_technology-*
335
- - split: markets
336
- path: data/markets-*
337
- - split: bike
338
- path: data/bike-*
339
- - split: bed_hq
340
- path: data/bed_hq-*
341
- - split: mosquito_protection
342
- path: data/mosquito_protection-*
343
- - split: kitchen_sink
344
- path: data/kitchen_sink-*
345
- - split: get_water
346
- path: data/get_water-*
347
- - split: hair_brush_comb
348
- path: data/hair_brush_comb-*
349
- - split: spices
350
- path: data/spices-*
351
- - split: most_loved_toy
352
- path: data/most_loved_toy-*
353
- - split: shaving
354
- path: data/shaving-*
355
- - split: teeth
356
- path: data/teeth-*
357
- - split: wall_clock
358
- path: data/wall_clock-*
359
- - split: drying
360
- path: data/drying-*
361
- - split: soap_for_hands_and_body
362
- path: data/soap_for_hands_and_body-*
363
- - split: transport_of_heavy_things
364
- path: data/transport_of_heavy_things-*
365
  - split: horse_stables
366
  path: data/horse_stables-*
367
- - split: newspapers
368
- path: data/newspapers-*
369
- - split: car_decorations
370
- path: data/car_decorations-*
371
- - split: toys
372
- path: data/toys-*
373
- - split: cleaning_floors
374
- path: data/cleaning_floors-*
375
- - split: alcoholic_drinks
376
- path: data/alcoholic_drinks-*
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
377
  - split: cosmetics
378
  path: data/cosmetics-*
 
 
 
 
379
  - split: soccer_supporter_items
380
  path: data/soccer_supporter_items-*
381
- - split: bad_outdoor_air_obstructions
382
- path: data/bad_outdoor_air_obstructions-*
383
- - split: social_drink
384
- path: data/social_drink-*
385
- - split: cooking_utensils
386
- path: data/cooking_utensils-*
387
- - split: skies_outside
388
- path: data/skies_outside-*
389
- - split: arm_watch
390
- path: data/arm_watch-*
391
- - split: guest_bed
392
- path: data/guest_bed-*
393
- - split: ingredients
394
- path: data/ingredients-*
 
 
395
  - split: replaced
396
  path: data/replaced-*
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
397
  - split: power_outlet
398
  path: data/power_outlet-*
399
- - split: ventilation
400
- path: data/ventilation-*
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
401
  - split: bills_of_money
402
  path: data/bills_of_money-*
403
- - split: light_source_in_kitchen
404
- path: data/light_source_in_kitchen-*
405
- - split: agriculture_land
406
- path: data/agriculture_land-*
407
- - split: street_detail
408
- path: data/street_detail-*
 
 
 
 
 
 
 
 
409
  - split: light_sources
410
  path: data/light_sources-*
411
- - split: ceiling
412
- path: data/ceiling-*
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
413
  - split: things_i_wish_i_had
414
  path: data/things_i_wish_i_had-*
415
- - split: wall
416
- path: data/wall-*
417
- - split: piercings
418
- path: data/piercings-*
419
- - split: vegetable_plot
420
- path: data/vegetable_plot-*
421
- - split: fields
422
- path: data/fields-*
423
- - split: source_of_cool
424
- path: data/source_of_cool-*
425
- - split: storage_room
426
- path: data/storage_room-*
427
- - split: fruits_and_vegetables
428
- path: data/fruits_and_vegetables-*
429
- - split: favourite_sports_clubs
430
- path: data/favourite_sports_clubs-*
431
- - split: snack_stores
432
- path: data/snack_stores-*
433
- - split: electricity_wires
434
- path: data/electricity_wires-*
435
- - split: celebrity_posters
436
- path: data/celebrity_posters-*
 
 
437
  dataset_info:
438
  features:
439
  - name: id
@@ -455,656 +455,656 @@ dataset_info:
455
  - name: income
456
  dtype: string
457
  splits:
458
- - name: fishing_equipment
459
- num_bytes: 4282534.0
460
- num_examples: 1
461
- - name: playgrounds
462
- num_bytes: 35287984.0
463
- num_examples: 7
464
- - name: fruit_trees
465
- num_bytes: 347993315.0
466
- num_examples: 100
467
- - name: cleaning_after_toilet
468
- num_bytes: 21874227.0
469
- num_examples: 14
470
- - name: dinner_guests
471
- num_bytes: 142874232.0
472
- num_examples: 48
473
- - name: idols
474
- num_bytes: 204194164.0
475
- num_examples: 65
476
  - name: freezer
477
  num_bytes: 515874223.0
478
  num_examples: 187
479
- - name: hand_washing
480
- num_bytes: 1060102199.0
481
- num_examples: 347
482
- - name: lock_on_front_door
483
- num_bytes: 1099656984.0
484
- num_examples: 362
485
- - name: children_room
486
- num_bytes: 677706326.0
487
- num_examples: 196
488
- - name: coats_and_jackets
489
- num_bytes: 60417863.0
490
- num_examples: 26
491
- - name: hand_palm
492
- num_bytes: 1045670614.0
493
- num_examples: 357
494
- - name: play_area
495
- num_bytes: 807546710.0
496
- num_examples: 216
497
- - name: bed
498
- num_bytes: 2798532320.0
499
- num_examples: 832
500
- - name: car_keys
501
- num_bytes: 58358512.0
502
- num_examples: 58
503
- - name: meat_markets
504
- num_bytes: 4634793.0
505
- num_examples: 1
506
- - name: earings
507
- num_bytes: 395054544.0
508
- num_examples: 136
509
- - name: hallway
510
- num_bytes: 126639302.0
511
- num_examples: 49
512
- - name: salt
513
- num_bytes: 997626560.0
514
- num_examples: 343
515
- - name: cleaning_equipment
516
- num_bytes: 808855439.0
517
- num_examples: 240
518
- - name: water_sources
519
- num_bytes: 39337550.0
520
- num_examples: 12
521
- - name: chickens
522
- num_bytes: 271724783.0
523
- num_examples: 71
524
- - name: toilet_paper
525
- num_bytes: 908650830.0
526
- num_examples: 294
527
- - name: backyard
528
- num_bytes: 834683499.0
529
- num_examples: 208
530
- - name: living_room
531
- num_bytes: 976352363.0
532
- num_examples: 279
533
- - name: refrigerator
534
- num_bytes: 704561864.0
535
- num_examples: 262
536
- - name: bathroom_privacy
537
- num_bytes: 898900810.0
538
- num_examples: 283
539
- - name: next_big_thing_you_are_planning_to_buy
540
- num_bytes: 426843198.0
541
- num_examples: 153
542
- - name: nature_sceneries
543
- num_bytes: 9080831.0
544
- num_examples: 3
545
- - name: bread_bowls
546
- num_bytes: 4171755.0
547
- num_examples: 1
548
- - name: portraits
549
- num_bytes: 27532067.0
550
- num_examples: 9
551
- - name: boat
552
- num_bytes: 23087642.0
553
- num_examples: 5
554
- - name: books
555
- num_bytes: 1045990947.0
556
- num_examples: 315
557
- - name: necklaces
558
- num_bytes: 468137237.0
559
- num_examples: 139
560
- - name: plate_of_food
561
- num_bytes: 965241961.0
562
- num_examples: 298
563
- - name: place_where_serving_guests
564
- num_bytes: 452285557.0
565
- num_examples: 147
566
- - name: medication
567
- num_bytes: 935436600.0
568
- num_examples: 291
569
- - name: meat_storages
570
- num_bytes: 5019867.0
571
- num_examples: 2
572
- - name: hand_back
573
- num_bytes: 1091816070.0
574
- num_examples: 358
575
- - name: kitchen
576
- num_bytes: 3049589855.0
577
- num_examples: 967
578
- - name: stove_hob
579
- num_bytes: 1175724856.0
580
- num_examples: 381
581
- - name: jewelry
582
- num_bytes: 566520264.0
583
- num_examples: 189
584
- - name: sitting_area
585
- num_bytes: 1008819886.0
586
- num_examples: 299
587
- - name: cattle
588
- num_bytes: 33022033.0
589
- num_examples: 12
590
- - name: source_of_heat
591
- num_bytes: 453347786.0
592
- num_examples: 145
593
- - name: drinks
594
- num_bytes: 218115579.0
595
- num_examples: 75
596
- - name: bowls
597
- num_bytes: 69506612.0
598
- num_examples: 24
599
- - name: tractors
600
- num_bytes: 8786272.0
601
- num_examples: 1
602
- - name: shampoo
603
- num_bytes: 1009790811.0
604
- num_examples: 339
605
- - name: toilet
606
- num_bytes: 2922917220.0
607
- num_examples: 943
608
  - name: baking_tables
609
  num_bytes: 3017644.0
610
  num_examples: 1
611
- - name: wardrobe
612
- num_bytes: 1161924263.0
613
- num_examples: 362
614
- - name: arm_watches
615
- num_bytes: 55557790.0
616
- num_examples: 30
617
- - name: armchair
618
- num_bytes: 1116948741.0
619
- num_examples: 332
620
- - name: shower
621
- num_bytes: 995696782.0
622
- num_examples: 329
623
- - name: visit
624
- num_bytes: 4464796725.109
625
- num_examples: 1321
626
- - name: music_equipment
627
- num_bytes: 517230560.0
628
- num_examples: 172
629
- - name: bathroom_toilet
630
- num_bytes: 1129143553.0
631
- num_examples: 350
632
- - name: electric_wires
633
- num_bytes: 8854810.0
634
- num_examples: 2
635
- - name: cooking_pots
636
- num_bytes: 1263802321.0
637
- num_examples: 384
638
- - name: other_transport
639
- num_bytes: 20219867.0
640
- num_examples: 5
641
- - name: daylight_ostructions
642
- num_bytes: 2457632.0
643
- num_examples: 6
644
- - name: bread_ready
645
- num_bytes: 2912081.0
646
- num_examples: 1
647
  - name: work_area
648
  num_bytes: 527291086.0
649
  num_examples: 168
650
- - name: pet_foods
651
- num_bytes: 208829264.0
652
- num_examples: 64
653
- - name: air_fresheners_scents
654
- num_bytes: 115395.0
655
  num_examples: 1
656
- - name: dishwasher
657
- num_bytes: 189437189.0
658
- num_examples: 55
659
- - name: street_view
660
- num_bytes: 1270219060.0
661
- num_examples: 353
662
  - name: foodstores
663
  num_bytes: 17300865.0
664
  num_examples: 3
665
- - name: shoes
666
- num_bytes: 2424967583.0
667
- num_examples: 709
668
- - name: pet
669
- num_bytes: 843309370.0
670
- num_examples: 248
671
- - name: couch
672
- num_bytes: 1038410012.0
673
- num_examples: 306
674
- - name: thing_i_dream_about_having
675
- num_bytes: 472486186.0
676
- num_examples: 159
677
- - name: glasses_or_lenses
678
- num_bytes: 406654084.0
679
- num_examples: 148
680
- - name: instrument
681
- num_bytes: 201768650.0
682
- num_examples: 64
683
- - name: vegetable_markets
684
- num_bytes: 3934905.0
685
- num_examples: 1
686
- - name: washing_clothes_cleaning
687
- num_bytes: 986858417.0
688
- num_examples: 314
689
  - name: most_played_songs_on_the_radio
690
  num_bytes: 2804770.0
691
  num_examples: 1
692
- - name: equipment
693
- num_bytes: 1330368532.0
694
- num_examples: 413
 
 
 
695
  - name: car
696
  num_bytes: 356818254.0
697
  num_examples: 154
698
- - name: table_with_food
699
- num_bytes: 723749144.0
700
- num_examples: 228
701
- - name: switch_on_off
702
- num_bytes: 879446769.0
703
- num_examples: 297
704
- - name: coins
705
- num_bytes: 4296291.0
706
- num_examples: 1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
707
  - name: smoke_and_steam_exit
708
  num_bytes: 735515901.0
709
  num_examples: 233
710
- - name: washing_detergent
711
- num_bytes: 967584026.0
712
- num_examples: 315
713
- - name: air_cleaning_equipments
714
- num_bytes: 562027.0
715
- num_examples: 4
716
- - name: tv
717
- num_bytes: 881350311.0
718
- num_examples: 292
719
- - name: lightsources_by_bed
720
- num_bytes: 262728699.0
721
- num_examples: 92
722
- - name: wall_
723
- num_bytes: 2818789640.0
724
- num_examples: 877
725
- - name: floor
726
- num_bytes: 1330556621.0
727
- num_examples: 377
728
- - name: clothes
729
- num_bytes: 1022544251.0
730
- num_examples: 323
731
- - name: tattoos
732
- num_bytes: 175056398.0
733
- num_examples: 51
734
- - name: toothbrush
735
- num_bytes: 1119100599.0
736
- num_examples: 379
737
- - name: trash_waste
738
- num_bytes: 964196788.0
739
- num_examples: 291
740
- - name: light_source_in_livingroom
741
- num_bytes: 895836854.0
742
- num_examples: 307
743
  - name: dish_racks
744
  num_bytes: 1070639074.0
745
  num_examples: 336
746
- - name: drinking_water
747
- num_bytes: 958784447.0
748
- num_examples: 309
749
- - name: phone
750
- num_bytes: 1002531643.0
751
- num_examples: 326
752
  - name: surroundings
753
  num_bytes: 60100849.0
754
  num_examples: 13
755
- - name: tabloids
756
- num_bytes: 9384343.0
757
- num_examples: 2
758
- - name: pen_pencils
759
- num_bytes: 937874666.0
760
- num_examples: 288
761
- - name: tooth_paste
762
- num_bytes: 992504555.0
763
- num_examples: 334
764
- - name: make_up
765
- num_bytes: 324344448.0
766
- num_examples: 97
767
- - name: worship_places
768
- num_bytes: 269510881.0
769
- num_examples: 77
770
- - name: cigarettes
771
- num_bytes: 124000767.0
772
- num_examples: 30
773
- - name: sheep
774
- num_bytes: 12738586.0
775
  num_examples: 4
776
- - name: cups_mugs_glasses
777
- num_bytes: 994285249.0
778
- num_examples: 333
779
- - name: baking_tools
780
- num_bytes: 2321733.0
781
- num_examples: 1
782
- - name: goats
783
- num_bytes: 94614657.0
784
- num_examples: 24
785
- - name: dish_washing_brush_cloth
786
- num_bytes: 1118661909.0
787
- num_examples: 351
788
- - name: plates
789
- num_bytes: 1033692373.0
790
- num_examples: 342
 
 
 
791
  - name: waste_dumps
792
  num_bytes: 484227664.0
793
  num_examples: 127
794
- - name: icons
795
- num_bytes: 47368214.0
796
- num_examples: 188
797
- - name: meat_or_fish
798
- num_bytes: 616043178.0
799
- num_examples: 192
800
- - name: wheel_barrow
801
- num_bytes: 201248243.0
802
- num_examples: 45
803
- - name: water_sources_for_doing_dishes
804
- num_bytes: 15657524.0
805
- num_examples: 7
806
  - name: soccer_balls
807
  num_bytes: 11121861.0
808
  num_examples: 3
809
- - name: wall_decoration
810
- num_bytes: 1133852833.0
811
- num_examples: 352
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
812
  - name: horses
813
  num_bytes: 7103900.0
814
  num_examples: 3
815
- - name: bed_kids
816
- num_bytes: 901139651.0
817
- num_examples: 250
818
- - name: contraceptives
819
- num_bytes: 56130849.0
820
- num_examples: 25
821
  - name: nicest_shoes
822
  num_bytes: 1178886748.0
823
  num_examples: 350
824
- - name: computer
825
- num_bytes: 552454079.0
826
- num_examples: 186
827
- - name: baby_powder
828
- num_bytes: 7773188.0
829
- num_examples: 4
830
- - name: family_snapshots
831
- num_bytes: 392643354.0
832
- num_examples: 109
833
- - name: moped_motorcycle
834
- num_bytes: 244103066.0
835
- num_examples: 82
836
- - name: most_loved_item
837
- num_bytes: 763492723.0
838
- num_examples: 242
839
- - name: menstruation_pads_tampax
840
- num_bytes: 400849572.0
841
- num_examples: 125
842
- - name: youth_culture
843
- num_bytes: 6899000.0
844
  num_examples: 1
845
- - name: baking_sheets
846
- num_bytes: 2760341.0
 
 
 
847
  num_examples: 1
848
- - name: tools
849
- num_bytes: 900850525.0
850
- num_examples: 252
851
- - name: grains
852
- num_bytes: 1066679345.0
853
- num_examples: 319
854
- - name: radio
855
- num_bytes: 534624094.0
856
- num_examples: 164
857
- - name: rug
858
- num_bytes: 720029591.0
859
- num_examples: 193
860
- - name: water_outlet
861
- num_bytes: 967359266.0
862
- num_examples: 305
863
- - name: milk_cows_or_bulls
864
- num_bytes: 19719273.0
865
- num_examples: 6
866
- - name: oven
867
- num_bytes: 408380446.0
868
- num_examples: 142
869
- - name: roof
870
- num_bytes: 983562313.0
871
- num_examples: 302
872
- - name: dish_washing_soap
873
- num_bytes: 1028112295.0
874
- num_examples: 337
875
- - name: smog_bad_air_breathing_protection
876
- num_bytes: 240117.0
877
  num_examples: 2
878
- - name: parking_lot
879
- num_bytes: 448364538.0
880
- num_examples: 126
881
- - name: paper
882
- num_bytes: 1595217257.0
883
- num_examples: 505
884
- - name: knifes
885
- num_bytes: 621867863.0
886
- num_examples: 181
887
- - name: wall_inside
888
- num_bytes: 1174096181.0
889
- num_examples: 358
890
- - name: snacks
891
- num_bytes: 37990707.0
892
- num_examples: 11
893
- - name: fishes
894
- num_bytes: 159058192.0
895
- num_examples: 58
896
- - name: frontdoor_keys
897
- num_bytes: 208792828.0
898
- num_examples: 147
899
  - name: photo_guide_images
900
  num_bytes: 215474454.0
901
  num_examples: 75
902
- - name: cutlery
903
- num_bytes: 926351889.0
 
 
 
904
  num_examples: 301
905
- - name: water_purifier_solutions
906
- num_bytes: 278055.0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
907
  num_examples: 2
908
- - name: place_where_eating_dinner
909
- num_bytes: 1171010449.0
910
- num_examples: 369
911
- - name: front_door
912
- num_bytes: 2269861804.0
913
- num_examples: 732
914
- - name: family
915
- num_bytes: 1622349409.0
916
- num_examples: 493
917
- - name: home
918
- num_bytes: 1873360607.0
919
- num_examples: 550
920
- - name: latest_furniture_bought
921
- num_bytes: 325501347.0
922
- num_examples: 107
923
- - name: cooking
924
- num_bytes: 2251982244.0
925
- num_examples: 679
926
- - name: sources_of_drinking_water
927
- num_bytes: 3045397.0
928
  num_examples: 8
929
- - name: vegetables
930
- num_bytes: 1619243098.0
931
- num_examples: 492
932
- - name: everyday_shoes
933
- num_bytes: 1282284689.0
934
- num_examples: 365
935
  - name: elevators
936
  num_bytes: 3346981.0
937
  num_examples: 3
938
- - name: favorite_home_decorations
939
- num_bytes: 476751718.0
940
- num_examples: 151
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
941
  - name: wedding_photos
942
  num_bytes: 266849446.0
943
  num_examples: 83
944
- - name: bedroom
945
- num_bytes: 1383727529.0
946
- num_examples: 399
947
- - name: carrying_water
948
- num_bytes: 3082174.0
949
- num_examples: 1
950
- - name: rehabilitation_technology
951
- num_bytes: 10884034.0
952
- num_examples: 8
953
- - name: markets
954
- num_bytes: 35468731.0
955
- num_examples: 8
956
- - name: bike
957
- num_bytes: 536280770.0
958
- num_examples: 149
959
- - name: bed_hq
960
- num_bytes: 18768649.0
961
- num_examples: 4
962
- - name: mosquito_protection
963
- num_bytes: 541301592.0
964
- num_examples: 163
965
- - name: kitchen_sink
966
- num_bytes: 1077526669.0
967
- num_examples: 334
968
- - name: get_water
969
- num_bytes: 312942447.0
970
- num_examples: 80
971
- - name: hair_brush_comb
972
- num_bytes: 1069311270.0
973
- num_examples: 331
974
- - name: spices
975
- num_bytes: 1138126845.0
976
- num_examples: 360
977
- - name: most_loved_toy
978
- num_bytes: 766935172.0
979
- num_examples: 238
980
- - name: shaving
981
- num_bytes: 630435242.0
982
- num_examples: 216
983
- - name: teeth
984
- num_bytes: 908538754.0
985
- num_examples: 326
986
  - name: wall_clock
987
  num_bytes: 567309624.0
988
  num_examples: 184
989
- - name: drying
990
- num_bytes: 860669230.0
991
- num_examples: 270
 
 
 
 
 
 
 
 
 
992
  - name: soap_for_hands_and_body
993
  num_bytes: 1043814773.0
994
  num_examples: 363
995
- - name: transport_of_heavy_things
996
- num_bytes: 66846208.0
997
- num_examples: 21
998
- - name: horse_stables
999
- num_bytes: 2030907.0
1000
- num_examples: 1
1001
- - name: newspapers
1002
- num_bytes: 25233082.0
1003
- num_examples: 7
1004
- - name: car_decorations
1005
- num_bytes: 5448714.0
1006
- num_examples: 1
1007
  - name: toys
1008
  num_bytes: 904248551.0
1009
  num_examples: 286
1010
- - name: cleaning_floors
1011
- num_bytes: 422989995.0
1012
- num_examples: 124
1013
- - name: alcoholic_drinks
1014
- num_bytes: 206764191.0
1015
- num_examples: 72
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1016
  - name: cosmetics
1017
  num_bytes: 362582452.0
1018
  num_examples: 123
 
 
 
 
 
 
1019
  - name: soccer_supporter_items
1020
  num_bytes: 3500438.0
1021
  num_examples: 3
1022
- - name: bad_outdoor_air_obstructions
1023
- num_bytes: 1141009.0
1024
- num_examples: 6
1025
- - name: social_drink
1026
- num_bytes: 865071477.0
1027
- num_examples: 280
1028
- - name: cooking_utensils
1029
- num_bytes: 1023598264.0
1030
- num_examples: 301
1031
- - name: skies_outside
1032
- num_bytes: 3351593.0
1033
- num_examples: 7
1034
- - name: arm_watch
1035
- num_bytes: 298661802.0
1036
- num_examples: 101
1037
- - name: guest_bed
1038
- num_bytes: 504616118.0
1039
- num_examples: 164
1040
- - name: ingredients
1041
- num_bytes: 17779940.0
1042
- num_examples: 3
 
 
 
1043
  - name: replaced
1044
  num_bytes: 4438189.0
1045
  num_examples: 3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1046
  - name: power_outlet
1047
  num_bytes: 875197741.0
1048
  num_examples: 298
1049
- - name: ventilation
1050
- num_bytes: 24058628.0
1051
- num_examples: 10
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1052
  - name: bills_of_money
1053
  num_bytes: 11163171.0
1054
  num_examples: 2
1055
- - name: light_source_in_kitchen
1056
- num_bytes: 883391525.0
1057
- num_examples: 304
1058
- - name: agriculture_land
1059
- num_bytes: 237876904.0
1060
- num_examples: 53
1061
- - name: street_detail
1062
- num_bytes: 1168591117.0
1063
- num_examples: 290
 
 
 
 
 
 
 
 
 
 
 
 
1064
  - name: light_sources
1065
  num_bytes: 707637325.0
1066
  num_examples: 220
1067
- - name: ceiling
1068
- num_bytes: 1154394188.0
1069
- num_examples: 362
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1070
  - name: things_i_wish_i_had
1071
  num_bytes: 13208034.0
1072
  num_examples: 5
1073
- - name: wall
1074
- num_bytes: 3920557387.358
1075
- num_examples: 1154
1076
- - name: piercings
1077
- num_bytes: 181157725.0
1078
- num_examples: 68
1079
- - name: vegetable_plot
1080
- num_bytes: 283618018.0
1081
- num_examples: 71
1082
- - name: fields
1083
- num_bytes: 5822273.0
1084
- num_examples: 1
1085
- - name: source_of_cool
1086
- num_bytes: 786516004.0
1087
- num_examples: 250
1088
- - name: storage_room
1089
- num_bytes: 772429217.0
1090
- num_examples: 225
1091
- - name: fruits_and_vegetables
1092
- num_bytes: 664452138.0
1093
- num_examples: 210
1094
- - name: favourite_sports_clubs
1095
- num_bytes: 135961086.0
1096
- num_examples: 46
1097
- - name: snack_stores
1098
- num_bytes: 288627.0
1099
- num_examples: 1
1100
- - name: electricity_wires
1101
- num_bytes: 2244483.0
1102
- num_examples: 1
1103
- - name: celebrity_posters
1104
- num_bytes: 6966565.0
1105
  num_examples: 1
1106
- download_size: 7376078939
1107
- dataset_size: 134294971337.46701
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1108
  ---
1109
  # Dataset Card for "dollarstreet"
1110
 
 
2
  configs:
3
  - config_name: default
4
  data_files:
5
+ - split: cups_mugs_glasses
6
+ path: data/cups_mugs_glasses-*
7
+ - split: street_detail
8
+ path: data/street_detail-*
9
+ - split: sheep
10
+ path: data/sheep-*
11
+ - split: bathroom_toilet
12
+ path: data/bathroom_toilet-*
 
 
 
 
13
  - split: freezer
14
  path: data/freezer-*
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
15
  - split: baking_tables
16
  path: data/baking_tables-*
17
+ - split: light_source_in_kitchen
18
+ path: data/light_source_in_kitchen-*
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
19
  - split: work_area
20
  path: data/work_area-*
21
+ - split: contraceptives
22
+ path: data/contraceptives-*
23
+ - split: coins
24
+ path: data/coins-*
25
+ - split: backyard
26
+ path: data/backyard-*
27
+ - split: bike
28
+ path: data/bike-*
29
  - split: foodstores
30
  path: data/foodstores-*
31
+ - split: toothbrush
32
+ path: data/toothbrush-*
33
+ - split: cattle
34
+ path: data/cattle-*
 
 
 
 
 
 
 
 
 
 
 
 
35
  - split: most_played_songs_on_the_radio
36
  path: data/most_played_songs_on_the_radio-*
37
+ - split: plate_of_food
38
+ path: data/plate_of_food-*
39
+ - split: shaving
40
+ path: data/shaving-*
41
  - split: car
42
  path: data/car-*
43
+ - split: frontdoor_keys
44
+ path: data/frontdoor_keys-*
45
+ - split: goats
46
+ path: data/goats-*
47
+ - split: couch
48
+ path: data/couch-*
49
+ - split: lock_on_front_door
50
+ path: data/lock_on_front_door-*
51
+ - split: mosquito_protection
52
+ path: data/mosquito_protection-*
53
+ - split: plates
54
+ path: data/plates-*
55
+ - split: bad_outdoor_air_obstructions
56
+ path: data/bad_outdoor_air_obstructions-*
57
+ - split: ceiling
58
+ path: data/ceiling-*
59
+ - split: radio
60
+ path: data/radio-*
61
+ - split: bowls
62
+ path: data/bowls-*
63
+ - split: daylight_ostructions
64
+ path: data/daylight_ostructions-*
65
+ - split: kitchen_sink
66
+ path: data/kitchen_sink-*
67
  - split: smoke_and_steam_exit
68
  path: data/smoke_and_steam_exit-*
69
+ - split: alcoholic_drinks
70
+ path: data/alcoholic_drinks-*
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
71
  - split: dish_racks
72
  path: data/dish_racks-*
73
+ - split: thing_i_dream_about_having
74
+ path: data/thing_i_dream_about_having-*
75
+ - split: next_big_thing_you_are_planning_to_buy
76
+ path: data/next_big_thing_you_are_planning_to_buy-*
77
  - split: surroundings
78
  path: data/surroundings-*
79
+ - split: skies_outside
80
+ path: data/skies_outside-*
81
+ - split: wall_
82
+ path: data/wall_-*
83
+ - split: earings
84
+ path: data/earings-*
85
+ - split: bread_ready
86
+ path: data/bread_ready-*
87
+ - split: hand_back
88
+ path: data/hand_back-*
89
+ - split: dinner_guests
90
+ path: data/dinner_guests-*
91
+ - split: rug
92
+ path: data/rug-*
93
+ - split: cleaning_floors
94
+ path: data/cleaning_floors-*
95
+ - split: paper
96
+ path: data/paper-*
97
+ - split: moped_motorcycle
98
+ path: data/moped_motorcycle-*
 
 
 
 
99
  - split: waste_dumps
100
  path: data/waste_dumps-*
101
+ - split: snacks
102
+ path: data/snacks-*
 
 
 
 
 
 
103
  - split: soccer_balls
104
  path: data/soccer_balls-*
105
+ - split: get_water
106
+ path: data/get_water-*
107
+ - split: source_of_cool
108
+ path: data/source_of_cool-*
109
+ - split: hand_palm
110
+ path: data/hand_palm-*
111
+ - split: cigarettes
112
+ path: data/cigarettes-*
113
+ - split: drinks
114
+ path: data/drinks-*
115
+ - split: chickens
116
+ path: data/chickens-*
117
+ - split: tattoos
118
+ path: data/tattoos-*
119
+ - split: home
120
+ path: data/home-*
121
+ - split: place_where_serving_guests
122
+ path: data/place_where_serving_guests-*
123
+ - split: smog_bad_air_breathing_protection
124
+ path: data/smog_bad_air_breathing_protection-*
125
+ - split: roof
126
+ path: data/roof-*
127
+ - split: family_snapshots
128
+ path: data/family_snapshots-*
129
+ - split: carrying_water
130
+ path: data/carrying_water-*
131
+ - split: hand_washing
132
+ path: data/hand_washing-*
133
  - split: horses
134
  path: data/horses-*
135
+ - split: medication
136
+ path: data/medication-*
137
+ - split: dish_washing_brush_cloth
138
+ path: data/dish_washing_brush_cloth-*
139
  - split: nicest_shoes
140
  path: data/nicest_shoes-*
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
141
  - split: water_outlet
142
  path: data/water_outlet-*
143
+ - split: tv
144
+ path: data/tv-*
145
+ - split: air_fresheners_scents
146
+ path: data/air_fresheners_scents-*
147
+ - split: portraits
148
+ path: data/portraits-*
149
+ - split: celebrity_posters
150
+ path: data/celebrity_posters-*
151
+ - split: boat
152
+ path: data/boat-*
153
+ - split: trash_waste
154
+ path: data/trash_waste-*
155
+ - split: shower
156
+ path: data/shower-*
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
157
  - split: front_door
158
  path: data/front_door-*
159
+ - split: electric_wires
160
+ path: data/electric_wires-*
161
+ - split: photo_guide_images
162
+ path: data/photo_guide_images-*
163
+ - split: meat_markets
164
+ path: data/meat_markets-*
165
+ - split: cooking_utensils
166
+ path: data/cooking_utensils-*
167
+ - split: fishes
168
+ path: data/fishes-*
169
+ - split: stove_hob
170
+ path: data/stove_hob-*
171
+ - split: water_sources_for_doing_dishes
172
+ path: data/water_sources_for_doing_dishes-*
173
+ - split: parking_lot
174
+ path: data/parking_lot-*
175
+ - split: spices
176
+ path: data/spices-*
177
+ - split: water_sources
178
+ path: data/water_sources-*
179
+ - split: pet_foods
180
+ path: data/pet_foods-*
181
+ - split: milk_cows_or_bulls
182
+ path: data/milk_cows_or_bulls-*
183
+ - split: vegetable_markets
184
+ path: data/vegetable_markets-*
185
+ - split: wall_decoration
186
+ path: data/wall_decoration-*
187
+ - split: hair_brush_comb
188
+ path: data/hair_brush_comb-*
189
+ - split: meat_storages
190
+ path: data/meat_storages-*
191
  - split: bedroom
192
  path: data/bedroom-*
193
+ - split: cooking_pots
194
+ path: data/cooking_pots-*
195
+ - split: music_equipment
196
+ path: data/music_equipment-*
197
+ - split: arm_watch
198
+ path: data/arm_watch-*
199
  - split: rehabilitation_technology
200
  path: data/rehabilitation_technology-*
201
+ - split: elevators
202
+ path: data/elevators-*
203
+ - split: cleaning_after_toilet
204
+ path: data/cleaning_after_toilet-*
205
+ - split: storage_room
206
+ path: data/storage_room-*
207
+ - split: bread_bowls
208
+ path: data/bread_bowls-*
209
+ - split: refrigerator
210
+ path: data/refrigerator-*
211
+ - split: dish_washing_soap
212
+ path: data/dish_washing_soap-*
213
+ - split: bed
214
+ path: data/bed-*
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
215
  - split: horse_stables
216
  path: data/horse_stables-*
217
+ - split: oven
218
+ path: data/oven-*
219
+ - split: jewelry
220
+ path: data/jewelry-*
221
+ - split: bed_kids
222
+ path: data/bed_kids-*
223
+ - split: wedding_photos
224
+ path: data/wedding_photos-*
225
+ - split: children_room
226
+ path: data/children_room-*
227
+ - split: wall_clock
228
+ path: data/wall_clock-*
229
+ - split: living_room
230
+ path: data/living_room-*
231
+ - split: cleaning_equipment
232
+ path: data/cleaning_equipment-*
233
+ - split: baking_sheets
234
+ path: data/baking_sheets-*
235
+ - split: make_up
236
+ path: data/make_up-*
237
+ - split: soap_for_hands_and_body
238
+ path: data/soap_for_hands_and_body-*
239
+ - split: toys
240
+ path: data/toys-*
241
+ - split: agriculture_land
242
+ path: data/agriculture_land-*
243
+ - split: clothes
244
+ path: data/clothes-*
245
+ - split: guest_bed
246
+ path: data/guest_bed-*
247
+ - split: fishing_equipment
248
+ path: data/fishing_equipment-*
249
+ - split: ventilation
250
+ path: data/ventilation-*
251
+ - split: knifes
252
+ path: data/knifes-*
253
+ - split: necklaces
254
+ path: data/necklaces-*
255
+ - split: most_loved_toy
256
+ path: data/most_loved_toy-*
257
+ - split: armchair
258
+ path: data/armchair-*
259
+ - split: bed_hq
260
+ path: data/bed_hq-*
261
+ - split: air_cleaning_equipments
262
+ path: data/air_cleaning_equipments-*
263
+ - split: everyday_shoes
264
+ path: data/everyday_shoes-*
265
+ - split: instrument
266
+ path: data/instrument-*
267
+ - split: social_drink
268
+ path: data/social_drink-*
269
+ - split: drinking_water
270
+ path: data/drinking_water-*
271
+ - split: newspapers
272
+ path: data/newspapers-*
273
+ - split: washing_detergent
274
+ path: data/washing_detergent-*
275
+ - split: transport_of_heavy_things
276
+ path: data/transport_of_heavy_things-*
277
+ - split: floor
278
+ path: data/floor-*
279
+ - split: hallway
280
+ path: data/hallway-*
281
+ - split: salt
282
+ path: data/salt-*
283
+ - split: pen_pencils
284
+ path: data/pen_pencils-*
285
+ - split: cooking
286
+ path: data/cooking-*
287
+ - split: visit
288
+ path: data/visit-*
289
  - split: cosmetics
290
  path: data/cosmetics-*
291
+ - split: latest_furniture_bought
292
+ path: data/latest_furniture_bought-*
293
+ - split: play_area
294
+ path: data/play_area-*
295
  - split: soccer_supporter_items
296
  path: data/soccer_supporter_items-*
297
+ - split: water_purifier_solutions
298
+ path: data/water_purifier_solutions-*
299
+ - split: snack_stores
300
+ path: data/snack_stores-*
301
+ - split: wall
302
+ path: data/wall-*
303
+ - split: sitting_area
304
+ path: data/sitting_area-*
305
+ - split: wheel_barrow
306
+ path: data/wheel_barrow-*
307
+ - split: car_decorations
308
+ path: data/car_decorations-*
309
+ - split: markets
310
+ path: data/markets-*
311
+ - split: fields
312
+ path: data/fields-*
313
  - split: replaced
314
  path: data/replaced-*
315
+ - split: wardrobe
316
+ path: data/wardrobe-*
317
+ - split: tooth_paste
318
+ path: data/tooth_paste-*
319
+ - split: worship_places
320
+ path: data/worship_places-*
321
+ - split: source_of_heat
322
+ path: data/source_of_heat-*
323
+ - split: toilet
324
+ path: data/toilet-*
325
+ - split: piercings
326
+ path: data/piercings-*
327
+ - split: baking_tools
328
+ path: data/baking_tools-*
329
+ - split: lightsources_by_bed
330
+ path: data/lightsources_by_bed-*
331
+ - split: light_source_in_livingroom
332
+ path: data/light_source_in_livingroom-*
333
+ - split: favourite_sports_clubs
334
+ path: data/favourite_sports_clubs-*
335
+ - split: tabloids
336
+ path: data/tabloids-*
337
+ - split: books
338
+ path: data/books-*
339
+ - split: menstruation_pads_tampax
340
+ path: data/menstruation_pads_tampax-*
341
  - split: power_outlet
342
  path: data/power_outlet-*
343
+ - split: toilet_paper
344
+ path: data/toilet_paper-*
345
+ - split: arm_watches
346
+ path: data/arm_watches-*
347
+ - split: electricity_wires
348
+ path: data/electricity_wires-*
349
+ - split: wall_inside
350
+ path: data/wall_inside-*
351
+ - split: computer
352
+ path: data/computer-*
353
+ - split: meat_or_fish
354
+ path: data/meat_or_fish-*
355
+ - split: sources_of_drinking_water
356
+ path: data/sources_of_drinking_water-*
357
+ - split: kitchen
358
+ path: data/kitchen-*
359
+ - split: ingredients
360
+ path: data/ingredients-*
361
+ - split: baby_powder
362
+ path: data/baby_powder-*
363
+ - split: bathroom_privacy
364
+ path: data/bathroom_privacy-*
365
+ - split: vegetable_plot
366
+ path: data/vegetable_plot-*
367
+ - split: car_keys
368
+ path: data/car_keys-*
369
+ - split: icons
370
+ path: data/icons-*
371
+ - split: favorite_home_decorations
372
+ path: data/favorite_home_decorations-*
373
+ - split: tractors
374
+ path: data/tractors-*
375
  - split: bills_of_money
376
  path: data/bills_of_money-*
377
+ - split: cutlery
378
+ path: data/cutlery-*
379
+ - split: family
380
+ path: data/family-*
381
+ - split: teeth
382
+ path: data/teeth-*
383
+ - split: place_where_eating_dinner
384
+ path: data/place_where_eating_dinner-*
385
+ - split: grains
386
+ path: data/grains-*
387
+ - split: washing_clothes_cleaning
388
+ path: data/washing_clothes_cleaning-*
389
+ - split: fruits_and_vegetables
390
+ path: data/fruits_and_vegetables-*
391
  - split: light_sources
392
  path: data/light_sources-*
393
+ - split: tools
394
+ path: data/tools-*
395
+ - split: drying
396
+ path: data/drying-*
397
+ - split: street_view
398
+ path: data/street_view-*
399
+ - split: phone
400
+ path: data/phone-*
401
+ - split: idols
402
+ path: data/idols-*
403
+ - split: pet
404
+ path: data/pet-*
405
+ - split: other_transport
406
+ path: data/other_transport-*
407
+ - split: most_loved_item
408
+ path: data/most_loved_item-*
409
+ - split: glasses_or_lenses
410
+ path: data/glasses_or_lenses-*
411
  - split: things_i_wish_i_had
412
  path: data/things_i_wish_i_had-*
413
+ - split: table_with_food
414
+ path: data/table_with_food-*
415
+ - split: youth_culture
416
+ path: data/youth_culture-*
417
+ - split: equipment
418
+ path: data/equipment-*
419
+ - split: shoes
420
+ path: data/shoes-*
421
+ - split: coats_and_jackets
422
+ path: data/coats_and_jackets-*
423
+ - split: dishwasher
424
+ path: data/dishwasher-*
425
+ - split: vegetables
426
+ path: data/vegetables-*
427
+ - split: fruit_trees
428
+ path: data/fruit_trees-*
429
+ - split: nature_sceneries
430
+ path: data/nature_sceneries-*
431
+ - split: shampoo
432
+ path: data/shampoo-*
433
+ - split: switch_on_off
434
+ path: data/switch_on_off-*
435
+ - split: playgrounds
436
+ path: data/playgrounds-*
437
  dataset_info:
438
  features:
439
  - name: id
 
455
  - name: income
456
  dtype: string
457
  splits:
458
+ - name: cups_mugs_glasses
459
+ num_bytes: 994285249.0
460
+ num_examples: 333
461
+ - name: street_detail
462
+ num_bytes: 1168591117.0
463
+ num_examples: 290
464
+ - name: sheep
465
+ num_bytes: 12738586.0
466
+ num_examples: 4
467
+ - name: bathroom_toilet
468
+ num_bytes: 1129143553.0
469
+ num_examples: 350
 
 
 
 
 
 
470
  - name: freezer
471
  num_bytes: 515874223.0
472
  num_examples: 187
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
473
  - name: baking_tables
474
  num_bytes: 3017644.0
475
  num_examples: 1
476
+ - name: light_source_in_kitchen
477
+ num_bytes: 883391525.0
478
+ num_examples: 304
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
479
  - name: work_area
480
  num_bytes: 527291086.0
481
  num_examples: 168
482
+ - name: contraceptives
483
+ num_bytes: 56130849.0
484
+ num_examples: 25
485
+ - name: coins
486
+ num_bytes: 4296291.0
487
  num_examples: 1
488
+ - name: backyard
489
+ num_bytes: 834683499.0
490
+ num_examples: 208
491
+ - name: bike
492
+ num_bytes: 536280770.0
493
+ num_examples: 149
494
  - name: foodstores
495
  num_bytes: 17300865.0
496
  num_examples: 3
497
+ - name: toothbrush
498
+ num_bytes: 1119100599.0
499
+ num_examples: 379
500
+ - name: cattle
501
+ num_bytes: 33022033.0
502
+ num_examples: 12
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
503
  - name: most_played_songs_on_the_radio
504
  num_bytes: 2804770.0
505
  num_examples: 1
506
+ - name: plate_of_food
507
+ num_bytes: 965241961.0
508
+ num_examples: 298
509
+ - name: shaving
510
+ num_bytes: 630435242.0
511
+ num_examples: 216
512
  - name: car
513
  num_bytes: 356818254.0
514
  num_examples: 154
515
+ - name: frontdoor_keys
516
+ num_bytes: 208792828.0
517
+ num_examples: 147
518
+ - name: goats
519
+ num_bytes: 94614657.0
520
+ num_examples: 24
521
+ - name: couch
522
+ num_bytes: 1038410012.0
523
+ num_examples: 306
524
+ - name: lock_on_front_door
525
+ num_bytes: 1099656984.0
526
+ num_examples: 362
527
+ - name: mosquito_protection
528
+ num_bytes: 541301592.0
529
+ num_examples: 163
530
+ - name: plates
531
+ num_bytes: 1033692373.0
532
+ num_examples: 342
533
+ - name: bad_outdoor_air_obstructions
534
+ num_bytes: 1141009.0
535
+ num_examples: 6
536
+ - name: ceiling
537
+ num_bytes: 1154394188.0
538
+ num_examples: 362
539
+ - name: radio
540
+ num_bytes: 534624094.0
541
+ num_examples: 164
542
+ - name: bowls
543
+ num_bytes: 69506612.0
544
+ num_examples: 24
545
+ - name: daylight_ostructions
546
+ num_bytes: 2457632.0
547
+ num_examples: 6
548
+ - name: kitchen_sink
549
+ num_bytes: 1077526669.0
550
+ num_examples: 334
551
  - name: smoke_and_steam_exit
552
  num_bytes: 735515901.0
553
  num_examples: 233
554
+ - name: alcoholic_drinks
555
+ num_bytes: 206764191.0
556
+ num_examples: 72
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
557
  - name: dish_racks
558
  num_bytes: 1070639074.0
559
  num_examples: 336
560
+ - name: thing_i_dream_about_having
561
+ num_bytes: 472486186.0
562
+ num_examples: 159
563
+ - name: next_big_thing_you_are_planning_to_buy
564
+ num_bytes: 426843198.0
565
+ num_examples: 153
566
  - name: surroundings
567
  num_bytes: 60100849.0
568
  num_examples: 13
569
+ - name: skies_outside
570
+ num_bytes: 3351593.0
571
+ num_examples: 7
572
+ - name: wall_
573
+ num_bytes: 2818789640.0
574
+ num_examples: 877
575
+ - name: earings
576
+ num_bytes: 395054544.0
577
+ num_examples: 136
578
+ - name: bread_ready
579
+ num_bytes: 17031177.0
 
 
 
 
 
 
 
 
 
580
  num_examples: 4
581
+ - name: hand_back
582
+ num_bytes: 1091816070.0
583
+ num_examples: 358
584
+ - name: dinner_guests
585
+ num_bytes: 142874232.0
586
+ num_examples: 48
587
+ - name: rug
588
+ num_bytes: 720029591.0
589
+ num_examples: 193
590
+ - name: cleaning_floors
591
+ num_bytes: 422989995.0
592
+ num_examples: 124
593
+ - name: paper
594
+ num_bytes: 1595217257.0
595
+ num_examples: 505
596
+ - name: moped_motorcycle
597
+ num_bytes: 244103066.0
598
+ num_examples: 82
599
  - name: waste_dumps
600
  num_bytes: 484227664.0
601
  num_examples: 127
602
+ - name: snacks
603
+ num_bytes: 37990707.0
604
+ num_examples: 11
 
 
 
 
 
 
 
 
 
605
  - name: soccer_balls
606
  num_bytes: 11121861.0
607
  num_examples: 3
608
+ - name: get_water
609
+ num_bytes: 312942447.0
610
+ num_examples: 80
611
+ - name: source_of_cool
612
+ num_bytes: 786516004.0
613
+ num_examples: 250
614
+ - name: hand_palm
615
+ num_bytes: 1045670614.0
616
+ num_examples: 357
617
+ - name: cigarettes
618
+ num_bytes: 124000767.0
619
+ num_examples: 30
620
+ - name: drinks
621
+ num_bytes: 218115579.0
622
+ num_examples: 75
623
+ - name: chickens
624
+ num_bytes: 271724783.0
625
+ num_examples: 71
626
+ - name: tattoos
627
+ num_bytes: 175056398.0
628
+ num_examples: 51
629
+ - name: home
630
+ num_bytes: 1873360607.0
631
+ num_examples: 550
632
+ - name: place_where_serving_guests
633
+ num_bytes: 452285557.0
634
+ num_examples: 147
635
+ - name: smog_bad_air_breathing_protection
636
+ num_bytes: 240117.0
637
+ num_examples: 2
638
+ - name: roof
639
+ num_bytes: 983562313.0
640
+ num_examples: 302
641
+ - name: family_snapshots
642
+ num_bytes: 392643354.0
643
+ num_examples: 109
644
+ - name: carrying_water
645
+ num_bytes: 3082174.0
646
+ num_examples: 1
647
+ - name: hand_washing
648
+ num_bytes: 1060102199.0
649
+ num_examples: 347
650
  - name: horses
651
  num_bytes: 7103900.0
652
  num_examples: 3
653
+ - name: medication
654
+ num_bytes: 935436600.0
655
+ num_examples: 291
656
+ - name: dish_washing_brush_cloth
657
+ num_bytes: 1118661909.0
658
+ num_examples: 351
659
  - name: nicest_shoes
660
  num_bytes: 1178886748.0
661
  num_examples: 350
662
+ - name: water_outlet
663
+ num_bytes: 967359266.0
664
+ num_examples: 305
665
+ - name: tv
666
+ num_bytes: 881350311.0
667
+ num_examples: 292
668
+ - name: air_fresheners_scents
669
+ num_bytes: 115395.0
 
 
 
 
 
 
 
 
 
 
 
 
670
  num_examples: 1
671
+ - name: portraits
672
+ num_bytes: 27532067.0
673
+ num_examples: 9
674
+ - name: celebrity_posters
675
+ num_bytes: 6966565.0
676
  num_examples: 1
677
+ - name: boat
678
+ num_bytes: 23087642.0
679
+ num_examples: 5
680
+ - name: trash_waste
681
+ num_bytes: 964196788.0
682
+ num_examples: 291
683
+ - name: shower
684
+ num_bytes: 995696782.0
685
+ num_examples: 329
686
+ - name: front_door
687
+ num_bytes: 2269861804.0
688
+ num_examples: 732
689
+ - name: electric_wires
690
+ num_bytes: 8854810.0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
691
  num_examples: 2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
692
  - name: photo_guide_images
693
  num_bytes: 215474454.0
694
  num_examples: 75
695
+ - name: meat_markets
696
+ num_bytes: 4634793.0
697
+ num_examples: 1
698
+ - name: cooking_utensils
699
+ num_bytes: 1023598264.0
700
  num_examples: 301
701
+ - name: fishes
702
+ num_bytes: 159058192.0
703
+ num_examples: 58
704
+ - name: stove_hob
705
+ num_bytes: 1175724856.0
706
+ num_examples: 381
707
+ - name: water_sources_for_doing_dishes
708
+ num_bytes: 15657524.0
709
+ num_examples: 7
710
+ - name: parking_lot
711
+ num_bytes: 448364538.0
712
+ num_examples: 126
713
+ - name: spices
714
+ num_bytes: 1138126845.0
715
+ num_examples: 360
716
+ - name: water_sources
717
+ num_bytes: 39337550.0
718
+ num_examples: 12
719
+ - name: pet_foods
720
+ num_bytes: 208829264.0
721
+ num_examples: 64
722
+ - name: milk_cows_or_bulls
723
+ num_bytes: 19719273.0
724
+ num_examples: 6
725
+ - name: vegetable_markets
726
+ num_bytes: 3934905.0
727
+ num_examples: 1
728
+ - name: wall_decoration
729
+ num_bytes: 1133852833.0
730
+ num_examples: 352
731
+ - name: hair_brush_comb
732
+ num_bytes: 1069311270.0
733
+ num_examples: 331
734
+ - name: meat_storages
735
+ num_bytes: 5019867.0
736
  num_examples: 2
737
+ - name: bedroom
738
+ num_bytes: 1383727529.0
739
+ num_examples: 399
740
+ - name: cooking_pots
741
+ num_bytes: 1263802321.0
742
+ num_examples: 384
743
+ - name: music_equipment
744
+ num_bytes: 517230560.0
745
+ num_examples: 172
746
+ - name: arm_watch
747
+ num_bytes: 298661802.0
748
+ num_examples: 101
749
+ - name: rehabilitation_technology
750
+ num_bytes: 10884034.0
 
 
 
 
 
 
751
  num_examples: 8
 
 
 
 
 
 
752
  - name: elevators
753
  num_bytes: 3346981.0
754
  num_examples: 3
755
+ - name: cleaning_after_toilet
756
+ num_bytes: 21874227.0
757
+ num_examples: 14
758
+ - name: storage_room
759
+ num_bytes: 772429217.0
760
+ num_examples: 225
761
+ - name: bread_bowls
762
+ num_bytes: 4171755.0
763
+ num_examples: 1
764
+ - name: refrigerator
765
+ num_bytes: 704561864.0
766
+ num_examples: 262
767
+ - name: dish_washing_soap
768
+ num_bytes: 1028112295.0
769
+ num_examples: 337
770
+ - name: bed
771
+ num_bytes: 2798532320.0
772
+ num_examples: 832
773
+ - name: horse_stables
774
+ num_bytes: 2030907.0
775
+ num_examples: 1
776
+ - name: oven
777
+ num_bytes: 408380446.0
778
+ num_examples: 142
779
+ - name: jewelry
780
+ num_bytes: 566520264.0
781
+ num_examples: 189
782
+ - name: bed_kids
783
+ num_bytes: 901139651.0
784
+ num_examples: 250
785
  - name: wedding_photos
786
  num_bytes: 266849446.0
787
  num_examples: 83
788
+ - name: children_room
789
+ num_bytes: 677706326.0
790
+ num_examples: 196
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
791
  - name: wall_clock
792
  num_bytes: 567309624.0
793
  num_examples: 184
794
+ - name: living_room
795
+ num_bytes: 976352363.0
796
+ num_examples: 279
797
+ - name: cleaning_equipment
798
+ num_bytes: 808855439.0
799
+ num_examples: 240
800
+ - name: baking_sheets
801
+ num_bytes: 2760341.0
802
+ num_examples: 1
803
+ - name: make_up
804
+ num_bytes: 324344448.0
805
+ num_examples: 97
806
  - name: soap_for_hands_and_body
807
  num_bytes: 1043814773.0
808
  num_examples: 363
 
 
 
 
 
 
 
 
 
 
 
 
809
  - name: toys
810
  num_bytes: 904248551.0
811
  num_examples: 286
812
+ - name: agriculture_land
813
+ num_bytes: 237876904.0
814
+ num_examples: 53
815
+ - name: clothes
816
+ num_bytes: 1022544251.0
817
+ num_examples: 323
818
+ - name: guest_bed
819
+ num_bytes: 504616118.0
820
+ num_examples: 164
821
+ - name: fishing_equipment
822
+ num_bytes: 4282534.0
823
+ num_examples: 1
824
+ - name: ventilation
825
+ num_bytes: 24058628.0
826
+ num_examples: 10
827
+ - name: knifes
828
+ num_bytes: 621867863.0
829
+ num_examples: 181
830
+ - name: necklaces
831
+ num_bytes: 468137237.0
832
+ num_examples: 139
833
+ - name: most_loved_toy
834
+ num_bytes: 766935172.0
835
+ num_examples: 238
836
+ - name: armchair
837
+ num_bytes: 1116948741.0
838
+ num_examples: 332
839
+ - name: bed_hq
840
+ num_bytes: 18768649.0
841
+ num_examples: 4
842
+ - name: air_cleaning_equipments
843
+ num_bytes: 562027.0
844
+ num_examples: 4
845
+ - name: everyday_shoes
846
+ num_bytes: 1282284689.0
847
+ num_examples: 365
848
+ - name: instrument
849
+ num_bytes: 201768650.0
850
+ num_examples: 64
851
+ - name: social_drink
852
+ num_bytes: 865071477.0
853
+ num_examples: 280
854
+ - name: drinking_water
855
+ num_bytes: 958784447.0
856
+ num_examples: 309
857
+ - name: newspapers
858
+ num_bytes: 25233082.0
859
+ num_examples: 7
860
+ - name: washing_detergent
861
+ num_bytes: 967584026.0
862
+ num_examples: 315
863
+ - name: transport_of_heavy_things
864
+ num_bytes: 66846208.0
865
+ num_examples: 21
866
+ - name: floor
867
+ num_bytes: 1330556621.0
868
+ num_examples: 377
869
+ - name: hallway
870
+ num_bytes: 126639302.0
871
+ num_examples: 49
872
+ - name: salt
873
+ num_bytes: 997626560.0
874
+ num_examples: 343
875
+ - name: pen_pencils
876
+ num_bytes: 937874666.0
877
+ num_examples: 288
878
+ - name: cooking
879
+ num_bytes: 2251982244.0
880
+ num_examples: 679
881
+ - name: visit
882
+ num_bytes: 4464796725.109
883
+ num_examples: 1321
884
  - name: cosmetics
885
  num_bytes: 362582452.0
886
  num_examples: 123
887
+ - name: latest_furniture_bought
888
+ num_bytes: 325501347.0
889
+ num_examples: 107
890
+ - name: play_area
891
+ num_bytes: 807546710.0
892
+ num_examples: 216
893
  - name: soccer_supporter_items
894
  num_bytes: 3500438.0
895
  num_examples: 3
896
+ - name: water_purifier_solutions
897
+ num_bytes: 278055.0
898
+ num_examples: 2
899
+ - name: snack_stores
900
+ num_bytes: 288627.0
901
+ num_examples: 1
902
+ - name: wall
903
+ num_bytes: 3920557387.358
904
+ num_examples: 1154
905
+ - name: sitting_area
906
+ num_bytes: 1008819886.0
907
+ num_examples: 299
908
+ - name: wheel_barrow
909
+ num_bytes: 201248243.0
910
+ num_examples: 45
911
+ - name: car_decorations
912
+ num_bytes: 5448714.0
913
+ num_examples: 1
914
+ - name: markets
915
+ num_bytes: 35468731.0
916
+ num_examples: 8
917
+ - name: fields
918
+ num_bytes: 5822273.0
919
+ num_examples: 1
920
  - name: replaced
921
  num_bytes: 4438189.0
922
  num_examples: 3
923
+ - name: wardrobe
924
+ num_bytes: 1161924263.0
925
+ num_examples: 362
926
+ - name: tooth_paste
927
+ num_bytes: 992504555.0
928
+ num_examples: 334
929
+ - name: worship_places
930
+ num_bytes: 269510881.0
931
+ num_examples: 77
932
+ - name: source_of_heat
933
+ num_bytes: 453347786.0
934
+ num_examples: 145
935
+ - name: toilet
936
+ num_bytes: 2922917220.0
937
+ num_examples: 943
938
+ - name: piercings
939
+ num_bytes: 181157725.0
940
+ num_examples: 68
941
+ - name: baking_tools
942
+ num_bytes: 2321733.0
943
+ num_examples: 1
944
+ - name: lightsources_by_bed
945
+ num_bytes: 262728699.0
946
+ num_examples: 92
947
+ - name: light_source_in_livingroom
948
+ num_bytes: 895836854.0
949
+ num_examples: 307
950
+ - name: favourite_sports_clubs
951
+ num_bytes: 135961086.0
952
+ num_examples: 46
953
+ - name: tabloids
954
+ num_bytes: 9384343.0
955
+ num_examples: 2
956
+ - name: books
957
+ num_bytes: 1045990947.0
958
+ num_examples: 315
959
+ - name: menstruation_pads_tampax
960
+ num_bytes: 400849572.0
961
+ num_examples: 125
962
  - name: power_outlet
963
  num_bytes: 875197741.0
964
  num_examples: 298
965
+ - name: toilet_paper
966
+ num_bytes: 908650830.0
967
+ num_examples: 294
968
+ - name: arm_watches
969
+ num_bytes: 55557790.0
970
+ num_examples: 30
971
+ - name: electricity_wires
972
+ num_bytes: 2244483.0
973
+ num_examples: 1
974
+ - name: wall_inside
975
+ num_bytes: 1174096181.0
976
+ num_examples: 358
977
+ - name: computer
978
+ num_bytes: 552454079.0
979
+ num_examples: 186
980
+ - name: meat_or_fish
981
+ num_bytes: 616043178.0
982
+ num_examples: 192
983
+ - name: sources_of_drinking_water
984
+ num_bytes: 3045397.0
985
+ num_examples: 8
986
+ - name: kitchen
987
+ num_bytes: 3049589855.0
988
+ num_examples: 967
989
+ - name: ingredients
990
+ num_bytes: 17779940.0
991
+ num_examples: 3
992
+ - name: baby_powder
993
+ num_bytes: 7773188.0
994
+ num_examples: 4
995
+ - name: bathroom_privacy
996
+ num_bytes: 898900810.0
997
+ num_examples: 283
998
+ - name: vegetable_plot
999
+ num_bytes: 283618018.0
1000
+ num_examples: 71
1001
+ - name: car_keys
1002
+ num_bytes: 58358512.0
1003
+ num_examples: 58
1004
+ - name: icons
1005
+ num_bytes: 47368214.0
1006
+ num_examples: 188
1007
+ - name: favorite_home_decorations
1008
+ num_bytes: 476751718.0
1009
+ num_examples: 151
1010
+ - name: tractors
1011
+ num_bytes: 8786272.0
1012
+ num_examples: 1
1013
  - name: bills_of_money
1014
  num_bytes: 11163171.0
1015
  num_examples: 2
1016
+ - name: cutlery
1017
+ num_bytes: 926351889.0
1018
+ num_examples: 301
1019
+ - name: family
1020
+ num_bytes: 1622349409.0
1021
+ num_examples: 493
1022
+ - name: teeth
1023
+ num_bytes: 908538754.0
1024
+ num_examples: 326
1025
+ - name: place_where_eating_dinner
1026
+ num_bytes: 1171010449.0
1027
+ num_examples: 369
1028
+ - name: grains
1029
+ num_bytes: 1066679345.0
1030
+ num_examples: 319
1031
+ - name: washing_clothes_cleaning
1032
+ num_bytes: 986858417.0
1033
+ num_examples: 314
1034
+ - name: fruits_and_vegetables
1035
+ num_bytes: 664452138.0
1036
+ num_examples: 210
1037
  - name: light_sources
1038
  num_bytes: 707637325.0
1039
  num_examples: 220
1040
+ - name: tools
1041
+ num_bytes: 900850525.0
1042
+ num_examples: 252
1043
+ - name: drying
1044
+ num_bytes: 860669230.0
1045
+ num_examples: 270
1046
+ - name: street_view
1047
+ num_bytes: 1270219060.0
1048
+ num_examples: 353
1049
+ - name: phone
1050
+ num_bytes: 1002531643.0
1051
+ num_examples: 326
1052
+ - name: idols
1053
+ num_bytes: 204194164.0
1054
+ num_examples: 65
1055
+ - name: pet
1056
+ num_bytes: 843309370.0
1057
+ num_examples: 248
1058
+ - name: other_transport
1059
+ num_bytes: 20219867.0
1060
+ num_examples: 5
1061
+ - name: most_loved_item
1062
+ num_bytes: 763492723.0
1063
+ num_examples: 242
1064
+ - name: glasses_or_lenses
1065
+ num_bytes: 406654084.0
1066
+ num_examples: 148
1067
  - name: things_i_wish_i_had
1068
  num_bytes: 13208034.0
1069
  num_examples: 5
1070
+ - name: table_with_food
1071
+ num_bytes: 723749144.0
1072
+ num_examples: 228
1073
+ - name: youth_culture
1074
+ num_bytes: 6899000.0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1075
  num_examples: 1
1076
+ - name: equipment
1077
+ num_bytes: 1330368532.0
1078
+ num_examples: 413
1079
+ - name: shoes
1080
+ num_bytes: 2424967583.0
1081
+ num_examples: 709
1082
+ - name: coats_and_jackets
1083
+ num_bytes: 60417863.0
1084
+ num_examples: 26
1085
+ - name: dishwasher
1086
+ num_bytes: 189437189.0
1087
+ num_examples: 55
1088
+ - name: vegetables
1089
+ num_bytes: 1619243098.0
1090
+ num_examples: 492
1091
+ - name: fruit_trees
1092
+ num_bytes: 347993315.0
1093
+ num_examples: 100
1094
+ - name: nature_sceneries
1095
+ num_bytes: 9080831.0
1096
+ num_examples: 3
1097
+ - name: shampoo
1098
+ num_bytes: 1009790811.0
1099
+ num_examples: 339
1100
+ - name: switch_on_off
1101
+ num_bytes: 879446769.0
1102
+ num_examples: 297
1103
+ - name: playgrounds
1104
+ num_bytes: 35287984.0
1105
+ num_examples: 7
1106
+ download_size: 17029671
1107
+ dataset_size: 134309090433.467
1108
  ---
1109
  # Dataset Card for "dollarstreet"
1110