iamshnoo commited on
Commit
c969a91
·
verified ·
1 Parent(s): 692dac7

Upload README.md with huggingface_hub

Browse files
Files changed (1) hide show
  1. README.md +1111 -0
README.md ADDED
@@ -0,0 +1,1111 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ configs:
3
+ - config_name: default
4
+ data_files:
5
+ - split: fishing_equipment
6
+ path: data/fishing_equipment-*
7
+ - split: playgrounds
8
+ path: data/playgrounds-*
9
+ - split: fruit_trees
10
+ path: data/fruit_trees-*
11
+ - split: cleaning_after_toilet
12
+ path: data/cleaning_after_toilet-*
13
+ - split: dinner_guests
14
+ path: data/dinner_guests-*
15
+ - split: idols
16
+ path: data/idols-*
17
+ - split: freezer
18
+ path: data/freezer-*
19
+ - split: hand_washing
20
+ path: data/hand_washing-*
21
+ - split: lock_on_front_door
22
+ path: data/lock_on_front_door-*
23
+ - split: children_room
24
+ path: data/children_room-*
25
+ - split: coats_and_jackets
26
+ path: data/coats_and_jackets-*
27
+ - split: hand_palm
28
+ path: data/hand_palm-*
29
+ - split: play_area
30
+ path: data/play_area-*
31
+ - split: bed
32
+ path: data/bed-*
33
+ - split: car_keys
34
+ path: data/car_keys-*
35
+ - split: meat_markets
36
+ path: data/meat_markets-*
37
+ - split: earings
38
+ path: data/earings-*
39
+ - split: hallway
40
+ path: data/hallway-*
41
+ - split: salt
42
+ path: data/salt-*
43
+ - split: cleaning_equipment
44
+ path: data/cleaning_equipment-*
45
+ - split: water_sources
46
+ path: data/water_sources-*
47
+ - split: chickens
48
+ path: data/chickens-*
49
+ - split: toilet_paper
50
+ path: data/toilet_paper-*
51
+ - split: backyard
52
+ path: data/backyard-*
53
+ - split: living_room
54
+ path: data/living_room-*
55
+ - split: refrigerator
56
+ path: data/refrigerator-*
57
+ - split: bathroom_privacy
58
+ path: data/bathroom_privacy-*
59
+ - split: next_big_thing_you_are_planning_to_buy
60
+ path: data/next_big_thing_you_are_planning_to_buy-*
61
+ - split: nature_sceneries
62
+ path: data/nature_sceneries-*
63
+ - split: bread_bowls
64
+ path: data/bread_bowls-*
65
+ - split: portraits
66
+ path: data/portraits-*
67
+ - split: boat
68
+ path: data/boat-*
69
+ - split: books
70
+ path: data/books-*
71
+ - split: necklaces
72
+ path: data/necklaces-*
73
+ - split: plate_of_food
74
+ path: data/plate_of_food-*
75
+ - split: place_where_serving_guests
76
+ path: data/place_where_serving_guests-*
77
+ - split: medication
78
+ path: data/medication-*
79
+ - split: meat_storages
80
+ path: data/meat_storages-*
81
+ - split: hand_back
82
+ path: data/hand_back-*
83
+ - split: kitchen
84
+ path: data/kitchen-*
85
+ - split: stove_hob
86
+ path: data/stove_hob-*
87
+ - split: jewelry
88
+ path: data/jewelry-*
89
+ - split: sitting_area
90
+ path: data/sitting_area-*
91
+ - split: cattle
92
+ path: data/cattle-*
93
+ - split: source_of_heat
94
+ path: data/source_of_heat-*
95
+ - split: drinks
96
+ path: data/drinks-*
97
+ - split: bowls
98
+ path: data/bowls-*
99
+ - split: tractors
100
+ path: data/tractors-*
101
+ - split: shampoo
102
+ path: data/shampoo-*
103
+ - split: toilet
104
+ path: data/toilet-*
105
+ - split: baking_tables
106
+ path: data/baking_tables-*
107
+ - split: wardrobe
108
+ path: data/wardrobe-*
109
+ - split: arm_watches
110
+ path: data/arm_watches-*
111
+ - split: armchair
112
+ path: data/armchair-*
113
+ - split: shower
114
+ path: data/shower-*
115
+ - split: visit
116
+ path: data/visit-*
117
+ - split: music_equipment
118
+ path: data/music_equipment-*
119
+ - split: bathroom_toilet
120
+ path: data/bathroom_toilet-*
121
+ - split: electric_wires
122
+ path: data/electric_wires-*
123
+ - split: cooking_pots
124
+ path: data/cooking_pots-*
125
+ - split: other_transport
126
+ path: data/other_transport-*
127
+ - split: daylight_ostructions
128
+ path: data/daylight_ostructions-*
129
+ - split: bread_ready
130
+ path: data/bread_ready-*
131
+ - split: work_area
132
+ path: data/work_area-*
133
+ - split: pet_foods
134
+ path: data/pet_foods-*
135
+ - split: air_fresheners_scents
136
+ path: data/air_fresheners_scents-*
137
+ - split: dishwasher
138
+ path: data/dishwasher-*
139
+ - split: street_view
140
+ path: data/street_view-*
141
+ - split: foodstores
142
+ path: data/foodstores-*
143
+ - split: shoes
144
+ path: data/shoes-*
145
+ - split: pet
146
+ path: data/pet-*
147
+ - split: couch
148
+ path: data/couch-*
149
+ - split: thing_i_dream_about_having
150
+ path: data/thing_i_dream_about_having-*
151
+ - split: glasses_or_lenses
152
+ path: data/glasses_or_lenses-*
153
+ - split: instrument
154
+ path: data/instrument-*
155
+ - split: vegetable_markets
156
+ path: data/vegetable_markets-*
157
+ - split: washing_clothes_cleaning
158
+ path: data/washing_clothes_cleaning-*
159
+ - split: most_played_songs_on_the_radio
160
+ path: data/most_played_songs_on_the_radio-*
161
+ - split: equipment
162
+ path: data/equipment-*
163
+ - split: car
164
+ path: data/car-*
165
+ - split: table_with_food
166
+ path: data/table_with_food-*
167
+ - split: switch_on_off
168
+ path: data/switch_on_off-*
169
+ - split: coins
170
+ path: data/coins-*
171
+ - split: smoke_and_steam_exit
172
+ path: data/smoke_and_steam_exit-*
173
+ - split: washing_detergent
174
+ path: data/washing_detergent-*
175
+ - split: air_cleaning_equipments
176
+ path: data/air_cleaning_equipments-*
177
+ - split: tv
178
+ path: data/tv-*
179
+ - split: lightsources_by_bed
180
+ path: data/lightsources_by_bed-*
181
+ - split: wall_
182
+ path: data/wall_-*
183
+ - split: floor
184
+ path: data/floor-*
185
+ - split: clothes
186
+ path: data/clothes-*
187
+ - split: tattoos
188
+ path: data/tattoos-*
189
+ - split: toothbrush
190
+ path: data/toothbrush-*
191
+ - split: trash_waste
192
+ path: data/trash_waste-*
193
+ - split: light_source_in_livingroom
194
+ path: data/light_source_in_livingroom-*
195
+ - split: dish_racks
196
+ path: data/dish_racks-*
197
+ - split: drinking_water
198
+ path: data/drinking_water-*
199
+ - split: phone
200
+ path: data/phone-*
201
+ - split: surroundings
202
+ path: data/surroundings-*
203
+ - split: tabloids
204
+ path: data/tabloids-*
205
+ - split: pen_pencils
206
+ path: data/pen_pencils-*
207
+ - split: tooth_paste
208
+ path: data/tooth_paste-*
209
+ - split: make_up
210
+ path: data/make_up-*
211
+ - split: worship_places
212
+ path: data/worship_places-*
213
+ - split: cigarettes
214
+ path: data/cigarettes-*
215
+ - split: sheep
216
+ path: data/sheep-*
217
+ - split: cups_mugs_glasses
218
+ path: data/cups_mugs_glasses-*
219
+ - split: baking_tools
220
+ path: data/baking_tools-*
221
+ - split: goats
222
+ path: data/goats-*
223
+ - split: dish_washing_brush_cloth
224
+ path: data/dish_washing_brush_cloth-*
225
+ - split: plates
226
+ path: data/plates-*
227
+ - split: waste_dumps
228
+ path: data/waste_dumps-*
229
+ - split: icons
230
+ path: data/icons-*
231
+ - split: meat_or_fish
232
+ path: data/meat_or_fish-*
233
+ - split: wheel_barrow
234
+ path: data/wheel_barrow-*
235
+ - split: water_sources_for_doing_dishes
236
+ path: data/water_sources_for_doing_dishes-*
237
+ - split: soccer_balls
238
+ path: data/soccer_balls-*
239
+ - split: wall_decoration
240
+ path: data/wall_decoration-*
241
+ - split: horses
242
+ path: data/horses-*
243
+ - split: bed_kids
244
+ path: data/bed_kids-*
245
+ - split: contraceptives
246
+ path: data/contraceptives-*
247
+ - split: nicest_shoes
248
+ path: data/nicest_shoes-*
249
+ - split: computer
250
+ path: data/computer-*
251
+ - split: baby_powder
252
+ path: data/baby_powder-*
253
+ - split: family_snapshots
254
+ path: data/family_snapshots-*
255
+ - split: moped_motorcycle
256
+ path: data/moped_motorcycle-*
257
+ - split: most_loved_item
258
+ path: data/most_loved_item-*
259
+ - split: menstruation_pads_tampax
260
+ path: data/menstruation_pads_tampax-*
261
+ - split: youth_culture
262
+ path: data/youth_culture-*
263
+ - split: baking_sheets
264
+ path: data/baking_sheets-*
265
+ - split: tools
266
+ path: data/tools-*
267
+ - split: grains
268
+ path: data/grains-*
269
+ - split: radio
270
+ path: data/radio-*
271
+ - split: rug
272
+ path: data/rug-*
273
+ - split: water_outlet
274
+ path: data/water_outlet-*
275
+ - split: milk_cows_or_bulls
276
+ path: data/milk_cows_or_bulls-*
277
+ - split: oven
278
+ path: data/oven-*
279
+ - split: roof
280
+ path: data/roof-*
281
+ - split: dish_washing_soap
282
+ path: data/dish_washing_soap-*
283
+ - split: smog_bad_air_breathing_protection
284
+ path: data/smog_bad_air_breathing_protection-*
285
+ - split: parking_lot
286
+ path: data/parking_lot-*
287
+ - split: paper
288
+ path: data/paper-*
289
+ - split: knifes
290
+ path: data/knifes-*
291
+ - split: wall_inside
292
+ path: data/wall_inside-*
293
+ - split: snacks
294
+ path: data/snacks-*
295
+ - split: fishes
296
+ path: data/fishes-*
297
+ - split: frontdoor_keys
298
+ path: data/frontdoor_keys-*
299
+ - split: photo_guide_images
300
+ path: data/photo_guide_images-*
301
+ - split: cutlery
302
+ path: data/cutlery-*
303
+ - split: water_purifier_solutions
304
+ path: data/water_purifier_solutions-*
305
+ - split: place_where_eating_dinner
306
+ path: data/place_where_eating_dinner-*
307
+ - split: front_door
308
+ path: data/front_door-*
309
+ - split: family
310
+ path: data/family-*
311
+ - split: home
312
+ path: data/home-*
313
+ - split: latest_furniture_bought
314
+ path: data/latest_furniture_bought-*
315
+ - split: cooking
316
+ path: data/cooking-*
317
+ - split: sources_of_drinking_water
318
+ path: data/sources_of_drinking_water-*
319
+ - split: vegetables
320
+ path: data/vegetables-*
321
+ - split: everyday_shoes
322
+ path: data/everyday_shoes-*
323
+ - split: elevators
324
+ path: data/elevators-*
325
+ - split: favorite_home_decorations
326
+ path: data/favorite_home_decorations-*
327
+ - split: wedding_photos
328
+ path: data/wedding_photos-*
329
+ - split: bedroom
330
+ path: data/bedroom-*
331
+ - split: carrying_water
332
+ path: data/carrying_water-*
333
+ - split: rehabilitation_technology
334
+ path: data/rehabilitation_technology-*
335
+ - split: markets
336
+ path: data/markets-*
337
+ - split: bike
338
+ path: data/bike-*
339
+ - split: bed_hq
340
+ path: data/bed_hq-*
341
+ - split: mosquito_protection
342
+ path: data/mosquito_protection-*
343
+ - split: kitchen_sink
344
+ path: data/kitchen_sink-*
345
+ - split: get_water
346
+ path: data/get_water-*
347
+ - split: hair_brush_comb
348
+ path: data/hair_brush_comb-*
349
+ - split: spices
350
+ path: data/spices-*
351
+ - split: most_loved_toy
352
+ path: data/most_loved_toy-*
353
+ - split: shaving
354
+ path: data/shaving-*
355
+ - split: teeth
356
+ path: data/teeth-*
357
+ - split: wall_clock
358
+ path: data/wall_clock-*
359
+ - split: drying
360
+ path: data/drying-*
361
+ - split: soap_for_hands_and_body
362
+ path: data/soap_for_hands_and_body-*
363
+ - split: transport_of_heavy_things
364
+ path: data/transport_of_heavy_things-*
365
+ - split: horse_stables
366
+ path: data/horse_stables-*
367
+ - split: newspapers
368
+ path: data/newspapers-*
369
+ - split: car_decorations
370
+ path: data/car_decorations-*
371
+ - split: toys
372
+ path: data/toys-*
373
+ - split: cleaning_floors
374
+ path: data/cleaning_floors-*
375
+ - split: alcoholic_drinks
376
+ path: data/alcoholic_drinks-*
377
+ - split: cosmetics
378
+ path: data/cosmetics-*
379
+ - split: soccer_supporter_items
380
+ path: data/soccer_supporter_items-*
381
+ - split: bad_outdoor_air_obstructions
382
+ path: data/bad_outdoor_air_obstructions-*
383
+ - split: social_drink
384
+ path: data/social_drink-*
385
+ - split: cooking_utensils
386
+ path: data/cooking_utensils-*
387
+ - split: skies_outside
388
+ path: data/skies_outside-*
389
+ - split: arm_watch
390
+ path: data/arm_watch-*
391
+ - split: guest_bed
392
+ path: data/guest_bed-*
393
+ - split: ingredients
394
+ path: data/ingredients-*
395
+ - split: replaced
396
+ path: data/replaced-*
397
+ - split: power_outlet
398
+ path: data/power_outlet-*
399
+ - split: ventilation
400
+ path: data/ventilation-*
401
+ - split: bills_of_money
402
+ path: data/bills_of_money-*
403
+ - split: light_source_in_kitchen
404
+ path: data/light_source_in_kitchen-*
405
+ - split: agriculture_land
406
+ path: data/agriculture_land-*
407
+ - split: street_detail
408
+ path: data/street_detail-*
409
+ - split: light_sources
410
+ path: data/light_sources-*
411
+ - split: ceiling
412
+ path: data/ceiling-*
413
+ - split: things_i_wish_i_had
414
+ path: data/things_i_wish_i_had-*
415
+ - split: wall
416
+ path: data/wall-*
417
+ - split: piercings
418
+ path: data/piercings-*
419
+ - split: vegetable_plot
420
+ path: data/vegetable_plot-*
421
+ - split: fields
422
+ path: data/fields-*
423
+ - split: source_of_cool
424
+ path: data/source_of_cool-*
425
+ - split: storage_room
426
+ path: data/storage_room-*
427
+ - split: fruits_and_vegetables
428
+ path: data/fruits_and_vegetables-*
429
+ - split: favourite_sports_clubs
430
+ path: data/favourite_sports_clubs-*
431
+ - split: snack_stores
432
+ path: data/snack_stores-*
433
+ - split: electricity_wires
434
+ path: data/electricity_wires-*
435
+ - split: celebrity_posters
436
+ path: data/celebrity_posters-*
437
+ dataset_info:
438
+ features:
439
+ - name: id
440
+ dtype: string
441
+ - name: country_name
442
+ dtype: string
443
+ - name: country_id
444
+ dtype: string
445
+ - name: region_id
446
+ dtype: string
447
+ - name: type
448
+ dtype: string
449
+ - name: image
450
+ dtype: image
451
+ - name: topics
452
+ dtype: string
453
+ - name: place
454
+ dtype: string
455
+ - name: income
456
+ dtype: string
457
+ splits:
458
+ - name: fishing_equipment
459
+ num_bytes: 4282534.0
460
+ num_examples: 1
461
+ - name: playgrounds
462
+ num_bytes: 35287984.0
463
+ num_examples: 7
464
+ - name: fruit_trees
465
+ num_bytes: 347993315.0
466
+ num_examples: 100
467
+ - name: cleaning_after_toilet
468
+ num_bytes: 21874227.0
469
+ num_examples: 14
470
+ - name: dinner_guests
471
+ num_bytes: 142874232.0
472
+ num_examples: 48
473
+ - name: idols
474
+ num_bytes: 204194164.0
475
+ num_examples: 65
476
+ - name: freezer
477
+ num_bytes: 515874223.0
478
+ num_examples: 187
479
+ - name: hand_washing
480
+ num_bytes: 1060102199.0
481
+ num_examples: 347
482
+ - name: lock_on_front_door
483
+ num_bytes: 1099656984.0
484
+ num_examples: 362
485
+ - name: children_room
486
+ num_bytes: 677706326.0
487
+ num_examples: 196
488
+ - name: coats_and_jackets
489
+ num_bytes: 60417863.0
490
+ num_examples: 26
491
+ - name: hand_palm
492
+ num_bytes: 1045670614.0
493
+ num_examples: 357
494
+ - name: play_area
495
+ num_bytes: 807546710.0
496
+ num_examples: 216
497
+ - name: bed
498
+ num_bytes: 2798532320.0
499
+ num_examples: 832
500
+ - name: car_keys
501
+ num_bytes: 58358512.0
502
+ num_examples: 58
503
+ - name: meat_markets
504
+ num_bytes: 4634793.0
505
+ num_examples: 1
506
+ - name: earings
507
+ num_bytes: 395054544.0
508
+ num_examples: 136
509
+ - name: hallway
510
+ num_bytes: 126639302.0
511
+ num_examples: 49
512
+ - name: salt
513
+ num_bytes: 997626560.0
514
+ num_examples: 343
515
+ - name: cleaning_equipment
516
+ num_bytes: 808855439.0
517
+ num_examples: 240
518
+ - name: water_sources
519
+ num_bytes: 39337550.0
520
+ num_examples: 12
521
+ - name: chickens
522
+ num_bytes: 271724783.0
523
+ num_examples: 71
524
+ - name: toilet_paper
525
+ num_bytes: 908650830.0
526
+ num_examples: 294
527
+ - name: backyard
528
+ num_bytes: 834683499.0
529
+ num_examples: 208
530
+ - name: living_room
531
+ num_bytes: 976352363.0
532
+ num_examples: 279
533
+ - name: refrigerator
534
+ num_bytes: 704561864.0
535
+ num_examples: 262
536
+ - name: bathroom_privacy
537
+ num_bytes: 898900810.0
538
+ num_examples: 283
539
+ - name: next_big_thing_you_are_planning_to_buy
540
+ num_bytes: 426843198.0
541
+ num_examples: 153
542
+ - name: nature_sceneries
543
+ num_bytes: 9080831.0
544
+ num_examples: 3
545
+ - name: bread_bowls
546
+ num_bytes: 4171755.0
547
+ num_examples: 1
548
+ - name: portraits
549
+ num_bytes: 27532067.0
550
+ num_examples: 9
551
+ - name: boat
552
+ num_bytes: 23087642.0
553
+ num_examples: 5
554
+ - name: books
555
+ num_bytes: 1045990947.0
556
+ num_examples: 315
557
+ - name: necklaces
558
+ num_bytes: 468137237.0
559
+ num_examples: 139
560
+ - name: plate_of_food
561
+ num_bytes: 965241961.0
562
+ num_examples: 298
563
+ - name: place_where_serving_guests
564
+ num_bytes: 452285557.0
565
+ num_examples: 147
566
+ - name: medication
567
+ num_bytes: 935436600.0
568
+ num_examples: 291
569
+ - name: meat_storages
570
+ num_bytes: 5019867.0
571
+ num_examples: 2
572
+ - name: hand_back
573
+ num_bytes: 1091816070.0
574
+ num_examples: 358
575
+ - name: kitchen
576
+ num_bytes: 3049589855.0
577
+ num_examples: 967
578
+ - name: stove_hob
579
+ num_bytes: 1175724856.0
580
+ num_examples: 381
581
+ - name: jewelry
582
+ num_bytes: 566520264.0
583
+ num_examples: 189
584
+ - name: sitting_area
585
+ num_bytes: 1008819886.0
586
+ num_examples: 299
587
+ - name: cattle
588
+ num_bytes: 33022033.0
589
+ num_examples: 12
590
+ - name: source_of_heat
591
+ num_bytes: 453347786.0
592
+ num_examples: 145
593
+ - name: drinks
594
+ num_bytes: 218115579.0
595
+ num_examples: 75
596
+ - name: bowls
597
+ num_bytes: 69506612.0
598
+ num_examples: 24
599
+ - name: tractors
600
+ num_bytes: 8786272.0
601
+ num_examples: 1
602
+ - name: shampoo
603
+ num_bytes: 1009790811.0
604
+ num_examples: 339
605
+ - name: toilet
606
+ num_bytes: 2922917220.0
607
+ num_examples: 943
608
+ - name: baking_tables
609
+ num_bytes: 3017644.0
610
+ num_examples: 1
611
+ - name: wardrobe
612
+ num_bytes: 1161924263.0
613
+ num_examples: 362
614
+ - name: arm_watches
615
+ num_bytes: 55557790.0
616
+ num_examples: 30
617
+ - name: armchair
618
+ num_bytes: 1116948741.0
619
+ num_examples: 332
620
+ - name: shower
621
+ num_bytes: 995696782.0
622
+ num_examples: 329
623
+ - name: visit
624
+ num_bytes: 4464796725.109
625
+ num_examples: 1321
626
+ - name: music_equipment
627
+ num_bytes: 517230560.0
628
+ num_examples: 172
629
+ - name: bathroom_toilet
630
+ num_bytes: 1129143553.0
631
+ num_examples: 350
632
+ - name: electric_wires
633
+ num_bytes: 8854810.0
634
+ num_examples: 2
635
+ - name: cooking_pots
636
+ num_bytes: 1263802321.0
637
+ num_examples: 384
638
+ - name: other_transport
639
+ num_bytes: 20219867.0
640
+ num_examples: 5
641
+ - name: daylight_ostructions
642
+ num_bytes: 2457632.0
643
+ num_examples: 6
644
+ - name: bread_ready
645
+ num_bytes: 2912081.0
646
+ num_examples: 1
647
+ - name: work_area
648
+ num_bytes: 527291086.0
649
+ num_examples: 168
650
+ - name: pet_foods
651
+ num_bytes: 208829264.0
652
+ num_examples: 64
653
+ - name: air_fresheners_scents
654
+ num_bytes: 115395.0
655
+ num_examples: 1
656
+ - name: dishwasher
657
+ num_bytes: 189437189.0
658
+ num_examples: 55
659
+ - name: street_view
660
+ num_bytes: 1270219060.0
661
+ num_examples: 353
662
+ - name: foodstores
663
+ num_bytes: 17300865.0
664
+ num_examples: 3
665
+ - name: shoes
666
+ num_bytes: 2424967583.0
667
+ num_examples: 709
668
+ - name: pet
669
+ num_bytes: 843309370.0
670
+ num_examples: 248
671
+ - name: couch
672
+ num_bytes: 1038410012.0
673
+ num_examples: 306
674
+ - name: thing_i_dream_about_having
675
+ num_bytes: 472486186.0
676
+ num_examples: 159
677
+ - name: glasses_or_lenses
678
+ num_bytes: 406654084.0
679
+ num_examples: 148
680
+ - name: instrument
681
+ num_bytes: 201768650.0
682
+ num_examples: 64
683
+ - name: vegetable_markets
684
+ num_bytes: 3934905.0
685
+ num_examples: 1
686
+ - name: washing_clothes_cleaning
687
+ num_bytes: 986858417.0
688
+ num_examples: 314
689
+ - name: most_played_songs_on_the_radio
690
+ num_bytes: 2804770.0
691
+ num_examples: 1
692
+ - name: equipment
693
+ num_bytes: 1330368532.0
694
+ num_examples: 413
695
+ - name: car
696
+ num_bytes: 356818254.0
697
+ num_examples: 154
698
+ - name: table_with_food
699
+ num_bytes: 723749144.0
700
+ num_examples: 228
701
+ - name: switch_on_off
702
+ num_bytes: 879446769.0
703
+ num_examples: 297
704
+ - name: coins
705
+ num_bytes: 4296291.0
706
+ num_examples: 1
707
+ - name: smoke_and_steam_exit
708
+ num_bytes: 735515901.0
709
+ num_examples: 233
710
+ - name: washing_detergent
711
+ num_bytes: 967584026.0
712
+ num_examples: 315
713
+ - name: air_cleaning_equipments
714
+ num_bytes: 562027.0
715
+ num_examples: 4
716
+ - name: tv
717
+ num_bytes: 881350311.0
718
+ num_examples: 292
719
+ - name: lightsources_by_bed
720
+ num_bytes: 262728699.0
721
+ num_examples: 92
722
+ - name: wall_
723
+ num_bytes: 2818789640.0
724
+ num_examples: 877
725
+ - name: floor
726
+ num_bytes: 1330556621.0
727
+ num_examples: 377
728
+ - name: clothes
729
+ num_bytes: 1022544251.0
730
+ num_examples: 323
731
+ - name: tattoos
732
+ num_bytes: 175056398.0
733
+ num_examples: 51
734
+ - name: toothbrush
735
+ num_bytes: 1119100599.0
736
+ num_examples: 379
737
+ - name: trash_waste
738
+ num_bytes: 964196788.0
739
+ num_examples: 291
740
+ - name: light_source_in_livingroom
741
+ num_bytes: 895836854.0
742
+ num_examples: 307
743
+ - name: dish_racks
744
+ num_bytes: 1070639074.0
745
+ num_examples: 336
746
+ - name: drinking_water
747
+ num_bytes: 958784447.0
748
+ num_examples: 309
749
+ - name: phone
750
+ num_bytes: 1002531643.0
751
+ num_examples: 326
752
+ - name: surroundings
753
+ num_bytes: 60100849.0
754
+ num_examples: 13
755
+ - name: tabloids
756
+ num_bytes: 9384343.0
757
+ num_examples: 2
758
+ - name: pen_pencils
759
+ num_bytes: 937874666.0
760
+ num_examples: 288
761
+ - name: tooth_paste
762
+ num_bytes: 992504555.0
763
+ num_examples: 334
764
+ - name: make_up
765
+ num_bytes: 324344448.0
766
+ num_examples: 97
767
+ - name: worship_places
768
+ num_bytes: 269510881.0
769
+ num_examples: 77
770
+ - name: cigarettes
771
+ num_bytes: 124000767.0
772
+ num_examples: 30
773
+ - name: sheep
774
+ num_bytes: 12738586.0
775
+ num_examples: 4
776
+ - name: cups_mugs_glasses
777
+ num_bytes: 994285249.0
778
+ num_examples: 333
779
+ - name: baking_tools
780
+ num_bytes: 2321733.0
781
+ num_examples: 1
782
+ - name: goats
783
+ num_bytes: 94614657.0
784
+ num_examples: 24
785
+ - name: dish_washing_brush_cloth
786
+ num_bytes: 1118661909.0
787
+ num_examples: 351
788
+ - name: plates
789
+ num_bytes: 1033692373.0
790
+ num_examples: 342
791
+ - name: waste_dumps
792
+ num_bytes: 484227664.0
793
+ num_examples: 127
794
+ - name: icons
795
+ num_bytes: 47368214.0
796
+ num_examples: 188
797
+ - name: meat_or_fish
798
+ num_bytes: 616043178.0
799
+ num_examples: 192
800
+ - name: wheel_barrow
801
+ num_bytes: 201248243.0
802
+ num_examples: 45
803
+ - name: water_sources_for_doing_dishes
804
+ num_bytes: 15657524.0
805
+ num_examples: 7
806
+ - name: soccer_balls
807
+ num_bytes: 11121861.0
808
+ num_examples: 3
809
+ - name: wall_decoration
810
+ num_bytes: 1133852833.0
811
+ num_examples: 352
812
+ - name: horses
813
+ num_bytes: 7103900.0
814
+ num_examples: 3
815
+ - name: bed_kids
816
+ num_bytes: 901139651.0
817
+ num_examples: 250
818
+ - name: contraceptives
819
+ num_bytes: 56130849.0
820
+ num_examples: 25
821
+ - name: nicest_shoes
822
+ num_bytes: 1178886748.0
823
+ num_examples: 350
824
+ - name: computer
825
+ num_bytes: 552454079.0
826
+ num_examples: 186
827
+ - name: baby_powder
828
+ num_bytes: 7773188.0
829
+ num_examples: 4
830
+ - name: family_snapshots
831
+ num_bytes: 392643354.0
832
+ num_examples: 109
833
+ - name: moped_motorcycle
834
+ num_bytes: 244103066.0
835
+ num_examples: 82
836
+ - name: most_loved_item
837
+ num_bytes: 763492723.0
838
+ num_examples: 242
839
+ - name: menstruation_pads_tampax
840
+ num_bytes: 400849572.0
841
+ num_examples: 125
842
+ - name: youth_culture
843
+ num_bytes: 6899000.0
844
+ num_examples: 1
845
+ - name: baking_sheets
846
+ num_bytes: 2760341.0
847
+ num_examples: 1
848
+ - name: tools
849
+ num_bytes: 900850525.0
850
+ num_examples: 252
851
+ - name: grains
852
+ num_bytes: 1066679345.0
853
+ num_examples: 319
854
+ - name: radio
855
+ num_bytes: 534624094.0
856
+ num_examples: 164
857
+ - name: rug
858
+ num_bytes: 720029591.0
859
+ num_examples: 193
860
+ - name: water_outlet
861
+ num_bytes: 967359266.0
862
+ num_examples: 305
863
+ - name: milk_cows_or_bulls
864
+ num_bytes: 19719273.0
865
+ num_examples: 6
866
+ - name: oven
867
+ num_bytes: 408380446.0
868
+ num_examples: 142
869
+ - name: roof
870
+ num_bytes: 983562313.0
871
+ num_examples: 302
872
+ - name: dish_washing_soap
873
+ num_bytes: 1028112295.0
874
+ num_examples: 337
875
+ - name: smog_bad_air_breathing_protection
876
+ num_bytes: 240117.0
877
+ num_examples: 2
878
+ - name: parking_lot
879
+ num_bytes: 448364538.0
880
+ num_examples: 126
881
+ - name: paper
882
+ num_bytes: 1595217257.0
883
+ num_examples: 505
884
+ - name: knifes
885
+ num_bytes: 621867863.0
886
+ num_examples: 181
887
+ - name: wall_inside
888
+ num_bytes: 1174096181.0
889
+ num_examples: 358
890
+ - name: snacks
891
+ num_bytes: 37990707.0
892
+ num_examples: 11
893
+ - name: fishes
894
+ num_bytes: 159058192.0
895
+ num_examples: 58
896
+ - name: frontdoor_keys
897
+ num_bytes: 208792828.0
898
+ num_examples: 147
899
+ - name: photo_guide_images
900
+ num_bytes: 215474454.0
901
+ num_examples: 75
902
+ - name: cutlery
903
+ num_bytes: 926351889.0
904
+ num_examples: 301
905
+ - name: water_purifier_solutions
906
+ num_bytes: 278055.0
907
+ num_examples: 2
908
+ - name: place_where_eating_dinner
909
+ num_bytes: 1171010449.0
910
+ num_examples: 369
911
+ - name: front_door
912
+ num_bytes: 2269861804.0
913
+ num_examples: 732
914
+ - name: family
915
+ num_bytes: 1622349409.0
916
+ num_examples: 493
917
+ - name: home
918
+ num_bytes: 1873360607.0
919
+ num_examples: 550
920
+ - name: latest_furniture_bought
921
+ num_bytes: 325501347.0
922
+ num_examples: 107
923
+ - name: cooking
924
+ num_bytes: 2251982244.0
925
+ num_examples: 679
926
+ - name: sources_of_drinking_water
927
+ num_bytes: 3045397.0
928
+ num_examples: 8
929
+ - name: vegetables
930
+ num_bytes: 1619243098.0
931
+ num_examples: 492
932
+ - name: everyday_shoes
933
+ num_bytes: 1282284689.0
934
+ num_examples: 365
935
+ - name: elevators
936
+ num_bytes: 3346981.0
937
+ num_examples: 3
938
+ - name: favorite_home_decorations
939
+ num_bytes: 476751718.0
940
+ num_examples: 151
941
+ - name: wedding_photos
942
+ num_bytes: 266849446.0
943
+ num_examples: 83
944
+ - name: bedroom
945
+ num_bytes: 1383727529.0
946
+ num_examples: 399
947
+ - name: carrying_water
948
+ num_bytes: 3082174.0
949
+ num_examples: 1
950
+ - name: rehabilitation_technology
951
+ num_bytes: 10884034.0
952
+ num_examples: 8
953
+ - name: markets
954
+ num_bytes: 35468731.0
955
+ num_examples: 8
956
+ - name: bike
957
+ num_bytes: 536280770.0
958
+ num_examples: 149
959
+ - name: bed_hq
960
+ num_bytes: 18768649.0
961
+ num_examples: 4
962
+ - name: mosquito_protection
963
+ num_bytes: 541301592.0
964
+ num_examples: 163
965
+ - name: kitchen_sink
966
+ num_bytes: 1077526669.0
967
+ num_examples: 334
968
+ - name: get_water
969
+ num_bytes: 312942447.0
970
+ num_examples: 80
971
+ - name: hair_brush_comb
972
+ num_bytes: 1069311270.0
973
+ num_examples: 331
974
+ - name: spices
975
+ num_bytes: 1138126845.0
976
+ num_examples: 360
977
+ - name: most_loved_toy
978
+ num_bytes: 766935172.0
979
+ num_examples: 238
980
+ - name: shaving
981
+ num_bytes: 630435242.0
982
+ num_examples: 216
983
+ - name: teeth
984
+ num_bytes: 908538754.0
985
+ num_examples: 326
986
+ - name: wall_clock
987
+ num_bytes: 567309624.0
988
+ num_examples: 184
989
+ - name: drying
990
+ num_bytes: 860669230.0
991
+ num_examples: 270
992
+ - name: soap_for_hands_and_body
993
+ num_bytes: 1043814773.0
994
+ num_examples: 363
995
+ - name: transport_of_heavy_things
996
+ num_bytes: 66846208.0
997
+ num_examples: 21
998
+ - name: horse_stables
999
+ num_bytes: 2030907.0
1000
+ num_examples: 1
1001
+ - name: newspapers
1002
+ num_bytes: 25233082.0
1003
+ num_examples: 7
1004
+ - name: car_decorations
1005
+ num_bytes: 5448714.0
1006
+ num_examples: 1
1007
+ - name: toys
1008
+ num_bytes: 904248551.0
1009
+ num_examples: 286
1010
+ - name: cleaning_floors
1011
+ num_bytes: 422989995.0
1012
+ num_examples: 124
1013
+ - name: alcoholic_drinks
1014
+ num_bytes: 206764191.0
1015
+ num_examples: 72
1016
+ - name: cosmetics
1017
+ num_bytes: 362582452.0
1018
+ num_examples: 123
1019
+ - name: soccer_supporter_items
1020
+ num_bytes: 3500438.0
1021
+ num_examples: 3
1022
+ - name: bad_outdoor_air_obstructions
1023
+ num_bytes: 1141009.0
1024
+ num_examples: 6
1025
+ - name: social_drink
1026
+ num_bytes: 865071477.0
1027
+ num_examples: 280
1028
+ - name: cooking_utensils
1029
+ num_bytes: 1023598264.0
1030
+ num_examples: 301
1031
+ - name: skies_outside
1032
+ num_bytes: 3351593.0
1033
+ num_examples: 7
1034
+ - name: arm_watch
1035
+ num_bytes: 298661802.0
1036
+ num_examples: 101
1037
+ - name: guest_bed
1038
+ num_bytes: 504616118.0
1039
+ num_examples: 164
1040
+ - name: ingredients
1041
+ num_bytes: 17779940.0
1042
+ num_examples: 3
1043
+ - name: replaced
1044
+ num_bytes: 4438189.0
1045
+ num_examples: 3
1046
+ - name: power_outlet
1047
+ num_bytes: 875197741.0
1048
+ num_examples: 298
1049
+ - name: ventilation
1050
+ num_bytes: 24058628.0
1051
+ num_examples: 10
1052
+ - name: bills_of_money
1053
+ num_bytes: 11163171.0
1054
+ num_examples: 2
1055
+ - name: light_source_in_kitchen
1056
+ num_bytes: 883391525.0
1057
+ num_examples: 304
1058
+ - name: agriculture_land
1059
+ num_bytes: 237876904.0
1060
+ num_examples: 53
1061
+ - name: street_detail
1062
+ num_bytes: 1168591117.0
1063
+ num_examples: 290
1064
+ - name: light_sources
1065
+ num_bytes: 707637325.0
1066
+ num_examples: 220
1067
+ - name: ceiling
1068
+ num_bytes: 1154394188.0
1069
+ num_examples: 362
1070
+ - name: things_i_wish_i_had
1071
+ num_bytes: 13208034.0
1072
+ num_examples: 5
1073
+ - name: wall
1074
+ num_bytes: 3920557387.358
1075
+ num_examples: 1154
1076
+ - name: piercings
1077
+ num_bytes: 181157725.0
1078
+ num_examples: 68
1079
+ - name: vegetable_plot
1080
+ num_bytes: 283618018.0
1081
+ num_examples: 71
1082
+ - name: fields
1083
+ num_bytes: 5822273.0
1084
+ num_examples: 1
1085
+ - name: source_of_cool
1086
+ num_bytes: 786516004.0
1087
+ num_examples: 250
1088
+ - name: storage_room
1089
+ num_bytes: 772429217.0
1090
+ num_examples: 225
1091
+ - name: fruits_and_vegetables
1092
+ num_bytes: 664452138.0
1093
+ num_examples: 210
1094
+ - name: favourite_sports_clubs
1095
+ num_bytes: 135961086.0
1096
+ num_examples: 46
1097
+ - name: snack_stores
1098
+ num_bytes: 288627.0
1099
+ num_examples: 1
1100
+ - name: electricity_wires
1101
+ num_bytes: 2244483.0
1102
+ num_examples: 1
1103
+ - name: celebrity_posters
1104
+ num_bytes: 6966565.0
1105
+ num_examples: 1
1106
+ download_size: 7376078939
1107
+ dataset_size: 134294971337.46701
1108
+ ---
1109
+ # Dataset Card for "dollarstreet"
1110
+
1111
+ [More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)