Datasets:

Modalities:
Text
Languages:
English
Libraries:
Datasets
License:
proof-pile / proof-pile.py
zhangirazerbayev's picture
make dataset viewer work
d61f006
raw
history blame
6.54 kB
# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""A dataset of high quality mathematical text."""
import csv
import json
import os
import itertools
from itertools import islice
import datasets
# TODO: Add BibTeX citation
# Find for instance the citation on arxiv or on the dataset repo/website
_CITATION = """\
@InProceedings{huggingface:dataset,
title = {proof-pile},
author={Zhangir Azerbayev, Edward Ayers, Bartosz Piotrowski
},
year={2022}
}
"""
# TODO: Add description of the dataset here
# You can copy an official description
_DESCRIPTION = """\
A dataset of high quality mathematical text. """
_HOMEPAGE = "https://huggingface.co/datasets/hoskinson-center/proof-pile"
# TODO: Add the licence for the dataset here if you can find it
_LICENSE = "MIT"
# TODO: Add link to the official dataset URLs here
# The HuggingFace Datasets library doesn't host the datasets but only points to the original files.
# This can be an arbitrary nested dict/list of URLs (see below in `_split_generators` method)
_URLS = {
"first_domain": "https://huggingface.co/datasets/hoskinson-center/proof-pile",
}
# TODO: Name of the dataset usually match the script name with CamelCase instead of snake_case
class ProofPile(datasets.GeneratorBasedBuilder):
"""A dataset of high quality mathematical text"""
VERSION = datasets.Version("1.1.0")
# This is an example of a dataset with multiple configurations.
# If you don't want/need to define several sub-sets in your dataset,
# just remove the BUILDER_CONFIG_CLASS and the BUILDER_CONFIGS attributes.
# If you need to make complex sub-parts in the datasets with configurable options
# You can create your own builder configuration class to store attribute, inheriting from datasets.BuilderConfig
# BUILDER_CONFIG_CLASS = MyBuilderConfig
# You will be able to load one or the other configurations in the following list with
# data = datasets.load_dataset('my_dataset', 'first_domain')
# data = datasets.load_dataset('my_dataset', 'second_domain')
BUILDER_CONFIGS = [
datasets.BuilderConfig(name="default", version=VERSION, description=""),
]
def _info(self):
# TODO: This method specifies the datasets.DatasetInfo object which contains informations and typings for the dataset
features = datasets.Features(
{
"text": datasets.Value("string"),
"meta": datasets.Value("string")
# These are the features of your dataset like images, labels ...
}
)
return datasets.DatasetInfo(
# This is the description that will appear on the datasets page.
description=_DESCRIPTION,
# This defines the different columns of the dataset and their types
features=features, # Here we define them above because they are different between the two configurations
# If there's a common (input, target) tuple from the features, uncomment supervised_keys line below and
# specify them. They'll be used if as_supervised=True in builder.as_dataset.
# supervised_keys=("sentence", "label"),
# Homepage of the dataset for documentation
homepage=_HOMEPAGE,
# License for the dataset if available
license=_LICENSE,
# Citation for the dataset
citation=_CITATION,
)
def _split_generators(self, dl_manager):
# TODO: This method is tasked with downloading/extracting the data and defining the splits depending on the configuration
# If several configurations are possible (listed in BUILDER_CONFIGS), the configuration selected by the user is in self.config.name
# dl_manager is a datasets.download.DownloadManager that can be used to download and extract URLS
# It can accept any type or nested list/dict and will give back the same structure with the url replaced with path to local files.
# By default the archives will be extracted and a path to a cached folder where they are extracted is returned instead of the archive
train_files = [dl_manager.download_and_extract(f"train/proofpile_train_{i}.jsonl.gz") for i in range(21)]
val_files = [dl_manager.download_and_extract("dev/proofpile_dev.jsonl.gz")]
test_files = [dl_manager.download_and_extract("test/proofpile_test.jsonl.gz")]
return [
datasets.SplitGenerator(
name=datasets.Split.TRAIN,
# These kwargs will be passed to _generate_examples
gen_kwargs={
"data_files": train_files,
},
),
datasets.SplitGenerator(
name=datasets.Split.VALIDATION,
# These kwargs will be passed to _generate_examples
gen_kwargs={
"data_files": val_files,
},
),
datasets.SplitGenerator(
name=datasets.Split.TEST,
gen_kwargs={
"data_files": test_files,
},
),
]
# method parameters are unpacked from `gen_kwargs` as given in `_split_generators`
def _generate_examples(self, data_files):
# TODO: This method handles input defined in _split_generators to yield (key, example) tuples from the dataset.
# The `key` is for legacy reasons (tfds) and is not important in itself, but must be unique for each example.
key = 0
for name in data_files:
with open(name) as f:
instances = [json.load(x) for x in f.readlines() if x]
for instance in instances:
yield key, {"text": instance["text"],
"meta": json.dumps(instance["meta"])}
key += 1